Сталь: классификация, особенности и описание разновидностей сплава


Сталь – самый известный в мире сплав железа. По сути, говоря о железных конструкциях и предметах, мы говорим об изделиях (или их производстве) из той или иной стали. 99% сплава относится к категории конструкционных сталей, так что практически не существует инструментов или оборудования, где он бы ни использовался.

В этой статье мы постараемся затронуть такие темы как классификация марок, цена стали, ее свойства и применение в строительстве.

Что такое сталь

Сталь – сплав железа и углерода. В обычных случаях доля углерода колеблется от 0,1 до 2,14 %. Но, учитывая, что в состав легированных сталей может входить множество дополнительных ингредиентов, сегодня под сталью подразумевают такой сплав, где доля железа составляет не менее 45%.

О том, что такое сталь, и как ее производят, расскажет этот видеосюжет:

Понятие и особенности

Главные привлекательные качества стали – высокая прочность при доступности сырья и относительно простом способе производства. Именно такая комбинация и ставит сплавы железа в позицию абсолютного лидера. На сегодня попросту не существует такой области народного хозяйства, где стали не занимали бы позицию конструкционного материала.

  • Железо и углерод – обязательные составляющие сплава. Из них железо обеспечивает пластичность и вязкость, благодаря чему сталь относят к деформируемым, ковким сплавам. А углерод – твердость и прочность, так как твердость всегда сочетается с хрупкостью. Добавка углерода невелика и даже в специализированных составах не превышает 3,4%.
  • Кроме того, из-за способа производства, сталь всегда содержит какую-то долю марганца – до 1 %, и кремния – до 0,4%. Эти примеси мало влияют на свойства состава, если не превышают заданную норму. По тем же причинам в составе оказываются и вредные примеси – фосфор, сера, несвязанный азот и кислород. В процессе плавки и легирования от этих ингредиентов стараются избавиться, поскольку они уменьшают прочностные и пластичные свойства сплавов.
  • В сплав вводят искусственно другие добавки с целью изменить качества материала. Так, добавка хрома придает стали жаропрочность, а никеля – стойкость к коррозии и вязкость.
  • Чрезвычайно полезным качеством железных сплавов является то, что на изменение свойств влияют очень небольшие по весу добавки других веществ. Это позволяет значительно разнообразить качества материала. Кроме того, на свойства сплава очень сильно влияет метод изготовления собственно продукции – холодное деформирование, горячее, закалка и так далее.

Соотношение с чугуном

Наиболее близок к стали по свойствам и составу чугун. Часть материала и производится из предельного чугуна. Однако на практике различия в характеристиках оказываются весьма заметными:

  • сталь прочнее и тверже, чем чугун;
  • чугун на деле легче стали и имеет более низкую температуру плавления. Обманчивое впечатление создает массивность изделий из чугуна, поскольку он менее прочен;
  • сталь легче поддается механической обработке благодаря низкому содержанию углерода. Чугун же предпочтительнее отливать;
  • чугун имеет более низкую теплопроводность, то есть, изделия из него лучше хранят тепло, чем стальные;
  • чугун нельзя подвергнуть такой процедуре, как закалка. А последняя может значительно увеличить прочность материала.

Далее рассмотрим достоинства и недостатки стали.

Преимущества и недостатки

Описывать плюсы и минусы материала довольно сложно. На практике мы имеем дело с продукцией из стали, причем из сплава самых разных марок, а, значит, и свойств. А одна из особенностей материала как раз и состоит в том, что метод изготовления изделии из него тоже влияет на его свойства. Качества сварной трубы не сравнить с характеристиками трубопровода из холоднокатаной стали.

В общем, можно говорить о следующих преимуществах стали:

  • высокая прочность и твердость – свойственно всем видам;
  • огромное разнообразие свойства, обусловленное разным составом и разными методами обработки;
  • вязкость и упругость, достаточные для применения на всех участках, где требуется стойкость к ударным, статическим и динамическим нагрузкам при отсутствии остаточной деформации;
  • легкость механической обработки – сварка, нарезка, сгибание;
  • очень высокая износостойкость по сравнению с другими конструкционными материалами и, соответственно, долговечность;
  • распространенность сырья и экономически выгодный метод производства, что обуславливает доступную стоимость сплавов.

К недостаткам можно отнести следующее:

  • самый большой недостаток материала – нестойкость к коррозии. Чтобы избежать повреждений, выпускают специальные виды металла стали – нержавеющие, однако их стоимость заметно выше. Чаще проблему решают за счет покрытия стальных изделий защитным слоем металла или полимера;
  • сплав накапливает электричество, что заметно усиливает электрохимическую коррозию. Сколько-нибудь объемные конструкции – корпуса машин, трубопроводы, нуждаются в специальной защите;
  • сплав не отличается легкостью, стальные конструкции имеют большой вес и заметно утяжеляют объекты;
  • изготовление стальных изделий – многоэтапный процесс. Недочеты и ошибки на любом из этапов оборачиваются значительным снижением качества.

Далее будет рассмотрена маркировка и классификация сталей по качеству, по назначению, а также по составу и иным характеристикам.

Виды углеродистой стали по степени раскисления

Степень раскисления – это ещё один фактор, влияющий на разделение углеродистых сталей по типам. Всего их 3 типа: спокойные, полуспокойные и кипящие.

Спокойные стали отличаются более однородной внутренней структурой – их расклисление осуществляется добавлением в расплавленный металл ферросилиция, ферромарганца и алюминия. В составе практически нет закиси железа. Структура мелкозернистая за счёт остаточного алюминия. В итоге получается качественный металл, подходящий для изготовления наиболее ответственных деталей и конструкций. Однако у сплавов этого типа есть существенный недостаток – их выплавка обходится достаточно дорого.

Кипящие углеродистые стали – более дешёвая, но и менее качественная альтернатива спокойным сплавам. При их выплавке используется минимальное количество специальных добавок, а процесс раскисления в печи не доводится до конца, в результате чего в структуре кипящей углеродистой стали присутствуют растворённые газы, негативно влияющие на её характеристики.

Полуспокойные стали занимают промежуточное положение и по свойствам, и по степени раскисления. Перед заливкой в изложницы в состав добавляется небольшое количество раскислителей – благодаря этому металл затвердевает практически без кипения, при этом в нём продолжается процесс выделения газов. В итоге, в структуре полуспокойной углеродистой стали меньше газовых пузырей, чем в кипящей стали. Чаще всего полуспокойные углеродистые стали применяют в качестве конструкционных материалов.

Разновидности металла

Подсчитать количество известных и используемых на сегодня сплавов – задача очень непростая. Классифицировать их не менее сложно: свойства материала зависят от состава, метода получения, характера добавок, способа обработки и так далее.

Чаще всего используются следующие классификации:

  • по химическому составу сталей – углеродистые и легированные;
  • по структурному составу – аустенитную, ферритную и так далее;
  • по содержанию примесей – обычного качества, качественная и так далее;
  • по методу обработки – термическая закалка – отжиг, термомеханическая – ковка, химико-термическая – азотирование;
  • по назначению – инструментальные, конструкционные, специальные стали и так далее.

О нержавеющей стали поведает это видео:

Химический состав

Сплав, по сути своей – твердый раствор. Причем компонент в твердом основном материале растворяется по другим законам, чем в жидкости. Основой получения всех железных сплавов является способность железа к полиморфизму, то есть, формированию разных структурных фаз при разной температуре. Благодаря этому углерод и другие элементы, растворенные в железе при высокой температуре, не выпадают в осадок при понижении температуры, как это происходит с обычными жидкостями, а образуют совместную структуру.

По своему составы стали делятся на углеродистые и легированные.

Углеродистые

Углеродистые – главным, то есть, определяющим свойства легирующим компонентом является углерод. Различают 3 вида:

  • малоуглеродистые – менее 0,3 %. Сплавы отличаются ковкостью и стойкостью к динамическим нагрузкам;
  • среднеуглеродистые – доля углерода варьируется от 0,3 до 0,7%;
  • высокоуглеродистые содержат более 0,7% углерода. Их отличает более высокая прочность и твердость.

Это деление связано с теми преобразованиями, которые происходят в сплавах. До содержания углерода в 0,8 % сплав сохраняет доэвтектоидную структуру, то есть, имеет ферритно-перлитную структуру. При увеличении доли углерода структура меняется на эвтектоидную и заэвтектоидную, что соответствует перлиту и цементиту. Соотношение фаз во много определяет прочностные характеристики.

Пользователь сталкивается не столько с мало- или высокоуглеродистой сталью, сколько с составом определенной марки. Марка определяется соотношением нескольких критериев, а не только содержанием углерода.

Различают по назначению 3 группы:

  • А – нормируются механические качества. Группа подразделяется на 3 категории и 6 марок. Обозначается марка Ст от 0 до 6. Ст0 – это отбракованная по каким-то показателям сталь, используемая в незначимых конструкциях. Ст6 – в наибольшей степени соответствует понятию качественная сталь;
  • Б – нормируется по своему химическому составу, делится на 2 категории и 6 марок, обозначается БСт от 0 до 6. С увеличением номера повышается прочность и текучесть материала;
  • группа В нормируется и по механическим показателям, и по составу. Она делится на 5 марок, обозначается ВСт.

Применяется дополнительная классификация по содержанию марганца. I – с нормальным содержанием элемента, то есть, 0,25– 0,8%, и II – с повышенным, до 1,2%

Легированные

Легированными называют стали, в которые специально вводят дополнительные ингредиенты для придания составу других качеств. Классификация производится по суммарному объему всех легирующих добавок – не примесей марганца или фосфора.

Различают 3 вида:

  • низколегированные – с суммарным объемом добавок до 2,5%;
  • среднелегированные – содержит от 2,5 до 10% примесей;
  • в высоколегированных доля добавок превышает 10%.

Легирование значительно усложняет структуру твердого раствора, что приводит к возникновению сложнейшей классификации по структурному составу. Маркируются марки по составу: обязательно указывается доля углерода. А затем по уменьшению указывают доли легирующих добавок. Если доля примеси менее 1% вещество не указывается.

В качестве добавок применяют как неметаллы, так и металлы.

  • Марганец – увеличивает прочность и твердость материала, улучшает режущие свойства. Но при этом способствует увеличению зерна, что уменьшается стойкость к ударным нагрузкам.
  • Хром – улучшает стойкость к ударным и статическим нагрузкам, а также повышает жаропрочность. При большой доле хрома материал становится нержавеющим.
  • Никель – увеличивает упругость сплава. При значительном содержании придает стали коррозийную стойкость и жаропрочность.
  • Молибден – повышает твердость сплава, но при этом уменьшает хрупкость.

Наиболее известна из легированных сталей, конечно, нержавеющая. Чаще всего это хромо-никелевая и хромистая сталь с долей хрома до 27%.

Фазовый и структурный состав

Получение стали – процесс непростой и неоднозначный. Особенность его состоит в том, что при плавке сплав проходит через фазовые превращения, которые и обуславливают сочетание прочности и упругости.

Легирование углеродом происходит в 2 этапа. На первой стадии при нагреве до 725 С железо соединяется с углеродом, образуя карбид, то есть, химическое соединение, называемое цементитом. При нормальной температуре сталь включает смесь цементита и феррита. При повышении температуры выше 725 С цементит растворяется в железе, формирую другую фазу – аустенит.

С этой особенностью связана классификация сплава по структурному составу в нормализованном виде:

  • перлитная – в основном это низкоуглеродистые и низколегированные стали;
  • мартенситные – с большим содержанием добавок;
  • аутенитная – высоколегированная.

В отожженном состоянии выделяют такие структурные классы:

  • доэвтектоидный,
  • заэвтектоидный,
  • ледебуритный,
  • ферритный,
  • аустенитный.

В чем смысл подобного деления? Дело в том, что легирующие добавки оказывают разное воздействие на разные структуры стали. Так, растворение в феррите легирующих элементов приводит к увеличению временного сопротивления, за исключением марганца и кремния, которые сплав упрочняют. При легировании аустенита понижается предел текучести при относительно высокой прочности. В результате материал легко и быстро упрочняется при деформации – наклепывании.

Классификация по раскислителю

При плавке металлов частой проблемой является растворенный в них газ – кислород, азот, водород, чтобы удалить его прибегают к раскислению. В зависимости от полноты процесса различают 3 вида:

  • спокойная – металл не содержит закиси железа. В сплаве полностью отсутствуют газы, так что его свойства наиболее стабильны и однородны. Применяется для ответственных конструкций, поскольку технология его получения дорогая;
  • полуспокойная – затвердевает без кипения, но сопровождается выделением газов. Какое-то количество газов остается, однако может быть удалено при прокатке сплава. Как правило, полуспокойная сталь используется как конструкционная;
  • кипящая – содержит растворенные газы. Это сказывается на свойствах: материал склонен к трещинообразованию при сварке, например, но, так как производство кипящей стали требует меньше всего затрат, производится и такой сплав для многих простых конструкций.

Классификация по назначению

Довольно условное разделение сталей по сферам применения стали.

  • Строительные – сплавы обычного качества и низколегированные, рассчитанные на высокие статические и в некоторых случаях динамические нагрузки. Главное требование к ним – хорошая свариваемость. На деле в зависимости от характера строительного объекта, применяется материал самого разного качества.
  • Инструментальные – как правило, высокоуглеродистые и высоколегированные, применяются при изготовлении инструментов. Различают штампованные сплавы, режущие и стали для измерительных инструментов. Режущие отличаются твердостью и теплостойкостью, материал для измерительных приборов – высокой износостойкостью.
  • Конструкционные – с низким содержанием марганца. Это цементируемые, высокопрочные, автоматные, шарико-подшипниковые, износостойкие и так далее, применяемые для изготовления самых разнообразных узлов и конструкций. Столь огромного разнообразия свойств добиваются за счет легирования.
  • Порой выделяют специальные стали – жаропрочные, жаростойкие, кислотоупорные, но на деле они являются разновидностью конструкционных.

Содержание примесей

Сталь может включать полезные примеси, то есть, легирующие элементы, и вредные. По содержанию вредных и различают 4 группы:

  • рядовые – или обыкновенного качества, с долей серы не более 0,06% и фосфора не выше 0,07%;
  • качественные – допускается доля серы не более 0,04% и фосфора не более 0,035%. Процесс их изготовления дороже, но и механические свойства сталей выше;
  • высококачественные – доля серы не превышает 0,025%, а фосфора – 0,025%. Получают сплавы в основном в электропечах, чтобы добиться большой чистоты;
  • особовысококачественные – выплавляются в электропечах специальными методами. Так получают только высоколегированные стали с содержанием серы до 0,015% и фосфора – 0,025%.

Далее рассмотрим технологии и процесс производства стали, его этапы и виды.

Виды углеродистой стали по виду и качеству

Углеродистая сталь производится по различным технологиям, что ведёт к их разделению по качественным характеристикам. Различают два вида стали:

  • конструкционная;
  • инструментальная.

Конструкционная углеродистая сталь содержит до 0,65-0,70% углерода (в виде исключения также выпускается конструкционная сталь с содержанием 0,85% углерода). Она достаточно прочная, хорошо сопротивляется удару, а также хорошо обрабатывается.

Конструкционные углеродистые стали широко применяются в промышленности: их применяются для изготовления элементов конструкций машиностроительного и строительного назначения, детали для оборудования, крепёжные детали и многое другое.

Её также делят по качеству на 3 вида:

  1. Обыкновенного качества – сталь широкого применения, которая подходит для производства крепёжных деталей, труб, строительных конструкций, листового проката и т.д.
  2. Повышенного качества – применяется для изготовления котлов, паровозных и вагонных осей, проволоки и т.д.
  3. Качественная – подходит для деталей, требующих высокой пластичности и сопротивления удару, применяемых при повышенном давлении, например, труб, болтов, винтов, зубчатых колёс и т.д.

Инструментальная углеродистая сталь отличается содержание углерода от 0,7% и выше. Такой тип стали твёрдый и прочный, что делает его подходящим для производства инструмента. Подразделяется на качественную (сера 0,03%, фосфор 0,035%) и высококачественную (сера 0,02%, фосфор 0,03%).

Производство сплава

Процесс изготовления сплава сводится к переработке чугуна, при которой отжигаются лишние примеси и вводятся легирующие элементы. Используются при этом несколько методов.

  • Мартеновский – расплавленный или твердый чугун с рудой плавят в мартеновской печи при 2000 С, чтобы отжечь лишний углерод. Добавки вводят в конце плавки. Сталь разливают в ковши и переправляют в прокатный цех.
  • Кислородно-конвертерный – более производительный. Сквозь чугун в печи продувают воздух или смесь воздуха с кислородом, добиваясь более быстрого и полного отжига.
  • Электроплавильный – плавка осуществляется в закрытой печи при 2200 С, что исключает попадание в сплав газов. Дорогостоящий метод, которым получают лишь высококачественные составы.
  • Прямой метод – в шахтной печи окатыши, получаемые из железной руды продувают продуктами сгорания природного газа – смесью кислорода, угарного газа, аммиака, при температуре в 1000 С.

На этом процесс изготовления стали не заканчивается. В тех случаях, когда необходимо получить максимально прочный материал, прибегают к дополнительной обработке.

Термический метод

К термическим способам относится:

  • отжиг – нагрев и медленное охлаждение разных видов и с разной скоростью;
  • закалка – нагрев выше критической температуры, что вызывает перекристаллизацию сплава, и быстрее охлаждение;
  • отпуск – процедура, осуществляет вслед за закалкой с целью уменьшить напряжение металла;
  • нормализация – тот же отжиг, но проводимый не в печи, а на воздухе.

Термомеханический способ

Термомеханические методы сочетают механическое и термическое воздействие:

  • высокотемпературная ТМО – закалка – наклеп, упрочнение, производится сразу же после нагрева, пока сплав сохраняет аустенитную структуру. Изменение вследствие пластической деформации при прокатке или штамповке сохраняется на 70% и после охлаждения и сталь оказывается более прочной;
  • при низкотемпературной ТМО – холоднокатаная сталь. Сплав нагревают для аустенитного состояния, охлаждают ниже точек рекристаллизации, чтобы добиться появления мартенситной фазы – в пределах 400– 600 С. Затем производится закалка – наклеп, прокатка. При охлаждении эффект полностью сохраняется.

Термохимическая обработка

Термохимическая обработка представляется собой нагрев сплавов и выдержку их в определенных химических средах. К наиболее известным методам относят:

  • цементацию – насыщение поверхности сплава углеродом. Таким образом получают износостойкий верхний слой;
  • азотирование – насыщение стали азотом. Цель такая же – получение верхнего износостойкого слоя, но по сравнению с цементацией, азотирование обеспечивает более высокую стойкость к коррозии;
  • нитроцементацию и цианирование – насыщение поверхностного слоя и углеродом и азотом. Обеспечивает более высокую скорость и производительность процесса.

Применение углеродистой стали

Благодаря высокой прочности, хорошей обрабатываемости, долговечности и сравнительной дешевизне углеродистые стали нашли свое применение во многих отраслях народного хозяйства.

Особенно они популярны в машиностроении, что связано со способностью металла сопротивляться активным нагрузкам, а также с высокими пределами усталости. Так, углеродистая сталь выступает в качестве основного материала для производства:

  • маховиков;
  • зубчатых передач редукторов;
  • корпусов шатунов;
  • коленчатых валов;
  • поршней плунжерных насосов.

Из углеродистых сплавов производят технологическую оснастку для легкой, деревообрабатывающей промышленности. Во всех этих случаях используют конструкционные углеродистые стали. После цементации этот тип металла используется в создании износоустойчивых деталей, эксплуатация которых будет сопровождаться значительными динамическими нагрузками.

На основе низко и среднеуглеродистой стали осуществляют выпуск:

  • уголков;
  • швеллеров;
  • труб;
  • двутавров и других профилей

Начальные свойства конструкционных углеродистых сталей подлежат повышению путем проведения термообработки (закалки).

Выпуск инструментов различного назначения базируется на применении инструментальных стальных сплавов, которые содержат 0,65–1,32% углерода:

  • молотки, керны, отвертки, зубила, кузнечный инструмент, косы (марка инструментальной углеродистой стали У7 и У7А);
  • ножницы, ножи рубильных машин, ручной столярный инструмент, рамные пилы (марка У8, У8А);
  • сверла, фрезы малого диаметра, ленточные пилы, развертки (марка У10, У10А);
  • токарные резцы по дереву, ножовочные полотна по металлу, напильники, граверный инструмент (марка У12, У13).

Инструментальные углеродистые стали применяют для производства измерительных приборов. Чтобы получить небольшую деталь с точностью линейных размеров в несколько сот миллиметров, нельзя допускать нагрева или деформации заготовки в результате оказываемого давления режущим инструментом.

Востребовано использование углеродистых сталей обыкновенного качества в строительстве, некоторые марки применяются в машино-, судостроении.

Стоимость материала

Стоимость материала не менее разнообразна, чем количество марок. Условная сталь на Лондонской бирже металлов в декабре 2016 г стоит 325 $ за тонну. Стоимость нержавеющей стали заметно выше: холоднокатаная нержавеющая сталь сорта 304 в декабре оценивается в пределах от 1890 до 1925 $ за тонну.

Сталь – самый востребованный и самый распространенный металлический сплав в мире. Говоря о роли железа в народном хозяйстве, имеют в виду именно разнообразные стальные сплавы.

О том, как плавится сталь, смотрите в видео ниже:

Маркировка

Состав, способ производства обусловили маркировку сталей.

Материал делится на три группы:

  • Группа А включает семь марок стали – от Ст 0 до Ст 6. Чем больше цифра, тем лучше.
  • Группа Б – марки от БСт0 до БСт 6. Увеличение нумерации означает повышение планки прочности, текучести.
  • Группа В маркируется как ВСт.

В группе А регламентируются механические характеристики, у группы Б в приоритете состав, для сегмента В важны обе шкалы.

Основные параметры

От других материалов сталь отличается своими параметрами: плотностью, удельной тепловой ёмкостью, температурой плавления, показателями линейного теплового расширения и другими. Среди основных характеристик стали следует выделить:

  1. Плотность: от 7,6 до 7,8 г/см³.
  2. Удельная тепловая ёмкость при температуре 20 °C: 462 Дж.
  3. Температура плавления стали: 1400—1500° Цельсия.
  4. Удельная масса: 75500—77500 Н/м³.
  5. Удельная теплота плавления: 84 кДж/кг.
  6. Показатель линейного теплового расширения (нержавеющей): 11,0 * 10 − 6 / °C.
  7. Коэффициент тепловой проводимости при t = 100° Цельсия (хромоникельвольфрамовой: 15,5; дюралюминиевой: 56,3 Вт/(м·К).
  8. Лимит прочности при растяжении и сопротивлении (для конструкций: 373−412 мПа; кремнехромомарганцовистой: 1,52 ГПа).
  9. Модуль упругости стали (или модуль Юнга): 200 тысяч (Е, мПа). В таблице упругости некоторых веществ приводится также значение, равное 2 039 400 (Е, кгс/см²).
  10. Коэффициент Пуассона: 0,3 единицы.

Качества стали меняются с помощью различных типов обработки: термической, термомеханической, химико-термической. При обрабатывании с целью получить требуемую структуру пользуются полиморфическим свойством — возможностью кристаллической решётки изменять строение при нагревании и охлаждении. Производя закаливание с дальнейшим нагреванием (отпуском), можно добиться получения оптимальной формулы, сочетающей пластичность, твёрдость и плотность стали.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]