Что такое SMD компоненты и зачем они нужны


Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD (Surface Mounted Device), что в переводе с английского — «прибор, монтируемый на поверхность». В нашем случае поверхностью является печатная плата, без сквозных отверстий под радиоэлементы:

В этом случае SMD компоненты не вставляются в отверстия плат. Они запаиваются на контактные дорожки, которые расположены прямо на поверхности печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на котором раньше были SMD компоненты.

Внутренняя структура

Основным несущим элементом резистора является подложка, изготовленная из окиси аллюминия (Al2O3). Этот материал обладает хорошими диэлектрическими свойствами, но помимо этого имеет очень высокую теплопроводность, что необходимо для отвода тепла, выделяющегося в резистивном слое, в окружающую среду.


Внутренняя структура резистора.

Основные (но не все) электрические характеристики резистора определяются резистивным элементом, в качестве которого чаще всего используется пленка металла или окисла, например, чистого хрома или двуокиси рутения, нанесенная на подложку.

Состав, технология нанесения на подложку и характер обработки этой пленки являются важнейшими элементами, определяющими характеристики резистора, и чаще всего представляют производственный секрет фирмы производителя.

Некоторые виды – резисторы проволочные – в качестве резистивного материала используют тонкую (до 10 мкм) проволоку из материала с низким температурным коэффициентом сопротивления (например, константана), намотанную на подложку. В последнем случае номинал резистора обычно не превышает 100 Ом.

Для соединения резистивного элемента с проводниками печатной платы служат несколько слоев контактных элементов. Внутренний контактный слой обычно выполнен из серебра или палладия, промежуточный слой представляет собой тонкую пленку никеля, а внешний – свинцово-оловянный припой.

Такая сложная контактная конструкция предназначена для обеспечения надежной взаимной адгезии слоев. От качества выполнения контактных элементов резистора зависят такие его характеристики, как надежность и токовые шумы. Последним элементом конструкции SMD резистора является защитный слой, обеспечивающий предохранение всех элементов конструкции резистора от воздействия факторов окружающей среды и в первую очередь от влаги. Этот слой выполняется из стекла или полимерных материалов.

Плюсы SMD компонентов

Самыми большим плюсом SMD компонентов являются их маленькие габариты. На фото ниже простые резисторы и SMD резисторы:

Благодаря малым габаритам SMD компонентов, у разработчиков появляется возможность размещать большее количество компонентов на единицу площади, чем простых выводных радиоэлементов. Следовательно, возрастает плотность монтажа и в результате этого уменьшаются габариты электронных устройств. Так как вес SMD компонента в разы легче, чем вес того же самого простого выводного радиоэлемента, то и масса радиоаппаратуры будет также во много раз легче.

У простых радиоэлементов всегда есть паразитные параметры. Это может быть паразитная индуктивность или емкость. Вот, например, эквивалентная схема простого конденсатора, где сопротивление диэлектрика между обкладками, R — сопротивление выводов, L — индуктивность между выводами.

В SMD компонентах эти параметры минимизированы, потому как их габариты очень малы. Вследствие этого улучшается качество передачи слабых сигналов, а также возникают меньшие помехи в высокочастотных схемах, благодаря меньшим значениям паразитных параметров.

SMD компоненты намного проще выпаивать. Для этого нам потребуется паяльная станция с феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье как правильно паять SMD. Запаивать их намного труднее. На заводах их располагают на печатной плате специальные роботы. Вручную на производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.

Номенклвтура SOIC (SMALL OUTLINE INTEGRATED CIRCUIT)

Компоненты в корпусах SOIC принадлежат к семейству корпусов с разнообразными видами и количеством выводов. Насчитывается более 10 разных названий для корпусов SOIC.

SO (Small Outline). Корпус из формованного пластика с размерами 3,97мм в ширину, и выводами в форме «крыло чайки» с шагом 1,27мм.

SOM (Small Outline Medium). 5,6мм в ширину.

SOL (Small Outline Large). 7,62мм в ширину. Компоненты шириной 8,32мм, 8,89мм, 10,16мм и 11,43мм также относят к семейству SOL.

SOP (Small Outline Package). Японское обозначение для SO и SOL

SOJ или SOJL (Small Outline J-Lead). Компонент в корпусе SOL с выводами «J-Leads».

VSOP (Very Small Outline Package) – компоненты с выводами типа «крыло чайки», с шагом выводов 0,65мм. Ширина 7,62мм

SSOP (Shrink Small Outline Package) — то же самое, что и VSOP компонент, но с более меньшим корпусом – 5,3мм.

QSOP (Quarter Small Outline Package) – то же самое, что и SO с шагом выводов 0,63мм

Длина таких корпусов определяется количеством вводов.

Таблица SOIC-корпусов

НазваниеШирина корпусаТип выводов
SO = Small Outline3,97ммкрыло чайки
SOM = Small Outline Medium5,6мм*крыло чайки
SOL = Small Outline Large7,62ммкрыло чайки
SOP = Small Outline Package7,62ммкрыло чайки
SOJ или SOJL = Small Outline J-Lead7,62мм*J-Lead
VSOP = Very Small Outline Package7,62ммкрыло чайки
SSOP = Shrink Small Outline Package5,3ммкрыло чайки
QSOP = Quarter Small Outline Package)3,96ммкрыло чайки

Основные виды SMD компонентов

Давайте рассмотрим основные SMD элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом, предохранители, диоды и другие компоненты выглядят как обычные маленькие прямоугольники, а точнее, параллелепипеды))

На платах без схемы невозможно узнать, то ли это резистор, то ли конденсатор то ли вообще катушка. Китайцы метят как хотят. На крупных SMD элементах все-таки ставят код или цифры, чтобы определить их принадлежность и номинал. На фото ниже в красном прямоугольнике помечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также их номинал.

Типоразмеры SMD компонентов могут быть разные. Вот здесь есть описание типоразмеров для резисторов и конденсаторов. Вот, например, прямоугольный SMD конденсатор желтого цвета. Еще их называют танталовыми или просто танталами:

А вот так выглядят SMD транзисторы:

Есть еще и такие виды SMD транзисторов:

Катушки индуктивности, которые обладают большим номиналом, в SMD исполнении выглядят вот так:

Ну и конечно, как же без микросхем в наш век микроэлектроники! Существует очень много SMD типов корпусов микросхем, но я их делю в основном на две группы:

1) Микросхемы, у которых выводы параллельны печатной плате и находятся с двух сторон или по периметру.

2) Микросхемы, у которых выводы находятся под самой микросхемой. Это особый класс микросхем, называется BGA (от английского Ball grid array

— массив из шариков). Выводы таких микросхем представляют из себя простые припойные шарики одинаковой величины.

На фото ниже BGA микросхема и обратная ее сторона, состоящая из шариковых выводов.

Микросхемы BGA удобны производителям тем, что они очень сильно экономят место на печатной плате, потому что таких шариков под какой-нибудь микросхемой BGA могут быть тысячи. Это значительно облегчает жизнь производителям, но нисколько не облегчает жизнь ремонтникам.

Транзисторы и диоды

Прямоугольные транзисторы и диоды поставляются в корпусах SOT (Small Outline Transistor). Самым популярным размером SOT компонентов является SOT23. Так же популярными являются SOT89, SOT143 и SOT223.

В Японии разработан Mini-SOT, который в половину меньше по размеру, чем SOT23.

Motorola для своих нужд разработала DPAK (Decawatt Package) и D2PAK компоненты для замены популярно транзистора TO220.

Для упаковки SMD транзисторов и диодов используется катушка с пластиковой лентой. SOT компоненты поставляются в 7-и дюймовых катушках (178мм), а более крупные компоненты как DPAK и D2PAK продаются в 13-и дюймовых катушках (330мм).

Количество компонентов в катушке

КорпусКоличество компонентов в катушке
SOT233 000
SOT891 000
SOT1432 000
SOT2231 000
DPAK2 500

Ориентация SOT23 в ленте

Компоненты в корпусе SOT23 могут быть упакованы двумя способами: Т1 и Т2. Способ упаковки Т1 является более популярным, и предполагает ориентацию одним контактом к перфорации ленты. Соответственно упаковка Т2 подразумевает ориентацию двумя контактами к перфорации ленты.

Недостатки

  • SMT может быть непригодным в качестве единственного метода крепления для компонентов, которые подвергаются частым механическим нагрузкам, таких как разъемы, которые используются для взаимодействия с внешними устройствами, которые часто подключаются и отключаются.
  • Паяные соединения SMD могут быть повреждены заливочными компаундами, подвергающимися термоциклированию.
  • Ручная сборка прототипа или ремонт на уровне компонентов сложнее и требует квалифицированных операторов и более дорогих инструментов из-за небольших размеров и расстояний между выводами многих SMD. Работа с небольшими компонентами для поверхностного монтажа может быть затруднена, и для этого потребуется пинцет, в отличие от почти всех компонентов со сквозным отверстием. В то время как компоненты со сквозными отверстиями останутся на месте (под действием силы тяжести) после вставки и могут быть механически закреплены перед пайкой путем отгибания двух выводов на стороне пайки платы, SMD легко перемещаются с места прикосновением к пайке. железо. Без специальных навыков при ручной пайке или распайке компонента легко случайно оплавить припой соседнего SMT-компонента и непреднамеренно сместить его, что практически невозможно сделать с компонентами со сквозными отверстиями.
  • Многие типы пакетов компонентов SMT не могут быть установлены в гнезда, что обеспечивает легкую установку или замену компонентов для изменения схемы и легкую замену вышедших из строя компонентов. (Практически все сквозные компоненты могут быть вставлены в гнезда.)
  • SMD нельзя использовать напрямую со сменными макетами (инструмент для быстрого создания прототипов), требуя либо специальной печатной платы для каждого прототипа, либо установки SMD на держателе с выводными выводами. Для создания прототипа конкретного SMD-компонента можно использовать менее дорогую коммутационную плату . Кроме того, можно использовать прототипы полосовой доски, некоторые из которых включают площадки для SMD-компонентов стандартного размера. Для прототипирования можно использовать макет « ».
  • Размеры паяных соединений в SMT быстро становятся намного меньше по мере продвижения технологии сверхмалого шага. Надежность паяных соединений становится все более серьезной проблемой, поскольку для каждого соединения разрешается все меньше и меньше припоя. Пустоты – это неисправность, обычно связанная с паяными соединениями, особенно при оплавлении паяльной пасты в приложениях для поверхностного монтажа. Наличие пустот может ухудшить прочность сустава и в конечном итоге привести к его разрушению.
  • SMD, как правило, меньше, чем эквивалентные компоненты со сквозным отверстием, имеют меньшую площадь поверхности для маркировки, требуя, чтобы коды маркировки деталей или значения компонентов были более загадочными и меньшими, часто требуя увеличения для считывания, тогда как компонент со сквозным отверстием большего размера может быть прочитал и опознал невооруженным глазом. Это недостаток для прототипирования, ремонта, доработки, обратного проектирования и, возможно, для настройки производства.

Сравнение с обычными элементами

Помните, мы с вами ремонтировали материнскую плату компьютера и меняли конденсаторы и полевые транзисторы? Это достаточно крупные элементы, на которых можно невооружённым взглядом прочесть маркировку. Конденсаторы в низковольтном стабилизаторе напряжения ядра процессора на материнской плате нельзя сделать очень маленькими. Для должной фильтрации пульсаций они должны обладать емкостью в несколько сотен микрофарад. Такую емкость не втиснешь в маленький объем.

Полевые транзисторы в этом стабилизаторе тоже нельзя сделать очень маленькими. Через них протекают токи в десятки ампер. Используются полевые транзисторы с очень небольшим сопротивлением открытого канала — десятые и сотые доли Ома. Но при таких токах они могут рассеивать мощность в половину Ватта и больше. Протекание тока по открытому каналу вызывает нагрев транзистора. Тепло при этом излучается в окружающее пространство через площадь корпуса транзистора. Если корпус будет очень маленьким, транзистор не сможет рассеять тепло и сгорит.

Кстати, обратите внимание: полевые транзисторы припаяны корпусом к площадкам печатной платы. Медные площадки хорошо проводят тепло, поэтому теплоотвод получается более эффективным

Но есть на той же материнской плате компоненты, по которым не протекают большие токи, и они не рассеивает большой мощности. Поэтому их можно сделать очень небольшими. Если мы заглянем внутрь компьютерного блока питания, то увидим там очень небольшие по размерам конденсаторы и резисторы. Они используют в цепях управления и обратной связи.

Такие элементы выглядят как цилиндрик или кирпичик с тонкими проволочными выводами. Монтаж этих компонентов ведется традиционным способом: через отверстия в плате элемент припаивается выводами к контактным площадкам платы. Это технология была освоена десятки лет назад. Е

е недостаток в том, что в плате нужно сверлить десятки или сотни отверстий. Это не самая простая технологическая операция. Чтобы избавиться от сверления (или уменьшить число отверстий) и уменьшить размеры готовых изделий, и придумали SMD компоненты. Материнские платы компьютеров содержат как обычные элементы с проволочными выводами, так и SMD компонентов. Последних – больше.

Пайка в заводских условиях

Этот процесс происходит на основе группового метода. Пайка SMD-компонентов выполняется с помощью специальной паяльной пасты, которая равномерно распределяется тончайшим слоем на подготовленную печатную плату, где уже имеются контактные площадки. Этот способ нанесения называется шелкографией. Применяемый материал по своему виду и консистенции напоминает зубную пасту. Этот порошок состоит из припоя, в который добавлен и перемешан флюс. Процесс нанесения выполняется автоматически при прохождении печатной платы по конвейеру.


Заводская пайка SMD-деталей

Далее установленные по ленте движения роботы раскладывают в нужном порядке все необходимые элементы. Детали в процессе передвижения платы прочно удерживаются на установленном месте за счет достаточной липкости паяльной пасты. Следующим этапом происходит нагрев конструкции в специальной печи до температуры, которая немного больше той, при которой плавится припой. В итоге такого нагрева происходит расплавление припоя и обтекание его вокруг ножек компонентов, а флюс испаряется. Этот процесс и делает детали припаянными на свои посадочные места. После печки плате дают остыть, и все готово.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]