Классификация железоуглеродистых сплавов
Различные комбинации этих элементов приводят к получению большого количества сплавов, которые можно разделить на три большие группы:
- Техническое железо.
- Стали.
- Чугуны.
Техническое железо
К техническому железу относят материалы, в которых содержится менее 0,02% углерода. К сталям относят, материалы, в которых углерод находится в пределах от 0,02 до 2,14%. И в группу чугунов входят материалы, количество углерода в которых превышает 2,14%.
Аустенит
Это твердый раствор внедрения углерода в γ-ферруме. Также могут быть в небольшом количестве примеси. В кристаллической решетке углерод находится в центре ГЦК ячейки. При рассмотрении структуры аустенита под микроскопом, виден как светлые зерна полиэдрической формы с двойниками.
Обладает следующими характеристиками:
- Растворимость углерода в γ-ферруме 2,14 % (при температуре 1147° С).
- Твердость аустенита 180 НВ;
- Удлинение — 40-50 %;
- Хорошие парамагнитные качества.
Компоненты в системе железо углерод
Аустенит
Атомы размещается в гранецентрированной ячейке. Твердость аустенита имеет твердость 200 … 250 единиц по Бринеллю. Кроме того у него хорошая пластичность и он отличается парамагнитностью.
Железо
Железо – это материал, относящийся к металлам. Его натуральный цвет – серебристо-серый. В чистом виде он очень пластичен. Его удельный вес составляет 7,86 г/куб. см. Температура плавления составляет 1539 °C. На практике чаще всего применяют техническое железо, в составе которого присутствуют следующие примеси – марганец, кремний и многие другие. Массовая доля примесей не превышает 0,1%.
Железо
У железа есть такое свойство как полиформизм. То есть, при одном и том же химическом составе, это вещество может иметь разную структуру кристаллической решетки и соответственно разные свойства. Модификации железа называют соответственно – Б, Г, Д. Все эти модификации существуют при разных условиях. Например, тип Б, может существовать только при температуре 911 °С. Тип Г может существовать в диапазоне от 911 до 1392 °С. Тип Д существует в диапазоне от 1392 до 1539 °С.
Каждый из типов обладает своей формой кристаллической решеткой, например, у типа Б решетка представляет собой куб, решетка типа Г имеет гранецентрированную кубическую форму. Решетка типа Д, имеет форму объемно центрированного куба.
Еще одно свойство состоит в том, что при температуре ниже 768 железо ферримагнитно, а при ее повышении это свойство теряется.
Точки полиморфной и магнитной трансформации называют критическими. На таблице они обозначены следующим образом – А2, А3, А4. Цифровые индексы показывают тип трансформации. Для более полного различия превращения железа из одного вида в другой к обозначению добавляют индексы с и r. Первый говорит о нагреве, второй об охлаждении.
Полиморфные модификации железа
При высоких параметрах пластичности, железо не обладает высокой твердостью, по шкале Бринелля она равна 80 единиц.
Железо имеет возможность образовывать твердые растворы. Их можно разделить на две группы – раствор замещения и внедрения. Первые состоят их железа и других металлов, вторые из железа и углерода, водорода и азота.
Углерод
Другой компонент системы – углерод. Это – неметалл и он обладает тремя модификациями в виде алмаза, графита и угля. Он плавится при 3500 °С.
Аллотропные модификации углерода
В сплаве железа, этот элемент находится в виде твердого раствора, его называют цементит или в виде графита. В таком виде он присутствует в сером чугуне. Графит, не отличается ни пластичностью, ни прочностью.
Цементит
Доля углерода составляет 6,67%. Он обладает высокой твердостью – 800 НВ, но при этом у него отсутствует пластичность. Полиморфными свойствами не обладает.
Он обладает следующим свойством – при формировании раствора замещения, углерод может быть заменен на атомы других веществ, например, на хром или никель. Такой раствор получил название легированного раствора.
Цементит
Он не обладает устойчивостью, при наличии некоторых условий он может разлагаться, при этом происходит трансформация углерода в графит. Это свойство нашло применение при образовании чугунов.
Кстати, в жидком состоянии, железо может растворять в себе примеси, при этом образуя, однородная масса.
Феррит
Так называют твердый раствор, при котором происходит внедрение углерода в железо.
Он растворяется с определенной переменностью, при нормальной (комнатной) температуре объем углерода лежит в пределах 0,006%, при 727 °С, то концентрация углерода составит 0,02%. По достижении 1392 °С образуется феррит.
Феррит
Содержание углерода составит 0,1%. Его атомы размещаются в дефектных узлах решетки.
Феррит по своим параметрам близок к железу.
Материаловедение
Цель работы:
ознакомление с принципами построения диаграмм состояния сплавов; изучение диаграммы состояния
железо-цементит
и превращений в железоуглеродистых сплавах в равновесных условиях. Оборудование, приспособления, инструмент, материалы: диаграмма железо-цементит
Теоретические сведения
Имеется много методов построения диаграммы состояния (дилатометрический, электрический, магнитотермический, термический и др.). Сущность любого из них сводится к нахождению критических точек при нагреве или охлаждении металлов и сплавов. Критическими точками называются температуры, при которых начинаются и/или заканчиваются какие-либо превращения в сплавах. Определив экспериментально критические точки серии сплавов, строят полную диаграмму состояния в координатах «температура – концентрация». Диаграмма состояния
железо-цементит
(рисунок) охватывает сплавы, содержащие углерод в количестве от 0 до 6,67 %. При содержании 6,67 % углерода он образует химическое соединение с железом Fe3C – карбид железа, называемый также цементитом. Один из компонентов сплавов – железо – имеет несколько аллотропических модификаций: — до 911°С железо имеет объемно-центрированную кубическую кристаллическую решетку(ОЦК) с периодом 0,286 нм; — в интервале температур 911…1392 °С – гранецентрированную кубическую (ГЦК) кристаллическую решетку, а выше 1392 °С – снова объемноцентрированную кубическую кристаллическую решетку, но с другим периодом – 0,293 нм. В зависимости от содержания углерода железоуглеродистые сплавы подразделяются на техническое железо (≤0,02 % С), углеродистые стали (от 0,02 до 2,14 % С) и чугуны (от 2,14 до 6,67 % С). Стали подразделяются на доэвтектоидные (0,02-0,8 % С), эвтектоидные (0,8 % С), заэвтектоидные (0,8…2,14 % С). Чугуны по содержанию углерода классифицируются на доэвтектические (2,14…4,3 % С), эвтектические (4,30 % С), заэвтектические (4,30…6,67 % С). Процессы, происходящие в сплавах при их фазовых превращениях, подчинены общему закону равновесия, который носит название правила фаз и выражает зависимость числа степеней свободы системы «с» от количества компонентов «к», фаз «ф» и внешних переменных факторов «n» в условиях равновесия: с = к + n – ф.
При рассмотрении равновесия в металлических сплавах, находящихся под воздействием атмосферного давления, единственным внешним переменным фактором является температура и поэтому n = 1. Система железо-цементит
является двухкомпонентной, то есть к = 2. Отсюда следует, что
с = 2 + 1 – ф = 3 – ф.
Для построения кривой охлаждения (или нагрева) сплава, прежде всего, необходимо найти на концентрационной оси диаграммы состояния координату, соответствующую содержанию углерода в сплаве. Затем из найденной точки следует восстановить перпендикуляр до области существования жидкой фазы. Кривая охлаждения (или нагрева) строится справа от диаграммы состояния в координатах температура (ось абсцисс) — время (ось ординат). Масштаб оси времени произвольный, а масштаб оси температуры такой же, как и на диаграмме состояния. Во время охлаждения сплава в нем происходят фазовые превращения. Каждое превращение протекает за определенный промежуток времени, поэтому соответствующие им участки кривой охлаждения имеют различные углы наклона по отношению к горизонтальной оси. Чем быстрее происходит превращение, тем круче кривая. Перитектическое, эвтектическое и эвтектоидное превращения идут во времени при постоянной температуре (так как с = 0), следовательно, им на кривой охлаждения будут соответствовать горизонтальные участки . Построение кривой охлаждения рассмотрим на примере чугуна, содержащего 5 % углерода (см. рисунок). Восстанавливаем перпендикуляр из отметки 5 % углерода на оси абсцисс до точки 1, находящейся в области жидкого состояния сплавов. Переносим пунктиром температуру точки 1 на ось температур нашего графика. В точке 1 рассматриваемый сплав находится в жидком состоянии (то есть существует только одна фаза жидкий раствор углерода в железе), следовательно с = 3 – 1 = 2. При двух степенях свободы равновесие в системе не нарушается даже при одновременном изменении температуры и концентрации сплава в определенных пределах. При понижении температуры в сплаве не будет происходить никаких превращений, и температура будет падать быстро, кривая охлаждения идет круто вниз до точки 2. Точкой 2 обозначено пересечение нашей вертикали с линией CD диаграммы состояния, соответствующей началу кристаллизации цементита. Следовательно, в сплаве появляется вторая фаза цементит, число степеней свободы уменьшается (с = 3 – 2 = 1), кривая охлаждения станет более пологой до температуры, соответствующей следующей критической точке 3. На участке кривой 1-2 указываем фазовое состояние сплава “ж” и число степеней свободы, равное 2, соответственно на участке 2-3 фазовое состояние “ж + ц”, а число степеней свободы с = 1. При изменении температуры в пределах точек 2 и 3 изменяется соотношение между жидкой и твердой фазами, но равновесие не нарушается. Точка 3 (пересечение вертикали с линией ECF) соответствует эвтектическому превращению, то есть совместной кристаллизации цементита и аустенита с образованием ледебурита. При этом одновременно существуют три фазы: жидкость, цементит и аустенит, следовательно число степеней свободы с = 3 – 3 = 0, и система нонвариантна, три фазы могут находиться в равновесии только при строго постоянной температуре. На кривой охлаждения это отражено отрезком 3-3*. Между точками 3 и 4 сплав имеет двухфазное состояние (аустенит и цементит) и с = 3 – 2 =1. При температуре, соответствующей точке 4, в сплаве происходит эвтектоидное превращение, аналогичное эвтектическому. Отличие только в том, что в нем участвуют только твердые фазы: аустенит, цементит и феррит. На кривой охлаждения делаем соответствующие записи.
Содержание отчета
Диаграмма состояния
железо-цементит
с обозначением критических точек и областей диаграммы. Кривая охлаждения (или нагрева) сплава с заданной концентрацией углерода. Определение феррита, аустенита, перлита, ледебурита и зарисовка их структур. Выводы.
Контрольные вопросы
1. Что такое фаза? 2. Что называется структурной составляющей? 3. Что такое феррит, аустенит, цементит, перлит, ледебурит? 4. Что такое критическая точка? 5. Как обозначаются критические точки? 6. Что такое эвтектическое превращение? 7. Чем эвтектоидное превращение отличается от эвтектического? 8. Как расшифровывается правило фаз? 9. Как строятся кривые охлаждения?
ОБРАТИТЕ ВНИМАНИЕ! На нашем сайте Вы можете заказать любые задания по всем разделам материаловедения. Решение предоставляется в печатном виде с детальными комментариями |
Аустенит в сталях
Наличие аустенита в стальных сплавах придает им определенные свойства. Детали и узлы, произведенные из подобных сталей, предназначаются для работы в средах, содержащие агрессивные компоненты, например, на предприятиях, перерабатывающих разные кислоты.
Стали этого класса отличаются высоким уровнем легирования, во время кристаллизации формируется гранецентрированная решетка. Такая структура не подвержена изменению даже под воздействием глубокого холода.
Стали этого типа можно разделить на два типа отличающиеся друг от друга составом. В первых, содержатся такие вещества как железо, никель, хром. При этом общее количество добавок не может превышать 55%. Ко второй группе относят никелевые и железоникелевые композиции. В никелевых композициях, его содержание превышает 55%. В железоникелевых составах соотношение никеля и железа составляет 1:5, а количество никеля начинается от 65%.
Такое количество никеля обеспечивает повышенную пластичность, а хром, в свою очередь обеспечивает высокую коррозионную стойкость и жаропрочность. Применение других легирующих материалов позволяет выплавлять сплавы с уникальными эксплуатационными свойствами. Металлурги, составляя рецептуру сплавов, руководствуются будущим назначением сталей.
Для получения легированный сталей применяют ферритизаторы, которые придают постоянство аустенитам, к таким веществам относят ниобий, кремний и некоторые другие. Кроме них применяют углерод, марганец – их называют аустенизаторами.
Цементит: формы существования
Так называют соединение углерода и железа. Это компонент чугуна и некоторых сталей. В него входит 6,67% углерода.
В его кристалл входит несколько октаэдров, они расположены друг по отношению к другу с некоторым углом. Внутри каждого из них расположен атом углерода. В результате такого построения получается следующая картина – один атом вступает в связь с несколькими атомами железа, а железо в свою очередь связано с тремя атомами этого элемента.
Кристаллическая решетка цементита
У этого вещества имеются все свойства, которые присущи металлам – электропроводность, своеобразным блеском, высокая теплопроводность. То есть, смесь железа и углерода, ведет себя как металл. Этот материал обладает определенной хрупкостью. Большая часть его свойств определена сложным строением кристаллической решетки.
Этот материал плавится при 1600 градусах Цельсия. Но на этот счет существует несколько мнений, одни исследователи считают, что его температура плавления лежит в диапазоне от 1200 до 1450, другие определяют, что верхний уровень равен 1300 °С.
Первичный цементит
Металлурги разделяют три типа этого вещества – первичный, вторичный, третичный.
Диаграмма железо-цементит
Первичный, получается из жидкости при закалке сплавов, которые содержат в себе 5,5% углерода. Первичный имеет форму в виде крупных пластин.
Вторичный
Этот элемент получается из аустенита при охлаждении последнего. На диаграмме этот процесс этот процесс можно видеть по диаграмме Fe – C. Цементит представлен в виде сетки, размещенной по границам зерен.
Третичный
Этот тип, является производным от феррита. Он имеет форму иголок.
В металлургии существуют и другие формы цементита, например, цементит Стеда и пр.
Другие структурные составляющие в системе железо углерод
Перлит
Перлит – это механическая смесь, которая состоит из феррита и цементита. Ледебурит представляет собой переменный раствор.
Перлит
При температуре от 1130 и до 723 °С в его состав входят аустенит и цементит. При более низких температурах он состоит из аустенит заменяет феррит.
Цементит и его формы
Присутствует в таких фазах: Ц1, Ц2, Ц3 (первичный, вторичный и третичный цементит).
Что касается физико-химических показателей этих трех состояний, то они приблизительно равны. На механические свойства влияет размер частиц, их количество и расположение.
Также по диаграмме видно, что:
- Ц1 образуется из жидкого состояния (под микроскопом он виден как пластины крупной величины);
- Ц2 – из аустенита (располагаясь вокруг его зерен в виде сетки);
- Ц3 – из феррита (располагаясь у границ ферритных зерен в виде мелких частиц).
Узловые критические точки диаграммы состояния системы железо углерод
На диаграмме железо углерод отмечено некоторое количество точек, называемых критичными. Каждая точка несет в себе информацию о температуре, долевом содержании углерода и описанием того, что именно происходит в этом месте.
Всего существует 14 этих критичных точек.
Например, А, говорит о том, что при температуре 1539 °С и при нулевом содержании углерода происходит плавление чистого железа. D говорит о том, что при температуре 1260 возможно плавление Fe3c.
Точки расположены на пересечении линий, размещенных на диаграмме.
История открытия
Впервые на то, что в сплавах (сталях и чугунах) есть определенные (особые) точки, указал великий металлург и изобретатель — Дмитрий Константинович Чернов (1868 год). Именно он сделал важное открытие о полиморфных превращениях и является одним из создателей диаграммы состояния железо-углерод. По мнению Чернова, положение этих точек на диаграмме имеет прямую зависимость от процентного содержания углерода.
И что самое интересное, именно с момента этого открытия и начинает свою жизнь такая наука, как металлография.
Диаграмма сплавов железа с углеродом является результатом кропотливого труда ученных нескольких стран мира. Все буквенные обозначения главных точек и фаз в диаграмме являются интернациональными.