Легированная сталь — описание, маркировка, состав и где применяется


Что такое сталь

Сплав на основе железа (не менее 45%) называют сталью. В зависимости от процентного содержания второго исходного компонента – углерода, различают сплавы высокоуглеродистые (0,6-2,14% С), среднеуглеродистые (0,25-0,6% С), и низкоуглеродистые (не более 0,25% С). Чем выше данный показатель, тем более прочная и упругая сталь, но в то же время с пониженной пластичностью и сопротивляемостью ударам.


Пример легированной стали

Обязательными компонентами в составе сплава являются раскислители – марганец и кремний. Эти химические элементы присутствуют в незначительном количестве, и на свойства не влияют. Их цель – нейтрализация вредного действия кислорода.

Даже качественная сталь содержит вредные примеси, от которых нельзя избавиться. Это:

  • сера, из-за которой возникают трещины;
  • фосфор, увеличивающий хрупкость (хладноломкость);
  • азот, кислород, водород – разрыхлители структуры стали;
  • окислы и нитриды, приводящие к разрывам.

Кроме перечисленных компонентов, в углеродистых сплавах всегда есть и другие вещества, которые попадают вместе с исходными материалами при выплавке: медь, цинк, хром, никель, свинец. Уровень их содержания настолько ничтожен, что они не оказывают ни положительного, ни отрицательного влияния.

Разница между легированной и нелегированной сталью

Определение

Легированная сталь: Легированная сталь — это вид стали, состоящий из железа, углерода и некоторых других элементов.

Не сплав Сталь: Нелегированная сталь — это тип стали, который не имеет других элементов, добавляемых во время плавки.

Присутствие углерода

Легированная сталь: Легированная сталь состоит из большого количества углерода.

Не сплав Сталь: В нелегированной стали содержание углерода меньше или отсутствует.

выплавка

Легированная сталь: Легированная сталь изготавливается путем добавления различных элементов во время плавки.

Не сплав Сталь: Никакие другие элементы не добавляются во время плавки при производстве нелегированной стали.

коррозия

Легированная сталь: Легированная сталь менее устойчива к коррозии из-за присутствия железа.

Не сплав Сталь: Нелегированная сталь сильно подвергается коррозии из-за большого содержания железа.

Примеры

Легированная сталь: Нержавеющая сталь является хорошим примером легированной стали.

Не сплав Сталь: Кованое железо является хорошим примером нелегированной стали.

Заключение

Сплав представляет собой смесь или смесь двух или более металлических компонентов. Это может быть или гомогенным или гетерогенным. Легированная сталь — это тип стали, в состав которого входят железо, углерод и некоторые другие элементы. Основное различие между легированной и нелегированной сталью состоит в том, что легированная сталь состоит из железа, добавленного с другими элементами во время плавки, тогда как нелегированная сталь не имеет добавленных элементов при выплавке.

Рекомендации:

1. Редакция Британской энциклопедии. «Плавка». Encyclopædia Britannica, Encyclopædia Britannica, Inc., 30 ноября 2016 г.,

Источник

Свойства и виды сталей

Стали присущи такие свойства:

  • Физические: теплоемкость, электро- и теплопроводность, расширение при нагревании.
  • Механические: прочность, твердость, упругость, пластичность, вязкость, выносливость.
  • Химические: жаропрочность, окалиностойкость, огнеупорность, сопротивление коррозии.

Чтобы существенно изменить свойства сплава, в сталь вводятся легирующие элементы – другие металлы и неметаллы. Такая технология была создана еще в 19 ст. Стали называются легированными, если доля каждого элемента составляет не менее 0,1%.

Отличия

Сталь легированная от нелегированной отличается химическим составом. Первая, кроме железа и углерода, содержит большой набор дополнительных компонентов, которые оказывают влияние на ее свойства. Углеродистая (классическая) сталь содержит следы случайных примесей, которые не оказывают значительного влияния на ее свойства.

Другие отличия от обычных углеродистых сплавов:

  • устойчивость к коррозии и воздействию агрессивных сред;
  • искрение металла, если поднести его заточному кругу;
  • бывает низкая несущая способность;
  • более высокие затраты производства.

Легирующие добавки

Для легирования сталей используют химические элементы из разных групп таблицы Менделеева. Легирующие металлы (в русскоязычной маркировке сплавов обозначаются русскими буквами) вводятся в сплав для изменения следующих характеристик:

  • Никель (Н) – повышение теплоемкости, вязкости, пластичности, уменьшение хрупкости, что важно для обработки давлением.
  • Хром (Х) – повышение твердости и ударопрочности. Сильная защита от коррозии, поэтому много хрома в нержавейке.
  • Ниобий (Б) – улучшение устойчивости к кислотам.
  • Кобальт (К) – повышение жаропрочности, увеличение сопротивляемости ударам.
  • Медь (Д) – увеличение прочности, но с некоторым уменьшением уровня вязкости. Используется преимущественно в строительной стали.
  • Титан (Т) и цирконий (Ц) – снижение зернистости. Структура сплава становится однородной, что снижает вероятность появления трещин.
  • Вольфрам (В) и молибден (М) – повышение прочности при термической обработке, устойчивость к ржавлению.
  • Алюминий (Ю) – добавление стойкости к появлению окалин при высоких температурах.
  • Ванадий (Ф) – улучшение структуры, увеличение жаропрочности.

Список дополняют неметаллические добавки:

  • Марганец (Г) – уменьшение вредного влияния серы, фосфора и кислорода.
  • Кремний (С) – повышение прочности с сохранением вязкости.
  • Селен (Е) – улучшение текучести, облегчение механической обработки стальных деталей.
  • Бор (Р) – улучшение микрострутуры, повышение прокаливаемости.
  • Азот (А) – улучшение механических свойств, используется в высоколегированных сталях.

Нелегированные стали — Справочник химика 21

    При атмосферном давлении и высоких температурах окись углерода инертна к большинству материалов. Начиная с 500—600 окись углерода без давления науглероживает нелегированные стали, а при длительном воздействии ее при температурах выше 700 °С сталь становится хрупкой, при этом наблюдается выделение углерода по реакции  [c.230]     Очень опасны искры, образующиеся при трении деталей из алюминия о металлические конструкции (например, в вентиляторах с колесом из алюминия и кожухом из нелегированной стали) ими поджигаются любые взрывчатые смеси. Это объясняется их чрезвычайно сильным разогревом за счет теплоты экзотермической реакции восстановления оксида железа алюминием. Поэтому рекомендуется кожух взрывобезопасных вентиляторов изготовлять из листового алюминия, а колесо, несущее вращательную нагрузку и требующее большой прочности,— из дюралюминия из стали выполняют только вал подшипников. Во избежание попадания в вентилятор ржавчины из подводящих воздуховодов их изготовляют из алюминия или окрашивают изнутри масляной краской. [c.205]     В сероводородсодержащей среде на стойкость стали существенное влияние оказывает ее твердость, уровень действующих в металле напряжений и концентрация сероводорода. При небольших напряжениях сероводородсодержащая среда вызывает в нелегированных сталях образование трещин и расслоений, ориентированных вдоль проката параллельно вектору [c.16]
    Анодное травление основано на электрохимическом растворении металла и механическом отрывании окислов выделяющимися пузырьками кислорода. Катодное травление происходит за счет электрохимического восстановления и механического отрывания окислов металла бурно выделяющимся водородом. Этот способ травления применяется только для нелегированных сталей, покрытых окалиной. [c.374]

    Меднение нелегированных сталей. С этой целью можно использовать раствор состава  [c.186]

    Бартоны К., Патч В. Влияние химического состава нелегированных сталей на долгосрочное протекание атмосферной коррозии. — Труды III международной конференции по проблеме СЭВ. Варшава, 1980, с. 157-158. [c.208]

    Борированию можно подвергать практически все сплавы на основе железа, но при этом следует учитывать, что их химический состав существенно влияет на строение и глубину слоя. В конструкционных нелегированных сталях с увеличением содержания углерода уменьшается толщина борированного слоя и постепенно выравниваются его границы с основой. По мере увеличения слоя углерод оттесняется в глубь образца, поскольку почти не растворяется в фазах РеВ и РезВ, причем его содержание на границе может превышать в несколько раз средний уровень содержания в стали. Для ослабления этого нежелательного явления рекомендуют увеличивать продолжительность процесса с целью диффузионного нивелирования избыточной концентрации углерода. Глубина проникновения бора для стали, содержащей 0,28% С, при температуре процесса 800° С возрастает от 25 до 60 мкм при увеличении выдержки с 1 до 3 ч. Увеличение концентрации углерода от 0,28 до 0,56% уменьшает глубину слоя до 40 мкм. [c.41]

    Легирующие элементы низколегированных сталей при почвенной коррозии уменьшают начальную скорость образования коррозионных язв. Максимальная глубина язв также меньше, чем в нелегированных сталях. Хром и молибден повышают коррозионную устойчивость легированных сталей при наличии коллоидов. Из низколегированных сталей изготавливают конструкции для сооружений, находящихся в агрессивных почвах. [c.91]

    В до Н — ведут себя подобно нелегированным сталям. [c.245]

    Стали аустенитные высоколегированные В до Н — ведут себя подобно нелегированным сталям,  [c.245]

    Нитрит натрия применяют для защиты от коррозии нелегированной стали, находящейся в контакте с нержавеющей сталью, а также с никелированными и хромированными деталями. Он успешно применяется также для защиты стали от коррозии, возникающей при одновременном воздействии на сталь щелочной воды и местных напряжений, при этом содержание нитрита натрия в воде должно составлять 30—40 % от содержания щелочи. [c.83]

    Углеродистые нелегированные стали 400 Низколегированные стали [c.178]

    Значительная часть этой главы посвящена коррозионному поведению обычной (углеродистой) нелегированной стали, что объясняется двумя причинами. Во-первых, это наиболее широко применяемый в морских условиях конструкционный материал, а во-вторых, факторы, влияющие на коррозию, изучены в этом случае наиболее детально. Скорость коррозии нелегированной стали (в дальнейшем будем называть ее просто сталью) в значительной степени определяется кинетикой катодного восстановления кислорода. [c.13]

    Данные о коррозионном поведении углеродистой (нелегированной) стали и низколегированных сталей при 8- и 16-летней экспозиции на глубине 4,3 м в Тихом океане около Зоны Панамского канала представлены в табл. 12 и на рис. 29—31. Средние скорости коррозии, рассчитанные по потерям массы, для сталей, содержащих 2 и 5 % N1, примерно такие же, как и для углеродистой стали (см. рис. 29), но в не- [c.51]

    В адсорбере, десорбере, вентиляторах, системе управления процессом, транспортерах адсорбента серная кислота и влага в свободном состоянии не выделяются и угроза коррозии отсутствует. Поэтому эти узлы изготавливаются из нелегированной стали. В узле очистки и охлаждения газа, содержащего сернистый ангидрид, а также в блоках переработки сернистого ангидрида в товарные продукты должно быть предусмотрено использование кислотостойких материалов легированных сталей, керамики, свинца и т. д. [c.278]

    Для определения сурьмы в нелегированных сталях готовят раствор 60 г иодида калия и 6 г аскорбиновой кислоты в 40 мл воды, переводят раствор в мерную колбу вместимостью 100 мл и разбавляют водою до метки. Готовят только перед применением. [c.41]

    Иодидный метод характеризуется достаточно высокой избирательностью (при измерении оптической плотности при 425 нм) и при использовании подходящих маскирующих реагентов позволяет определять ЗЬ в алюминиевых сплавах [843], чугуне [1185], нелегированных сталях [512], медно-оловянных сплавах [1436], сплавах ЗЬ с Аи, а также в олове, свинце и меди [1043]. [c.42]

    Материалы для изготовления оборудования, подвесок, приспособлений, экранов. Корпуса ванн изготовляют из нелегированной стали, змеевики и футеровку ванн хромирования — из свинца. [c.225]

    Для определения фосфора в нелегированных сталях на кварцевом спектрографе средней дисперсии обычно используют генератор дуги переменного тока (типа ДГ-2) [331, 426]. Ток дуги 12—14 а, ток в первичной обмотке трансформатора — 0,4 а. Аналитический промежуток 2,5 мм, вспомогательный промежуток [c.142]

    Определение в нелегированных сталях иодидом палия [c.139]

    Нелегированные стали не требуют особой подготовки. При подготовке под покрытия низколегированных сталей следует иметь в виду, что при наличии хрома и никеля повышается склонность к пассивированию. Поэтому необходимо дополнительно активировать поверхность. [c.56]

    Мягкое железо и нелегированные стали устойчивы к сухому фтору до температуры 400°С. [c.15]

    Нелегированные стали типа 22К и 2,9 3 10″  [c.36]

    Нелегированные стали типа 22К и их сварные соединения [c.103]

    Нелегированные стали типа 22К и их сварные соединения 2,9 3 10-« [c.186]

    Обессоливание сырья. В смоле присутствуют соли — фенолят натрия, образовавшийся в результате нейтрализации щелочью серной кислоты в разложенной массе гидроперекиси кумола, и фенолят железа — продукт коррозии аппаратуры, изготовленной из нелегированной стали. [c.112]

    Характер изменения ударной вязкости с поиижением температуры существенно различается для разных сталей (рис. 45). Наибольшее снижение ударной вязкости наблюдается для углеродистых сталей в температурном интервале от -Ь15 до —40 °С. В связи с этим нелегированные стали обычно применяются только до температур порядка —50°С [126]. Для использования при [c.135]

    Диффузионное алюминирование (алитирование). Алитиро-ванные нелегированные стали широко применяются вместо термоустойчивых высоколегированных сталей. [c.106]

    Никель при тех концентрациях, которые типичны для рассматриваемых сталей, имеет тенденцию несколько ухудшать стойкость против КР. Однако большие добавки никеля (>8%) в некоторых средах дают положительный эффект [33]. Таким образом, имеющиеся данные позволяют предположить, что существует некоторая критическая концентрация никеля, ниже которой стойкость стали с ростом его содержания ухудшается, а выше — улучшается. Эта критическая концентрация зависит от конкретной среды и, возможно, от уровня прочности материала. Например, по имеющимся данным, при неизменной высокой прочности Кхкр уменьшается пря концентрациях никеля низкой прочности добавки 1,2 и 3,5% N1 ухудшают стойкость при испытаниях в водороде (см. рис. 5), хотя отличие от нелегированной стали невелико [32]. В случае нитратных сред имеется критиче- [c.56]

    Кафедрой проведено изучение и обобшение опыта производства маломарганцовистой и нелегированной стали для фасонного литья на заводах Минстройдормаша и изданы типовые технологические инструкции. Предложен метод раскисления стали алюминием путем насадки литых колец из алюминия и его лигатур на стопор сталеразливочного ковша, что позволяет существенно улучшить использование алюминия и полноту раскисления стали. Этот способ раскисления принят и внедрен на заводах Минстройдормаша, Минтяжмаша и др. [c.75]

    В качестве матфиала теплоо бмен-ных аппаратов используют лреимуще-ственно малоуглеродистые нелегированные стали с содержанием углерода до 0,25%. О Ни очень пла1стичны и поэтому хорошо поддаются обработке давлением, гибке и правке в горячем и холодном состоянии, хорошо свариваются они могут использоваться также в виде стального фасонного литья. В то же время эти стали характеризуются вполне удовлетворительными механическими свойствами они достаточно прочны при тем пературах до 450°С, не склонны к хрупкому разрушению, хорошо воспринимают динамические нагрузки. [c.18]

    Чтобы избежать образования трещин, металл больших толщин сваривают с предварительным и сопутствующим подогревом. При толщине стенки сосуда менее 16 мм малоуглеродистую нелегированную сталь с содержанием углерода до 6,2% сваривают без предварительного лодогрева. При толщине стенки более 16 мм. необходим предварительный и сопутствующий подогрев до 100—200 С. [c.141]

    Согласно ГОСТ 11658—65, алюминий в чугуне и нелегированной стали определяется алюминоном без отделения. Железо восстанавливают аскорбиновой кислотой до Fe (И), которое не мешает определению алюминия. В сталях при наличии в них титана и ванадия этот ГОСТ предусматривает предварительное удаление железа экстракцией эфиром и отделение титана и ванадия осаждением в виде купферонатов, т. е. также, как и в методе Шорта [11621. [c.212]

    Поверхность автоклава и применяющийся алюмииийтриал-кил должны быть инертными по отнощению к реакции вытеске-пня, т. е. в первую очередь не содержать даже следов соедине-ний никеля. Как правило, триэтилалюминии, перегнанный под вакуумом, отвечает этому требованию. Лучще всего, если автоклав выполнен из нелегированной стали SM, однако хорошие результаты были получены также в автоклавах из стали VA. Внутренние поверхности должны быть механически хорошо очищены от всех приставших частичек путем промывания каким-либо углеводородом. Непбсредственно перед проведением опытов целесообразно обрабатывать автоклав следующим образом нагревать при встряхивании с Vio— /20 объема триэтилалюминия или другого триалкилалюминия (или же раствора алюминийтриалкила в углеводороде) в течение нескольких часов до 200°, а затем под давлением около 60 ат ввести холодный этилен и нагреть при встряхивании до 110°, пока давление не перестанет падать. После такой обработки и охлаждения в автоклаве не должно содержаться (при открытом вентиле) сколько-нибудь существенного количества бутилена. Нормальным считается поглощение этилена до 2%. Если же образовалось большее количество бутилена, жидкое содержимое автоклава следует удалить без доступа воздуха и повторить операцию. Обработанный таким образом автоклав остается пригодным для реакции до тех пор, пока он используется только для реакции достройки. [c.181]

    Метод с применением пирролидиндитиокарбамината натрия. Этот реагент предложен в качестве универсального реагента для экстракционно-фотометрического определения элементов сероводородной группы [835]. В работе [836] описано определение мышьяка в чугуне и нелегированной стали. Максимум светопоглощения хлороформного экстракта т/ мс-пирролидиндитиокарбамината [c.72]

    Пирролидиндитиокарбаминат натрия используется в качестве реагента для экстракционно-фотометрического определения мышьяка в чугуне и нелегированной стали [836]. Пирролидиндитиокарбаминат мышьяка(1И) экстрагируют хлороформом и измеряют оптическую плотность полученного экстракта. [c.128]

    Предложен оксихинолинфосфоромолибдатный метод определения Р и Аз в нелегированных сталях [9561. Сумму Р и Аз определяют титриметрическим оксихинолинмолибдатным методом. Фосфор определяют отдельно в виде фосфоромолибдата, а количество мышьяка находят по разности. При содержании в сталях до 0,001% Р и Аз ошибка определения составляет + 0,0002 абс.% для Р и + 0,0005 абс. % для Аз. [c.33]

    Хромистые стали с содержанием 4-6 % Сг считаются полужаро-стойкими. Стали этого класса вследствие своей доступности, повышенной коррозионной устойчивости и прочности широко применяются в нефтяной промышленности для изготовления крекинг-установок. Жаростойкость этих сталей на воздухе и в топочных газах со значительным содержанием сернистых соединений при температурах 500-600 °С примерно в 3 раза выше жаростойкости нелегированных сталей. [c.171]

    Аппаратура установки выполнена из обычной нелегированной стали, поскольку процесс протекает при низких температурах и растворитель не вызывает коррозии аппаратуры. Простота эксплуатации и возможность, полной автоматизации процессалозволяют снизить трудовые затраты. Стоимость растворителя невысока, а срок службы значительный. Для нагрева потоков до требуемой температуры можно использовать мятый пар. [c.144]

    Уплотнительные кольца у задвижек для перегретого пара и для аналогичных условий работы имеют почти всегда азотированную поверхность. При азотировании образуется очень крепкий поверхностный. слой, твердостью около 1000 по Бринелю, без коробления обрабатываемой детали. Этот слой дает исключительно высокую сопротивляемость истиранию даже при температурах около 500°. К недостаткам азотированного слоя следует отнести его невысокую устойчиво1сть против коррозии, лишь немногим превышающую устойчивость нелегированной стали. Кроме того азотированная поверхность довольно сильно поддается эрозии. [c.262]

    Использование (ЫН4)г504 и в особенности НаНСОз позволяет вести процесс в более широком интервале концентрации рабочих растворов и более высоком интервале значений pH. При этом аппаратура может быть изготовлена из нелегированной стали. [c.23]

    При изготовлении объектов котлонадзора наиболее распространенным материалом служат низкоуглеродистые нелегированные стали. Они очень пластичны и поэто лу хорошо поддаются обработке давлением, гибке и правке в горячем и холодном состояниях, хорошо свариваются. В то же время эти стали характеризуются вполне удовлетворительны.ми механическими свойствами они достаточно прочны при нагреве до 450 С, не склонны к хрупкому разрушению, хорошо восприни у1ают динамические нагрузки. [c.30]

chem21.info

Расшифровка маркировки стали

Чтобы определить марку стали, разработано специальное обозначение, согласно ГОСТ 4543-71. В его основе цифры и буквы. Первая литера показывает, к какой группе сталей относится сплав. Например:

  • Я – хромоникелевая нержавейка;
  • А – автоматная сталь;
  • Ж – нержавейка;
  • Е – магнитная сталь;
  • Р – быстрорежущая;
  • Ш – шарикоподшипниковая;
  • ШХ – шарикоподшипниковая хромистая сталь.

Если буква отсутствует, это означает принадлежность к классическому сплаву с использованием добавок.

Первая цифра в маркировке обозначает сотые доли процентного содержания углерода. Далее идут буквы и цифры, указывающие на легирующие добавки и их содержание, также в процентах. Например, маркировку Х5Х18Н10 следует читать так: хромистая сталь, содержащая 0,05% углерода, 18% хрома, 10% никеля. На английском языке маркировка выглядит иначе: X5CrNi18-10.

Другие примеры:

  • ЕХ9К15М. Означает: магнитная хромистая сталь, содержит 0,09% углерода, 15% кобальта, не более 1% молибдена.
  • 38ХН3МФ: 0,38% углерода, менее 1% хрома, 3% никеля, молибдена и ванадия не более 1%.

Процентное соотношение добавок записывается целыми числами, без десятых и сотых долей.

В конце маркировки (справа) также могут присутствовать буквы: А – высококачественная, Ш – особовысококачественная сталь. Другие буквы обозначают способ производства: ТО (Т) – термически обработанная, Н – нагартованный прокат.

Как расшифровать марку стали

Легированные (нержавеющие) стали

, в отличие от нелегированных, имеют несколько иное обозначение, поскольку в них присутствуют элементы, специально вводимые в определённых количествах для обеспечения требуемых физических или механических свойств. К примеру:

  • хром (Cr) повышает твёрдость и прочность
  • никель (Ni) обеспечивает коррозионную стойкость и увеличивает прокаливаемость
  • кобальт (Co) повышает жаропрочность и увеличивает сопротивление удару
  • ниобий (Nb) помогает улучшить кислостойкость и уменьшает коррозию в сварных конструкциях.

Именно поэтому в названия легированных сталей принято включать химические элементы, присутствующие в составе, и их содержание в процентах. Химические элементы в таких марках сталей обозначаются русскими буквами, приведёнными в таблице.

Х-хромА-азот
С-кремнийН-никель
Д-медьМ-молибден
Т-титанК-кобальт
В-вольфрамБ-ниобий
Г-марганецЕ-селен
Ф-ванадийЦ-цирконий
Р-борЮ-алюминий

Также существует маркировка Ч, сообщающая нам, что в составе сплава имеются редкоземельные металлы, такие как: церий, лантан, неодим и прочие. Церий (Ce) влияет на прочность и пластичность стали, а неодим (Nd) и лантан (La) уменьшают пористость и содержание серы в стали, измельчают зерно.

Пример расшифровки нержавеющей стали 12Х18Н10Т

12Х18Н10Т — это популярная нержавеющая сталь аустенитного класса, которая применяется в сварных аппаратах, работающих в разбавленных растворах кислот, в растворах щелочей и солей, а также в деталях, работающих под большим давлением и в широком диапазоне температур. Итак, что же означают эти загадочные символы, стоящие в названии, и как их правильно объединить?

Две цифры, стоящие в самом начале марки легированной стали, — это среднее содержание углерода в сотых долях процента. В нашем случае, содержание углерода 0,12%. Иногда вместо двух цифр стоит всего одна: она показывает, сколько углерода (C) содержится в десятых долях процента. Если же цифр в начале марки стали вовсе нет, это означает, что углерода в ней довольно приличное число — от 1% и выше.

Буква Х и следующая за ней цифра 18 говорят о том, что в данной марке содержится 18% хрома. Обратите внимание: соотношение элемента в долях процента выражает только первое число, стоящее в начале марки, и это относится только к углероду! Все остальные числа, присутствующие в названии, выражают количество конкретных элементов в процентах.

Далее следует комбинация Н10. Как Вы уже догадались, это 10% никеля.

Классификация легированных сталей

Классификация и маркировка легированных сталей осуществляется по нескольким параметрам.

По качеству

В зависимости от количества вредных примесей (сера, фосфор), легированные стали бывают качественные (S≤0,04%, P≤0,035%), высококачественные (S≤0,025%, P≤0,025%), особо высококачественные: (S≤0,06%, P≤0,07%).

По количеству добавок

В зависимости от общего количества добавок, различают такие виды легированной стали:

  • Высоколегированная сталь: 10-50% легирующих добавок. Изделия максимально прочные, но и самые дорогие.
  • Среднелегированная: 2,5-10% добавок. Это самая ходовые марки.
  • Низколегированная: добавок не более 2,5%. Положительные качества улучшились, но на металлообработке заметно не сказались.

В зависимости от химического состава, стали называются: хромистые, хромоникелевые, хромоникельмолибденовые, марганцовистые и другие. В маркировке обозначаются соответствующими буквами.

По назначению

По практическому применению различают стали конструкционные (машиностроительные, строительные, улучшаемые, цементуемые), инструментальные (для штампов, режущего и измерительного инструментов) и с особыми свойствами.

Углеродистые инструментальные стали

Инструментальные стали — это особая группа сталей, обладающих специфическими свойствами. Эти стали предназначены для изготовления режущего и измерительного инструмента, штампов.

По условиям работы инструмента к углеродистым инструментальным сталям предъявляют следующие требования:

  1. стали для режущего инструмента (резцы, сверла, метчики, фрезы и др.) должны обладать высокой твердостью, износостойкостью и теплостойкостью;
  2. стали для измерительного инструмента должны быть твердыми, износостойкими и длительное время сохранять размеры и форму инструмента;
  3. стали для штампов (холодного и горячего деформирования) должны иметь высокие механические свойства (твердость; износостойкость, вязкость), сохраняющиеся при повышенных температурах;
  4. стали для штампов горячего деформирования должны обладать устойчивостью против образования поверхностных трещин при многократном нагреве и охлаждении.

Инструментальные углеродистые стали (ГОСТ 1435–99) выпускают следующих марок: У7, У8, У8Г, У9, У10, У11, У12 и У13. Цифры указывают на содержание углерода в десятых долях процента. Буква Г, например У8Г, после цифры означает, что сталь имеет повышенное содержание марганца, что обеспечивает большую твердость сплава.

Марка инструментальной углеродистой стали высокого качества имеет букву А, например У12А: инструментальная углеродистая сталь высокого качества, содержащая 1,2% С. Инструменты, применение которых связано с ударной нагрузкой, например зубила, бородки, молотки, изготовляют из сталей У7А, У8А. Инструменты, требующие большой твердости, но не подвергающиеся ударам, например сверла, метчики, развертки, шаберы, напильники, изготовляют из сталей У12А, У13А. Стали У7—У9 подвергают полной, а стали У10— У13 — неполной закалке.

Недостатком углеродистых инструментальных сталей является их низкая теплостойкость — способность сохранять большую твердость при высоких температурах нагрева. При нагреве выше 200°С инструмент из углеродистых сталей теряет твердость, т.е. при повышенных температурах нужно применять инструменты из других сталей.

Состав и применение легированных сталей

Применение сплавов обусловлено их химическим составом. Так, строительные низколегированные стали используются для металлических конструкций с равномерно распределенной нагрузкой между всеми элементами. Единственное требование – хорошая свариваемость.

Виды конструкционных сталей:

  • Улучшаемые, с высоким содержанием хрома, обогащенные бором, никелем, молибденом, марганцем. Предназначены для термообработки.
  • Пружинно-рессорные. Эти сплавы легируются кремнием, кобальтом, марганцем, бором, титаном. Используются в производстве транспорта.
  • Подшипниковые. Обладают повышенной твердостью и износостойкостью. Обязательно содержат хром и минимум неметаллических добавок.
  • Теплоустойчивые. Используются для производства паровых нагревателей.

Инструментальные стали для фрез, резцов, метчиков легируются хромом, ванадием, титаном и др. добавками. Это очень дорогие быстрорежущие сплавы, поэтому используются только в режущих плоскостях. Для измерительных инструментов сталь легируют хромом, вольфрамом и марганцем. Это обеспечивает твердость и сохранение первоначальных размеров.

Стали с особыми свойствами:

  • Высокопрочные. Это высоколегированные стали со специально подобранным составом. Применяются для изготовления ответственных узлов механизмов.
  • Нержавеющие, с добавками марганца и хрома. Применяются для работы в химически агрессивных средах. Используются для изготовления труб.
  • Износостойкие, с высоким содержанием марганца. Используются для изготовления стрелок на железных дорогах, гусениц, горного оборудования, ковшей экскаваторов.

К этой группе относятся также жаропрочные, жароустойчивые, магнитные, немагнитные, реостатные, с высоким электросопротивлением сплавы.

Разница между низколегированной сталью и высоколегированной сталью

Основное различие между низколегированной сталью и высоколегированной сталью состоит в том, что низколегированные стали содержат менее 0,25% легирующего элемента, тогда как высоколегированные стали имеют более 10% легирующего элемента.

Кроме разделения на низколегированную и высоколегированную сталь, она ещё подразделяется по степени легирования на среднелегированную. В этой стали количество легирующих элементов составляет от 2,5 до 10 %)

Сплав представляет собой смесь двух или более элементов. Он производится путем смешивания металла с некоторыми другими элементами (металлами или неметаллами или обоими), чтобы получить материал, который обладает улучшенными свойствами по сравнению с исходным металлом. Низколегированная и высоколегированная сталь — это два типа сплавов железа с легирующими элементами.

Наиболее популярные легирующие элементы в этих сталях применяются такие: никель (Ni), медь (Cu), титан (Ti) и ванадий (V), азот (N) и др.

Содержание
  1. Обзор и основные отличия
  2. Что такое низколегированная сталь
  3. Что такое высоколегированная сталь
  4. В чем разница между низколегированной сталью и высоколегированной сталью
  5. Заключение
Что такое низколегированная сталь?

Низколегированная сталь — это тип легированной стали, свойства которой улучшены по сравнению с углеродистой сталью. Например, этот сплав обладает лучшими механическими свойствами и большей коррозионной стойкостью, чем углеродистая сталь. Содержание углерода в низколегированной стали составляет менее 0,2%. Наиболее распростраённые легирующие элементы в этой стали такие: Никель (Ni), Хром (Cr), Молибден (Мо), Вольфрам (V), Бор (B), Вольфрам (W) и Медь (Cu).


Листовая сталь

В большинстве случаев процесс изготовления этих легированных сталей включает термическую обработку и отпуск (для нормализации). Но теперь, появилась тенденция производить закалку и отпуск. Кроме того, почти все материалы из низколегированной стали являются свариваемыми. Однако материал иногда требует обработки до или после сварки (чтобы избежать растрескивания).

Некоторые преимущества низколегированной стали:

  1. Предел текучести выше
  2. Высокий предел прочности
  3. Более высокая стойкость к окислению и коррозии
  4. Низкий порог хладноломкости

Этот материал применяется в промышленности, но до максимальной температуры 580 °C. Если температура выше, чем 580 °C, этот материал не подходит из-за отсутствия достаточной стойкости к окислению, чтобы справиться с высокими температурами.

Что такое высоколегированная сталь?

Высоколегированная сталь — это тип легированной стали, в котором более 10% легирующих элементов. В отличие от низколегированной стали, легирующими элементами для высоколегированной стали являются хром (Cr) и никель (Ni). Наиболее известным примером этой стали — является нержавеющая сталь.


Кастрюля из нержавеющей стали

Хром обеспечивает сталь тонким оксидным слоем на поверхности стали. Это называется скрытым слоем, потому что этот слой задерживает коррозию металла. Кроме того, производители обычно добавляют большое количество углерода и марганца, чтобы придать стали аустенитный характер. Кроме того, этот материал дороже, чем низколегированная сталь.

В чем разница между низколегированной сталью и высоколегированной сталью?

Как низколегированная, так и высоколегированная сталь обладают улучшенными свойствами, чем углеродистая сталь. Однако ключевое различие между низколегированной сталью и высоколегированной сталью состоит в том, что низколегированные стали содержат менее 0,25% легирующих элементов, тогда как высоколегированные стали содержат более 10% легирующих элементов. В химическом составе низколегированная сталь содержит железо, углерод (менее 0,2%) и другие легирующие элементы, такие как Никель (Ni), Хром (Cr), Молибден (Мо), Вольфрам (V), Бор (B), Вольфрам (W) и Медь (Cu), в то время как высоколегированная сталь содержит железо, хром, никель, углерод, марганец и др.

Заключение — Низколегированная сталь против Высоколегированной стали

Как низколегированная, так и высоколегированная сталь обладают улучшенными свойствами, чем углеродистая сталь. Основное различие между низколегированной сталью и высоколегированной сталью состоит в том, что низколегированные стали содержат менее 0,25% легирующих элементов, тогда как высоколегированные стали имеют более 10% легирующих элементов.

raznisa.ru

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]