Пайка: основы для начинающих, технология, виды и материалы, тонкости

Умение паять в современной жизни, насыщенной электроприборами и электроникой, необходимо так же, как умение пользоваться отверткой и вантузом. Методов пайки металлов существует много, но прежде всего нужно знать, как паять паяльником, хотя в бытовых условиях осуществимы и могут понадобиться также другие ее способы. В помощь желающим освоить технологию ручных спаечных работ и предназначена эта статья.

Примечание: пайки пропилена и др. пластиков здесь мы не касаемся. Это, собственно, и не пайка – в техпроцессе отсутствуют обязательные компоненты спаечных работ, припой и флюс. Технологически пайка пластиков ближе к низкотемпературной контактной сварке. То же касается холодной пайки – соединению деталей токопроводящим клеем.

Пайка металлов припоем – довольно сложный физико-химический процесс, но в работе он сводится к достаточно простым приемам и операциям. Чтобы правильно паять, не блуждая в дебрях теории, правила производства спаечных работ нужно соблюдать в точности. Особенно это касается выбора метода пайки, припоя и флюса в зависимости от вида соединяемых деталей и требований к паяному стыку. Описанию этих и других подробностей, без которых прочный спай не получится, и посвящена основная часть излагаемого материала.

Примечание: если вам хочется побыстрее чего-нибудь спаять, то можно посмотреть обстоятельный видео-урок по основам пайки для начинающих ниже. Но учтите, дальнейшего в тексте он не заменит. В спаечных работах далеко не всегда действует правило – «делай так, получится так». И в налаженном производстве, бывает, приходится ломать голову – а что делать, если получается не так? Или, что нужно сделать, чтобы получилось все-таки так, если нет того, чем полагается делать так.

Что такое пайка?

Пайка своими руками в домашних условиях сводится к следующим технологическим операциям:

  • Паяемые поверхности очищают от загрязнений, коррозионных корок и т.п.
  • Зачищают до блеска, т.е. до отсутствия видимых следов окислов;
  • Покрывают флюсом – веществом, удаляющим остатки окисла и не допускающим окисления поверхностей в дальнейшем процессе. Для флюсовки под лужение предпочтительно использовать не жидкие или твердые флюсы, а флюс-пасты;
  • Затем поверхности лудят – наносят на них расплавленный припой (специально предназначенный для пайки сплав), он при этом растекается тонкой пленкой и химически соединяется с основным металлом;
  • Детали предварительно соединяют механически: скруткой, сжатием пинцетом, пассатижами, в тисках, струбциной и пр.
  • Наносят еще флюс, чтобы не допустить окисления припоя под нагревом;
  • Наносят с прогревом еще припой (возможно, уже другой) до получения спая заданного качества;
  • Если пайка велась паяльником с луженым жалом (см. ниже), по ее окончании его очищают и покрывают неактивным флюсом. Чтобы пайки были качественными, обычный паяльник должен храниться с зафлюсованным жалом!

Далее мы рассмотрим подробнее операции ключевые, на которые следует обратить особое внимание, чтобы научиться паять как следует.

Необходимое отступление

В комментариях на тему пайки широко дискутируется тема: как правильно – залудить или облудить? По правилам русского технического языка – залудить, как и в других словоформах от «лудить»; блуд тут ни при чем. Но лучше, по возможности, обходиться вовсе без приставок, т.к. в корнях словоформ «д» часто меняется на «ж» (лужение) и тогда возможна паразитная ассоциация с лужей. Залуживать это что – в лужу макать? Надо – лудить. «Спаивать» вместо «паять» недопустимо однозначно, т.к. у этих слов совершенно различные значения. Также как и «припай» вместо «припой». Припай – это полоса берегового льда, образующаяся при замерзании водоемов. А спайка – нежелательное последствие хирургической операции. Место соединения деталей пайкой это спай.

Примечание: в северных диалектах русского есть еще луды – подводные каменные гряды – и даже рыба сиг-лудога, которая там водится. Но в каноническом русском луды мелькают крайне редко, так что их можно не принимать во внимание.


  • Геодезические работы. Мобильные лазерные сканеры

  • Необходимые аксессуары для санузла. Держатели для туалетной бумаги
  • Садовая мебель — главный элемент на вашей придомовой территории

Зачистка

Зачистка после очистки – первая каверзная операция пайки. Использование для нее абразивов недопустимо! Их мельчайшие частички, въевшиеся в металл, полностью удалить невозможно. Впоследствии они становятся очагами процессов, разрушающих спай.

Зачищают поверхности под пайку надфилем, напильником, шаберным инструментом (разные виды скребков) или просто ножом. Но лучше всего, особенно если готовятся для пайки токоведущие провода, сразу покрыть их активированным флюсом (см. далее), а после пайки тщательно удалить его остатки. Это удобно делать зубной щеткой, смоченной спиртом.

Контактно-реактивная пайка

При пайке между соединяемыми металлами или соединяемыми металлами и прослойкой другого металла в результате контактного плавления образуется сплав, который заполняет зазор и при кристаллизации образует паяное соединение. На рисунке 3.17 показана схема контактно-реактивной пайки.

Рисунок 3.17 – Схема контактно-реактивной пайки:

а – перед пайкой; б – после пайки

Чем и как лудить/паять?

Для следующих операций понадобится уже специальный электронагревательный инструмент: паяльник, футорка или паяльная горелка. Паять в домашних условиях чаще всего приходится электропаяльником с медным луженым жалом. Его устройство показано на поз. 1 рис. «Для полного счастья» спайщика-любителя нужны стержневые паяльники на 16-20 Вт для микросхем и печатных плат, поз. 2а, 40-50 Вт (поз. 2б), для электропроводов и навесного монтажа компонент радиоэлектроники, и 80-150 Вт (поз. 2в), для сборки небольших металлоконструкций пайкой.

Устройство и разновидности электропаяльников с медным луженым жалом

Если не предполагается работ с микрочипами (телефоны, планшеты, компьютеры) и пайки стали толщиной более 0,5-0,6 мм, можно обойтись комплектом из паяльников на 25 Вт (поз. 3а) и 60-65 Вт, поз. 3 б. Вдруг возникнет необходимость паять металлопрофили с толщиной стенок до 3-4 мм и/или толстый стальной лист, потребуется радиаторный паяльник-«топор» на 300-400 Вт, поз. 4.

Жала паяльников малой мощности (поз. 2а, 2б, 3а, 3б) изначально не прокованы и потому довольно быстро окисляются (подгорают). Чтобы повысить их стойкость, а заодно и отформовать нужным образом, вынутый из паяльника стержень проковывают слесарным молотком на наковальне настольных тисков. «Ширкать» его надфилем после этого нет нужды, да и не надо, чтобы не стереть наружный уплотненный слой меди. После проковки жало сразу же покрывают активированным флюсом.


  • Компрессоры — надежное и главное, экономичное решение вопроса

  • Принцип действия и устройство вихревых воздуходувок
  • Сертификат ISO 27001 в Санкт-Петербурге за 1 день

Теперь понадобится твердая канифоль и мягкий, достаточно тугоплавкий припой (см. далее): ПОС-10, ПОС-30 или ПОС-40. Стержень паяльника вставляют на место, фиксируют, если есть винт-фиксатор, и включают паяльник в сеть. По мере выкипания флюса при прогреве жало погружают в канифоль, чтобы не оголялось. Когда канифоль вокруг жала начнет пузыриться, его натирают палочкой припоя до получения на всей поверхности жала ровной плотной полуды. Нитевидный припой на катушке в данном случае не совсем хорош, он для пайки мелких деталей.

Пока мы готовили паяльник, флюс на паечных поверхностях сделал свое дело: под его слоем они чистые, можно лудить. Здесь критическим пунктом будет толщина деталей:

  • Менее 1/8 диаметра стержня паяльника – прогреются насквозь до температуры плавления припоя менее чем за 7 с. Флюс не успеет выкипеть.
  • Более 1/6 той же величины – прогреются более чем за 10 с, флюс выкипит, детали оголятся и окислятся.
  • 1/8-1/6 диаметра стержня – нужно, чаще всего основываясь на собственном опыте, лудить легкоплавким припоем под высококипящим флюсом. Или воспользоваться паяльником помощнее.

В первом случае на жало набирают каплю припоя, переносят на паяемую поверхность, и, если:

  1. Провод тонкий – легко, без нажима, двигают по оголенному концу жалом с одной и затем с противоположной стороны, пока припой не растечется. Провод держат кончиком вниз. Стекшую туда каплю излишка припоя снимают паяльником.
  2. Провод толстый – жало двигают по спирали взад-вперед.
  3. Плоская тонкая длинная деталь – припой наносят на конец и двигают жало вдоль. Когда за жалом покажутся незалуженные края детали, наносят на недолуженный участок еще флюса, набирают другую каплю припоя и продолжают лужение.
  4. Длинная более широкая деталь – то же, что и в пред. случае, но жало ведут змейкой.
  5. Широкая деталь – жало двигают по спирали от центра в краям.

Для лужения толстых деталей берут ниточный припой с флюсом, т. наз. гарпиус: это тонкая гибкая трубочка из фольги припоя, в просвете которой порошкообразная канифоль. Лужение начинают с края длинных или с середины широких деталей. Конец гарпиуса прикладывают к месту начала лужения, греют паяльником, пока не растечется. Движения жалом – такие же, как в пред. случаях. Припой подают под жало по мере расходования. Дать на жало – он к нему будет липнуть, пока не образуется большая капля, которая стечет куда не надо.

Общие сведения о технологии

Это метод соединения, при котором задействуется связующий расплав (припой) с подходящими для конкретных условий характеристиками. И активный элемент пайки, и заготовки подвергаются предварительному нагреву, благодаря которому формируется податливая для соединения структура материалов. Температурный режим должен быть превосходить пиковую точку нагрева, минуя которую металлические детали размягчаются и начинают переход в жидкое состояние. Важной характеристикой любого вида пайки является время термического воздействия под расплавом. Это промежуток от начала нагрева до отвердения припоя уже после выполнения соединения. В среднем операция занимает 5-7 мин, но могут быть и отклонения от этого диапазона – это зависит от характеристик заготовки и площади обрабатываемого узла.

Особенности пайки проводов

В предварительном соединении паяемых деталей больше всего проблем возникает с проводами: их для этого приходится трогать руками, отчего поверхность металла загрязняется, и спаям проводов чаще прочих паяных соединений приходится выдерживать механические нагрузки.

Скрутки проводов

Прежде чем паять провода, их нужно правильно скрутить. Основные виды скруток проводов для пайки показаны на рис. У каждого из них свое предназначение:

  • Бандажными скрутками соединяют жесткие (толстые одножильные) токоведущие провода, т.е. по которым передается электрическая мощность. Особенно – провода наружныее. Бандажное соединение обеспечивает достаточный электрический контакт даже при непропае или перегреве окислившегося спая.
  • Желобковые скрутки делают на проводах в легкоплавкой изоляции (простой ПВХ, полиэтилен), когда необходимо полное растекание припоя при минимальном прогреве. Греют желобковые скрутки только по желобку.
  • Простыми скрутками можно соединять как одножильные, так и многожильные только что зачищенные от изоляции (блестящие) провода.
  • Простая последовательная скрутка, т. наз. прямая британская, или просто британка, применима для соединения токоведущих проводов гибких кабелей сечением до 1,4 кв. мм, не испытывающих регулярных больших механических нагрузок, напр. электрических удлинителей или времянок.

Электрические провода, испытывающие регулярные и/или постоянные механические нагрузки, должны быть обязательно многожильными. Скручивают их, как показано внизу на рис: концы разметливают, «метлы» вдвигают друг в друга и скручивают по-британски. Паяют легкоплавким припоем повышенной прочности, напр. ПОСК-50 (см. ниже) с активированным флюсом, не требующим удаления остатков, также см. ниже.

Параллельные (тупиковые) скрутки проводов сечением свыше 0,7 кв. мм желательно паять погружением в расплавленный припой, см. далее. В противном случае придется греть или долго, или слишком мощным паяльником, отчего изоляция ползет, а флюс преждевременно выкипает.

Примечание: одножильные луженые провода – выводы деталей радиоэлектроники – допустимо паять встык или с набросом крючком, см. рис. справа.

Что паяемо, но не паяется

Не предназначены для соединения пайкой гибкие коаксиальные кабели и кабели для компьютерных сетей типа витая пара («витуха»). Опытный кабельщик, имеющий полное представление об электродинамике линий передачи сигнала, в исключительных случаях сделать муфту на них может. Но при выполнении дилетантом, пусть он в остальном квалифицированный электронщик и монтажник, пропускная способность и помехозащищенности линии упадут ниже допустимого, вплоть до полной потери.

Как чистить и консервировать жало

Жало паяльника очищают от остатков припоя, потирая о мягкую пористую или волокнистую подкладку. Чаще всего используется поролон, но это вариант не из лучших: он подгорает и налипает на жало. Лучший материал для его чистки – натуральный войлок или базальтовый картон. Но еще лучше – 2-ступенчатая чистка, сначала о губку-путанку из металлической ленты, а затем уж о войлок. После чистки паяльник выключают, вводят еще горячее жало в твердую канифоль и ждут, пока она не перестанет пузыриться. Тогда жало вынимают и держат вниз концом, чтобы стекли излишки канифоли. По полном его остывании паяльник можно отправлять на хранение.

Виды флюсов

При термическом воздействии на поверхности металлической заготовки образуется оксидное покрытие, препятствующее образованию качественного соединения с припоем. Для устранения таких препятствий используют разные виды флюсов для пайки, некоторые из которых также ликвидируют следы ржавчины и окалины.

Флюсы можно классифицировать как раз по совместимости с припоями (твердыми и мягкими) или по температурной стойкости. Например, для мягкой пайки тяжелых металлов используют средства с маркировками F-SW11 и F-SW32. Для твердого соединения тяжелых сплавов задействуют флюсы для пайки видов F-SH1 и F-SH4. Легкие же металлы наподобие алюминия рекомендуется предварительно обрабатывать составами групп F-LH1 и F-LH2.

Припои и флюсы

Теперь пришло время точно подобрать рабочий припой и флюс к нему, т.к. пайка, в отличие от полуды, должна не только крепко сцепляться с основным металлом, но и сама быть прочной. Сводка сведений о припоях и флюсах широкого применения из старого справочника дана на рис. Применительно к нынешнему времени к ней остается добавить не так уж много.

Характеристики припоев и флюсов широкого применения

Припои

Припои от ПОС-90 до Авиа-2 – мягкие для низкотемпературной пайки. Гарантированно обеспечивают только электрический контакт. ПОС-30 и ПОС-40 паяют медь, латунь, бронзу с неактивными флюсами, а их же со сталью и сталь со сталью – с активными. ПОССр-15 можно паять оцинковку с неактивными флюсами; другие припои при этом разъедают цинк до стали и пайка скоро отваливается.

34А, МФ-1 и ПСр-25 припои твердые, для высокотемпературной пайки. Припоем 34А можно паять алюминий в пламени (см. далее, о пайке алюминия) со специальными флюсами, см. там же. Припоем МФ1 припаивают медь к стали с активированным флюсом. «Невысокие требования к прочности» в данном случае значит, что прочность спая ближе к прочности меди, чем стали. ПСр-25 при пайке сухим паяльником (см. далее) пригоден для пайки ювелирных изделий, витражей тиффани и т.п.

Флюсы

Паяльные флюсы делятся на нейтральные (неактивные, бескислотные), химически с основным металлом не взаимодействующие или взаимодействующие в ничтожной степени, активированные, химически действующие на основной металл при нагреве, и активные (кислотные), действующие на него и холодными. В отношении флюсов наш век принес больше всего нововведений; большей частью все же хороших, но начнем с неприятных.

Первое – технически чистого ацетона для промывки паек в широкой продаже больше нет вследствие того, что он используется в подпольном производстве наркотиков и сам обладает наркотическим действием. Заменители технического ацетона – растворители 646 и 647.

Второе – хлористый цинк в активированных флюс-пастах часто заменяют тераборнокислым натрием – бурой. Соляная кислота – высокотоксичное химически агрессивное летучее вещество; хлорид цинка также токсичен, а при нагреве сублимирует, т.е. улетучивается не плавясь. Бура безопасна, но при нагреве выделяет большое количество кристаллизационной воды, что немного ухудшает качество пайки.

Примечание: бура сама по себе паяльный флюс для пайки погружением в расплавленный припой, см. далее.

Хорошая новость – теперь в продаже есть широчайший ассортимент флюсов на все случаи паяльной жизни. Для обычных спаечных работ вам понадобятся (см. рис.) недорогие СКФ (спиртоканифольный, бывший КЭ, второй в списке бескислотных флюсов в табл. I.10 на рис. выше) и паяльная (травленая) кислота, это первый в списке кислотный флюс. СКФ пригоден для пайки меди и ее сплавов, а паяльная кислота – для стали.

Пайки от СКФ нужно обязательно промывать: в состав канифоли входит янтарная кислота, при длительном контакте разрушающая металл. Кроме того, случайно пролитый СКФ мгновенно растекается по большой площади и превращается в очень долго сохнущую чрезвычайно липкую гадость, пятна от которой ничем не сводятся ни с одежды, ни с мебели, ни с пола со стенами. В общем СКФ для пайки хороший флюс, но не для ротозеев с растяпами.

Полноценный заменитель СКФ, но не такой противный при небрежном обращении – флюс ТАГС. Стальные детали более массивные, чем допустимо для пайки паяльной кислотой, и более прочно, паяют флюсом Ф38. Универсальным флюсом можно паять практически любые металлы в любых сочетаниях, в т.ч. алюминий, но прочность спая с ним не нормируется. К пайке алюминия мы еще вернемся.

Примечание: радиолюбители, имейте в виду – сейчас есть в продаже флюсы для пайки эмалированных проводов без зачистки!

Реакционно-флюсовой


В основе реактивно-флюсового вида пайки лежит химическая реакция, при которой из флюса при соединении с металлом образуется припой. Это хорошо видно, когда между собой соединяются алюминиевые детали.

Для их стыковки применяется флюс на основе хлористого цинка. При нагреве цинк начинает взаимодействовать с алюминием, превращаясь в металлический припой.

Он заполняет собой все пространство зазора, делая место зоны пайки прочным соединением. При этом очень важно точно соблюсти пропорции наносимого флюса. Его должно быть много, чтобы чистый цинк в необходимом количестве мог выделиться из флюсового порошка.

Иногда при этом виде пайки приходится добавлять цинковый припой в небольших количествах, как дополнение к основному процессу. Обычно это делают, если две заготовки соединяются внахлест.

Другие виды пайки

Любители мастерить также часто паяют сухим паяльником с бронзовым нелуже ым жалом, т. наз. паяльным карандашом, поз. 1 на рис. Он хорош там, где недопустимо растекание припоя вне зоны пайки: в ювелирных изделиях, витражах, паяных предметах прикладного искусства. Иногда всухую паяют и микрочипы, монтируемые на поверхность, с шагом расположения выводов 1,25 или 0,625 мм, но это дело рискованное и для опытных специалистов: плохой тепловой контакт требует избыточной мощности паяльника и длительного нагрева, а обеспечить стабильность прогрева при ручной пайке невозможно. Для сухой пайки применяют гарпиус из ПОСК-40, 45 или 50 и флюс-пасты, не требующие удаления остатков.

Прочие виды пайки, осуществимые дома

Тупиковые скрутки толстых проводов (см. выше) паяют погружением в футорку – ванночку с расплавленным припоем. Когда-то футорку грели паяльной лампой (поз. 2а), но ныне это дикость первобытная: электрофуторка, или паяльная ванна (поз. 2) дешевле, безопаснее и дает лучшее качество пайки. Скрутку в футорку вводят сквозь слой кипящего флюса, подаваемого на припой после его расплавления и прогрева до рабочей температуры. Простейший флюс в данном случае – порошок канифоли, но она скоро выкипает и еще быстрее пригорает. Лучше флюсовать футорку бурой, а если паяльная ванна используется для оцинковки мелких деталей, то это единственно возможный вариант. В таком случае максимальная температура футорки должна быть не ниже 500 градусов Цельсия, т.к. цинк плавится при 440.

Наконец, массивную медь в изделиях, напр. трубы, паяют высокотемпературной пайкой в пламени. В нем всегда есть несгоревшие частицы, жадно поглощающие кислород, поэтому пламя обладает, как говорят химики, восстановительными свойствами: снимает остаточный окисел и не дает образоваться новому. На поз. 3 видно, как пламя специальной паяльной горелки буквально выдувает все ненужное из зоны пайки.

Ручная высокотемпературная пайка в пламени

Высокотемпературную пайку ведут, см. рис. справа, равномерно потирая с нажимом зону пайки 1 палочкой твердого припоя 2. Пламя горелки 3 должно следовать за припоем, чтобы горячее пятно не оказалось на воздухе. Предварительно зону пайки греют, пока не пойдут цвета побежалости. К луженой твердым припоем поверхности можно припаять что-то еще припоем мягким как обычно. Подробнее о пайке в пламени см. далее, когда дело дойдет до труб.

Курьезно, но в некоторых источниках паяльную горелку обзывают паяльной станцией. Ну, рерайт есть рерайт, что с него возьмешь. На самом деле настольная паяльная станция (см. след. рис.) – оборудование для тонких паяльных работ: с микрочипами и др., где недопустим перегрев, растекание припоя куда не надо и пр. огрехи. Паяльная станция точно поддерживает заданную температуру в зоне пайки, и, если станция газовая, то контролирует подачу туда газа. В таком случае горелка входит в ее комплект, но сама по себе паяльная горелка паяльная станция не более, чем каменоломня – собор Василия Блаженного.

Настольные паяльные станции

Селективный

Нельзя сказать, что селективный вид пайки принципиально отличается от капиллярного. Точно также в нем применяют припой и нагрев. Но расплавляют припой только в выборочных местах (локальных точках), на которые планируется прикрепить элементы.

Селективную пайку применяют в основном для изготовления плат и выводов штыревых компонентов. Она схожа с волновым методом, применяемым для пайки smd-чипов.

Установка селективной пайки – оборудование, относящееся к категории полуавтоматов. Оно не дешевое, но экономит расходные материалы почти в десять раз, по сравнению с волной, поэтому распространяется все шире и шире.

Как паять алюминий

Флюсы для пайки алюминия

Благодаря современным флюсам паять алюминий стало в общем не сложнее, чем медь. Для низкотемпературной его пайки предназначен флюс Ф-61А, см. рис. Припой – любой аналог припоев Авиа; в продаже есть разные. Единственно что – стержень в паяльник лучше вставить бронзовый луженый с насечками на жале примерно как у напильника. Он под слоем флюса легко соскоблит прочную пленку окисла, которая и не дает алюминию паяться просто так.

Для высокотемпературной пайки алюминия припоем 34А предназначен флюс Ф-34А. Однако греть зону пайки пламенем нужно очень осторожно: температура плавления самого алюминия всего 660 Цельсия. Поэтому высокотемпературную пайку алюминия лучше применять беспламенную камерную (пайка с печным подогревом), но оборудование для нее стоит дорого.

Омеднение алюминия для пайки

Есть еще «пионерский» способ пайки алюминия с предварительным омеднением. Он пригоден, когда требуется только электрический контакт, а механические напряжения в зоне пайки исключены, напр., если нужно соединить алюминиевый кожух с общей шиной печатной платы. «По-пионерски» пайка алюминия осуществляется на установке, показанной на рис. слева. Порошок медного купороса насыпают горкой в зону пайки. Зубную щетку пожестче, обмотанную голым медным проводом, окунают в дистиллированную воду и растирают ею с нажимом купорос. Когда на алюминии появится медное пятно, его лудят и паяют как обычно.

Лампы для пайки

Наиболее распространенный инструмент для пайки различных заготовок, позволяющий получать высокотемпературный нагрев путем сжигания спирта, керосина и других видов жидкого топлива. В процессе работы из сопла аппарата вырывается факельный запал, который в дальнейшем направляется на целевой участок расплава. Такие приборы можно использовать не только для соединения деталей, но и в операциях нагрева конструкций и механизмов. Также аппараты для пайки используют перед удалением лакокрасочных покрытий. Средняя температура нагрева у лампового паяльника составляет 1000 – 1100°С, поэтому его можно использовать и в сварочных работах. К самым производительным моделям относятся бензиновые лампы. Они быстро обретают оптимальную рабочую температуру и справляются с большинством стандартных операций пайки. В конструкции приборов предусматривается баллончик для топлива, а также регулятор пламени, позволяющий варьировать мощность термического воздействия.

Мелкая пайка

В пайке печатных плат есть свои особенности. Как паять детали на печатные платы, в целом см. небольшой мастер-класс в рисунках. Лужение проводов отпадает, т.к. выводы радиокомпонент и чипов уже луженые.

В любительских условиях, во-первых, нет особого смысла лудить все токоведущие дорожки, если устройство работает на частотах до 40-50 МГц. В промышленном производстве платы лудят низкотемпературными способами, напр. напылением или гальваническим. Прогрев дорожек паяльником по всей длине ухудшит их сцепление с основой и увеличит вероятность отслоения. После монтажа компонент плату лучше покрыть лаком. Медь от этого сразу потемнеет, но на работоспособность устройства это никак не повлияет, если только речь не идет об СВЧ.

Пайка радиоэлектронных компонент на печатную плату

Затем, взгляните на нечто безобразное слева на след. рис. За такой брак и в недоброй памяти советском МЭПе (министерстве электронной промышленности) монтажников разжаловали в грузчики или подсобники. Дело даже не во внешнем виде или перерасходе дорогого припоя, а, во-первых, в том, что за время остывания этих блямб перегрелись и монтажные площадки, и детали. А большие тяжелые наплывы припоя – довольно инертные для уже ослабленных дорожек грузики. Радиолюбителям хорошо знаком эффект: спихнул нечаянно плату-«каракатицу» на пол – 1-2 или более дорожек отслоились. Не дожидаясь и первой перепайки.

Неправильно и правильно распаянные печатные платы

Паечные наплывы на печатных платах должны быть округлыми гладкими высотой не более 0,7 диаметра монтажной площадки, см. справа на рис. Кончики выводов должны немного выступать из наплывов. Кстати, плата полностью самодельная. Есть способ в домашних условиях сделать печатный монтаж таким же точным и четким, как фабричный, да еще и вывести там надписи, какие хочется. Белые пятнышки – блики от лака при фотосъемке.

Наплывы вогнутые и тем более сморщенные – тоже брак. Просто вогнутый наплыв значит, что припоя недостаточно, а морщинистый, кроме того, что в пайку проник воздух. Если собранное устройство не работает и есть подозрение на непропай, смотрите в первую очередь такие места.

ИМС и чипы

По сути интегральная микросхема (ИМС) и чип одно и тоже, но для ясности, как в общем и принято в технике, микросхемами-«микрухами» оставим ИМС в DIP-корпусах, до больших по степени интеграции включительно, с выводами через 2,5 мм, устанавливаемые в монтажные отверстия или паечные пистоны, если плата многослойная. Чипами пусть будут сверхбольшие ИМС-«миллионники», монтируемые на поверхность, с шагом выводов 1,25 мм и меньшим, а микрочипами – миниатюрные ИМС в таких же корпусах для телефонов, планшетов, ноутбуков. Процессоры и прочих «камни» с жесткими многорядными штыревыми выводами не трогаем: они не паяются, а устанавливаются в специальные панельки, которые запаиваются в плату однократно при ее сборке на предприятии.

Заземление паяльника

Современные КМОП (CMOS) ИМС по чувствительности к статическому электричеству такие же, как ТТЛ и ТТЛШ, держат без повреждения потенциал в 150 В в течение 100 мс. Амплитудное значение действующего напряжения сети 220 В – 310 В (220х1,414). Отсюда вывод: паяльник нужен низковольтный, на напряжение 12-42В, включенный через понижающий трансформатор на железе, не через импульсник или емкостный балласт! Тогда даже прямой пробой на жало не испортит дорогущие чипы.

Остаются еще случайные, и тем более опасные, выбросы сетевого напряжения: сварку рядом включили, бросок сети был, проводка заискрила и т.п. Самый надежный способ уберечься от них – не отводить «бродячие» потенциалы с жала паяльника, а не пускать из туда. Для этого еще на спецпредприятиях СССР применялась схема включения паяльников, показанная на рис.:

Схема заземления низковольтного электропаяльника

Точка соединения C1 C2 и сердечник трансформатора подключаются непосредственно к контуру защитного заземления, а к средней точке вторичной обмотки – экранная обмотка (незамкнутый виток медной фольги) и заземлители рабочих мест. К контуру эта точка подключается отдельным проводом. При достаточной мощности трансформатора к нему можно подключать сколько угодно паяльников, не заботясь о заземлении каждого в отдельности. В домашних условиях точки a и b соединяют с общей клеммой заземления отдельными проводами.

Микросхемы, пайка

Микросхемы в DIP-корпусах паяются как прочие радиоэлектронные компоненты. Паяльник – до 25 Вт. Припой – ПОС-61; флюс – ТАГС или спиртоканифоль. Смывать его остатки нужно ацетоном или его заменителями: спирт берет канифоль туго, и между ножками отмыть им полностью не удается ни кисточкой, ни ветошью.

Что до чипов и тем более микрочипов, то паять их вручную настоятельно не рекомендуется специалистам любого уровня: это лотерея в весьма проблематичным выигрышем и весьма вероятным проигрышем. Если уж у вас дело дойдет до таких тонкостей как ремонт телефонов и планшетов, то придется раскошелиться на паяльную станцию. Пользоваться ею не намного сложнее, чем ручным паяльником, см. видео ниже, а цены вполне приличных паяльных станций ныне доступны.

Горелки для пайки

Широкая группа газовых паяльников, которые могут подключаться к баллончику с топливом или же к центральному источнику с горючим. Первый вариант снабжения имеет преимущество в виде автономности. Горелку с баллончиком, как и бензиновую лампу можно использовать независимо от внешних коммуникаций. В выборе такого аппарата следует учитывать мощность, рабочую температуру, тип применяемого газа, время готовности к работе и т.д. Например, стандартная газовая горелка для пайки работает на пропан-бутане и достигает температуры нагрева до 1300°С. Период непрерывного термического воздействия может достигать 3 ч, но это время будет зависеть и от объема подключаемого баллончика. Различают горелки и по типу системы воспламенения. Простейшие модели включаются механическим способом, а в более современных модификациях применяется пьезорозжиг.

Видео: уроки пайки микросхем

Микросхемы, выпайка

«По-правильному», ИМС для проверки при ремонте не выпаиваются. Их диагностика производится на месте специальными тестерами и методами и негодная удаляется раз и навсегда. Но любители не всегда могут себе это позволить, поэтому на всякий случай ниже даем ролик о методах выпайки ИМС в DIP-корпусах. Чипы с микрочипами умельцы тоже исхитряются выпаивать, напр., подсовывая под ряд выводов нихромовую проволочку и грея сухим паяльников, но это лотерея еще менее выигрышная, чем ручной монтаж больших и сверхбольших ИМС.

Видео: выпайка микросхем — 3 способа

Классификация припоев

Условно можно разделить современные припои на две группы:

  • Плавящиеся под низкими температурами.
  • Плавящиеся под высокими температурами.

Как уже отмечалось, низкотемпературная пайка выполняется под 450°C и ниже. Сам припой для такого рода операций должен размягчаться уже при 300°C. К подобным материалам относят широкую группу оловянных сплавов с добавлением цинка, свинца и кадмия.

Высокотемпературные средства расплава задействуются для пайки при температурах порядка 500°C. Преимущественно это медные составы, в которые также входит никель, фосфор и цинк. Важно отметить, что, к примеру, припой олово-свинец-кадмий помимо более низкой температуры плавления будет отличаться от медных сплавов и механической прочностью. Соотношение по стойкости перед физическим давлением можно представить так: 20 – 100 МПа против 100 – 500 МПа.

Как паять трубы

Медные трубы паяют высокотемпературным способом любым твердым припоем для меди с активированной флюс-пастой, не требующей удаления остатков. Далее возможны 3 варианта:

  • В медных (латунных, бронзовых) соединительных муфтах – паяльных фитингах.
  • С полной раздачей.
  • С неполными раздачей и сжатием.

Пайка медных труб в фитингах надежнее прочих, но требует значительных дополнительных расходов на муфты. Единственный случай, когда она незаменима – устройство отвода; тогда используется фитинг-тройник. Обе паяемые поверхности заранее не лудят, но покрывают флюсом. Затем трубу вводят в фитинг, надежно фиксируют и пропаивают стык. Пайка считается законченной, когда припой перестанет уходить в зазор между трубой и муфтой (нужен 0,5-1 мм) и выступит снаружи небольшим валиком. Фиксатор снимают не ранее чем через 3-5 мин по затвердевании припоя, когда стык уже можно держать рукой, иначе припой не наберет прочность и стык когда-то да потечет.

Как паяют трубы с полной раздачей, показано слева на рис. Давление «раздатая» пайка держит такое же, как и фитинговая, но требует доп. специнструмента для разворачивания раструба и повышенного расхода припоя. Фиксация впаиваемой трубы не обязательна, ее можно вдвинуть в раструб с проворотом, пока не заклинит намертво, поэтому пайку с полной раздачей часто делают в неудобных для установки фиксатора местах.

Пайка медных труб

В домашней разводке из тонкостенных труб малого диаметра, где давление уже небольшое, а его потери несущественны, целесообразной может оказаться пайка с неполной раздачей одной трубы и сужением другой, поз. I справа на рис. Для подготовки труб достаточно круглой палки из твердого дерева с коническим острием в 10-12 градусов с одной стороны и усеченно-конической лункой в 15-20 градусов с другой, поз II. Концы труб обрабатывают, пока они без заклинивания не войдут друг в друга прим. на 10-12 мм. Лудят поверхности заранее, наносят на луженые еще флюса и соединяют до заклинивания. Затем греют до плавления припоя и подпирают зауженную трубу, пока ее не заклинит. Расход припоя выходит минимальным.

Важнейшее условие надежности такого стыка – сужение должно быть ориентировано по току воды, поз. III. Школьный закон Бернулли – обобщение для идеальной жидкости в широкой трубе, а у реальной жидкости в узкой трубе за счет ее (жидкости) вязкости максимум скачка давления смещается противоположно току, поз. IV. Возникает составляющая силы давления, прижимающая зауженную трубу к раздатой, и пайка получается очень надежной.

Что еще?

Ах да, подставки для паяльников. Классическая, слева на рис., пригодна для любых стержневых. Где на ней быть ванночкам для припоя и канифоли – дело ваше, какой-либо регламентации нет. Для маломощных паяльников с фартуком пригодны упрощенные подставки-скобы, в центре.

Правильные и неправильная подставки для паяльников

Паяльные станции комплектуются преимущественно пружинными или трубчатыми ложементами-гнездами для паяльников. В них вся горячая часть инструмента недоступна для прикосновения, но и промазать паяльником мимо них, сосредоточившись на пайке мелкой «россыпи», вероятнее. Но чего уж точно не надо делать, и что прямо запрещено ТБ – это подставку из подручных материалов, в которой паяльник лежит на ванночках для расходных материалов, справа на рис.

Классификация пайки по температурным режимам

На сегодняшний день применяют мягкую, твердую и высокотемпературную пайку, которая используется в основном на производствах и в строительстве. Первые же две техники во многом схожи – например, в обоих случаях рабочая температура составляет 450°С и ниже. Для сравнения, высокотемпературные соединения выполняются в режиме не менее 600°С, а чаще – выше 900°С.

При этом и низкотемпературная обработка может обеспечить качественное соединение. Наиболее выигрышным будет применение твердого припоя, благодаря которому достигается высокая прочность и тугоплавкость деталей. Добавление меди в зазор или стык будет способствовать и повышению ковкости заготовки. Если же требуется получить гибкую и упругую структуру, то используют мягкую пайку.

СПОСОБЫ ПАЙКИ.

По условию заполнения зазора пайка подразделяется на капилярную и некапилярную.

По механизму образования паяного шва существуют следующие способы капилярной пайки: готовым припоем, контактно-реактивная, реактивно-флюсовая, металлокерамическая и диффузионная. Некапилярная пайка делится на пайко-сварку и сварко-пайку.

В зависимости от источника нагрева пайка может быть следующих видов: пайка паяльником, газопламенная, электродуговая, электросопротивлением, индукционная, экзотермическая, пайка электронным лучом, лазером, пайка в печи, погружением в расплавленную соль, погружением в расплавленный припой, волной припоя, электролитная пайка, пайка в нагретых штампах, инфракрасными лучами, в нагревательных метах и нагретыми блоками.

По методу удаления окисной пленки пайка делится на абразивную, абразивно-кристаллическую, ультразвуковую, флюсовую, пайку в нейтральной газовой среде, вакуумную и пайку в активной газовой среде.

ГАЗОПЛАМЕННАЯ ПАЙКА.

В серийном и единичном производствах при пайке для нагрева изделий применяют газопламенные горелки. Нагрев газовым пламенем отличается большой универсальностью, позволяет осуществить местный нагрев в ограниченной зоне изделия, применим при пайке изделий любых размеров и форм, не требует сложного оборудования, допучкает механизацию и автоматизацию процесса. При автоматическом нагреве этот способ применим в массовом производстве.

Пайка с нагревом в пламени в паяльных лампах.

Паяльные лампы обычно используют при пайке легкоплавкими припоями, иногда применяют и при пайке тугоплавкими припоями со сравнительно невысокой температурой плавления (например, серебряными). Пайка паяльными лампами может производиться с менее тщательной подготовкой места спая, так как пламя лампы обеспечивает выгорание различных загрязнений, находящихся на поверхности изделия. При пайке место спая покрывают флюсом и начинают его греть до тех пор, пока пруток припоя при соприкосновении с деталью не начнет плавиться. Во время пайки необходимо непрерывно добавлять как припой, так и флюс. В случае недостаточного количества флюса поверхность спая в результате нагрева окислится, и затекание припоя в шов может прекратиться.

Паяльные лампы работают на бензине, керосине или спирте. Температура пламени паяльной лампы достигает 1000-1100 град.С.

Горючие смеси, применяемые в горелках.

Газовую смесь выбирают в зависимости от возможности производства, паяемого металла, применяемого припоя и требуемой температуры.

В результате сгорания газообразного горючего образуется пламя, которое в зависимости от вида горючего и от соотношения его с кислородом или воздухом имеет различную температуру. Для того чтобы получить быстрый и равномерный нагрев шва, необходимо следить за правильным строением факела пламени. Различают три вида пламени: нормальное (или восстановительное), окислительное и науглероживающее.

Нормальное пламя не вызывает окисления металла. Оно состоит из ядра, восстановительной (рабочей) зоны и факела. Наиболее высокую температуру имеет пламя около конца ядра. Так как для паяния обычно требуется температура не выше 1000-1100 град.С, то при работе с высокотемпературным пламенем (например, ацетилено-кислородным) разогрев шва производят более холодной наружной частью факела.

При избытке кислорода или воздуха в смеси образуется окислительное пламя.

Науглероживающее пламя образуется при избытке горючего в смеси. При нагреве стали таким пламенем происходит насыщение ее поверхности углеродом, что приводит к повышению твердости и хрупкости металла.

Физические свойства некоторых горючих газов приведены в таблице ниже.

Физические свойства некоторых горючих газов.

ГазПримерная температура газокисло-родного пламени, град.СОбъемная теплота сгорания газов, ккал/м при 760 мм рт.ст и 20 град.СПределы взрываемости (% содержания горючего газа в смеси)Наибольшая скорость распространения пламени, м/сКоличество кислорода, куб.м на 1 куб.см горючего
с воздухомс кислородомв воздухев кислороденеобходимое для полного сгоранияподаваемое в горелку
Ацетилен3150126002,2-81,02,8-93,02,913,52,51-1,15
Водород210024003,3-81,52,6-93,92,78,90,50,3-0,4
Метан200080004,8-16,75,4-59,20,73,32,01,5
Пропан2050206002,2-9,50,83,75,03,5
Бутан275001,5-8,40,86,54,0
Городской20004100-50003,8-24,810,0-73,61,3-1,41,51,3
Природный7500-79004,8-14,00,72,01,5
Коксовый3500-42007-210,90,8
Нефтяной23009800-135003,5-16,31,152,52,0
Сланцевый20003000-34000,80,7

Типы горелок.

В зависимости от применяемого горючего разработаны различные типы горелок. Для работы на природном газе в смеси с воздухом применяют горелки, работающие по принципу внешнего или внутрисоплового смешения. Пламя этих горелок регулирует количество подаваемого газа и воздуха. Для получения ацетилено-кислородного пламени широко применяют горелки инжекторного типа, а также горелки типа ГС-53, ГАР-2-56, ГСМ-53, «Малютка» с набором сменных наконечников.

Инжекторные пропано-бутано-кислородные горелки типа ГЗУ-1 используют как заменители ацетиленовых горелок. Они могут работать также на метане, природном и городском газах среднего и низкого давления. По конструкции они отличаются от широко известных ацетилено-кислородных горелок «Малютка» только размерами отверстий в инжекторах и мундштуках.

При пайке труб или цилиндрических деталей диаметром до 120 мм применяют многопламенные горелки МГ-120, в случае пайки изделий прямоугольного сечения применяют многопламенную горелку МГ-ДС.

ПАЙКА С ЭЛЕКТРОНАГРЕВОМ.

Пайка электросопротивлением.

Соединяемые изделия нагревают теплом, выделяемым при прохождении через них электрического тока. Для быстрого нагрева изделия необходимо иметь плотный электрический контакт. Неровности на контактирующих плоскостях или недостаточное сжимающее усилие приводят к перегреву в местах плохого контакта и даже местному оплавлению изделия.

Метод электросопротивления применяют при пайке деталей электроприборов, твердосплавного инструмента, теплообменников, часовых пружин и ленточных пил. Силу тока регулируют так, чтобы нагрев изделия был быстрый и равномерный. При слишком большой силе тока возможно оплавление изделия; при слабом токе значительно удлиняется время пайки.

При пайке с контактным нагревом на соединяемые детали наносят припой и флюс, после чего их устанавливают между электродами, прижимают одну к другой и пропускают ток. По истечении определенного времени ток отключают. Давление поддерживают до тех пор, пока припой полностью не затвердеет.

Индукционная пайка.

В зависимости от конструкции паяемых изделий нагрев осуществляют или непосредственно от индуктора (прямой нагрев), или за счет теплоотдачи от графитового или стального вкладыша, нагреваемого ТВЧ (косвенный нагрев). Применение ТВЧ позволяет очень быстро нагреть деталь до температуры плавления припоя при наименьшем его окислении и короблении изделия и дает возможность непосредственно вести наблюдение за ходом всего процесса пайки.

Индукционной пайкой можно соединять все токопроводящие материалы (сталь, медь, алюминий, твердые сплавы) и керамику, если она покрыта металлическим слоем. Пайку нагревом ТВЧ широко применяют при пайке пластинок из твердого сплава, в радиотехнике и электронике и во многих других областях промышленности. Источником энергии при пайке с нагревом ТВЧ служат машинные, ламповые и искровые генераторы. Мощность, необходимая для пайки, зависит от свойств нагреваемого металла: металлы с хорошей теплопроводностью требуют для нагрева большую мощность.

Большое значение при пайке имеет расстояние между индуктором и изделием. Его выбирают в пределах 2-20 мм в зависимости от размера и конфигурации детали и толщины ее стенок. Для пайки тонкостенных деталей берут меньший зазор, для толстостенных и массивных — больший. Во избежание перегрева изделия реасстояние между индуктором и деталью около углов делают больше, чем с основной поверхностью детали, а в местах с большим теплоотводом его, наоборот, сокращают.

Простейший способ пайки, когда подготовленные детали вручную, по 1 шт. подают в индуктор, включая и выключая ток с помощью ручного или ножного выключателя, малопроизводителен, а качество пайки при этом во многом зависит от квалификации рабочего. Более качественную пайку при ручной подаче детали в индуктор получают при ручном вкалючении и автоматическом выключении тока. Время нагрева при этом способе обычно составляет несколько секунд, его подбирают опытным путем.

Для лучшего использования генератора и увеличения производительности применяют непрерывную подачу паяемых деталей в многоместный индуктор (без включения индуктора). Детали подаются в индуктор одна за другой и по мере расплавления припоя и заполнения им зазора удаляются из индуктора и заменяются новыми. Этот вид пайки широко применяют при изготовлении режущего инструмента.

Для предотвращения окисления металла при пайке тугоплавкими припоями с помощью индукционного нагрева можно производить пайку в вакууме и в защитной атмосфере. при пайке в вакууме изделие помещают в стеклянный колпак, из-под которого затем откачивают воздух до разрежения около 0,01 мм рт.ст. Деталь нагревают кольцевым индуктором. После окончания нагрева и пайки индуктор отводят, выдерживают деталь под вакуумом до температуры 150-200 град.С. после чего пространство под колпаком соединяют с воздухом и вынимают деталь.

Индукционную пайку в защитной атмосфере можно производить в контейнере или в специальной камере.

Электродуговая пайка.

Этот способ применяют при пайке проводов, ленточных пил, деталей приборов и электродвигателей.

Вольтова дуга горит между двумя угольными электродами или между угольным электродом и паяемым изделием. Ток к электродам подается от машины для дуговой сварки, аккумуляторных батарей или от понижающего трансформатора.

Высокая температура дуги позволяет вести пайку очень быстро и тем самым предотвратить окисление припоя. Процесс пайки состоит в обычной очистке изделия от окислов и жира, покрытии мест спая флюсом и вводе припоя. после подготовки место спая нагревают вольтовой дугой. Количество тепла, необходимое для пайки, регулируют изменяя расстояние между электродами или расстояние от дуги до места нагрева.

Пайка в керамических блоках и в электронагревательных плитах.

При пайке мелких однотипных изделий их нагревают в графитовом блоке, зажатом в губках сварочной машины, или в керамическом блоке, нагреваемом нихромовой спиралью.

Угольный блок, конструкция которого зависит от формы соединяемых деталей, нагревается электрическим током большой силы. Пайку ведут в следующем порядке: предварительно собранную деталь с уложенным ооло шва припоем устанавливают в специальное гнездо угольного блока, зажатого в губках сварочной машины. гбки охлаждаются водой, которая по отдной трубке подается, а по другой трубке отводится из внутренней полости губок. Блок питается от понижающего трансформатора, включенного в городскую сеть. При включении тока блок нагревается; одновременно с этим разогревается паяемая деталь, припой расплавляется и заполняет шов.

Для пайки конструкций сложной формы применяют специальные нагревательные плиты, обогреваемые встроенными в них элементами сопротивления. Электронагревательные плиты можно применять при пайке в вакууме и в контролируемой атмосфере. Для пайки деталь вместе с припоем помещают в контейнер из нержавеющей стали, который заваривают. Для создания вакуума в контейнере имеются трубки, присоединенные к вакуумному насосу. Эти трубки можно использовать для подачи и отвода защитного газа, если требуется пайка в контролируемой атмосфере.

Заваренный контейнер затем обертывают асбестовой тканью и помещают для нагрева между огнеупорными плитами.

ПАЙКО-СВАРКА.

Этот процесс относится к некапилярной пайке. Заполнение шва (кромки) жидким припоем происходит под действием сил тяжести. Кромки имеют V-образное или Х-образное сечение и для лучшей сцепляемости их поверхность делают шероховатой.

Этим методом соединяют обычно чугунные изделия или разнородные материалы, например чугун-алюминиевый сплав; его применяют для запайки трещин, раковин. Пайка производится в пламени кислородно-ацетиленовой горелки или электродуговым способом.

Метод индукционной пайки

Данная технология пайки имеет несколько преимуществ перед классическим способом соединения под расплавом. Среди них можно выделить минимальную степень окисления заготовки, что в некоторых случаях избавляет от необходимости применения флюсов, а также низкий эффект коробления. Что касается целевых материалов, то к ним относятся и мягкие, и твердые сплавы, а также керамика с пластиком. К примеру, оптимальный припой для меди в данном случае будет иметь маркировку L-SN (модификации SB5 или AG5). В качестве источника тепловой энергии при индукционном воздействии могут выступать как ручные ламповые аппараты, так и машинные агрегаты соответствующей мощности. На производствах задействуют и генераторные установки, когда нужно получить длительную спайку узлов большой площади. Также в работу включается многоместный индуктор, который может поочередно принимать заготовки. По этой технологии, в частности, изготавливают ручной режущий инструмент.

Особенности паяния

Особенности технологического процесса зависят от характеристик соединяемых элементов. Рассмотрим некоторые типы металлов.

Сталь

Пайку стали выполняют припоями на оловянной основе, без каких-либо исключений. Перед выполнением работ следует предварительно подготовить поверхность, с помощью механической обработки. Очищенные детали обезжиривают. После этого элементы стыкуются с зазором не более 3 мм. Отличительной особенностью работы со сталью – способ нагрева припоя. Он должен получать тепло не от горелки, а от самих заготовок. По окончанию работ с поверхности необходимо удалить остатки расходных материалов.

Чугун

Обработке поддается любой тип чугуна, за исключением белого. Данный металл содержит графит, который снижает адгезию. Поэтому в качестве флюса необходимо использовать борную кислоту.

При работе с чугуном запрещено превышать температурный порог 750 Сº. В противном случае начнется необратимый процесс изменения структуры металла.

Титан

Пайку титана считают одной из самых сложных работ. Это связано с его поверхностным слоем, который насыщен различными газами. В качестве предварительной подготовки используют травление или пескоструйную обработку.

Специалисты рекомендуют проводить спайку в вакуумной среде, для повышения качества соединения. Для работы без защиты используйте серебряный флюс.

Работы проводятся при температуре 900 Сº.

Нихром

Данный металл не доставляет проблем. Нихром — это сплав никеля и хрома. Он отличается пластичностью и высокой жаростойкостью. Его температура плавления находится в диапазоне 1100-1400 Сº, что позволяет выбрать любой подходящий припой.

Серебро

Пайку серебра под силу выполнить не только профессиональному ювелиру, но и обычному человеку, который не сталкивался с ремонтом украшений. Для спайки используют тугоплавкий серебряный припой и буру, в качестве флюса.

По завершению работы можно обработать изделие лимонной кислотой или йодом. В первом случае украшение посветлеет, а во втором – приобретет темный оттенок.

Золото

Ремонт дорогостоящих украшений – тонкий процесс. В случае порчи золотых изделий рекомендуем обратиться к квалифицированному специалисту. Для выполнения соединения необходимы специальные приспособления и особый припой.

Ради разовых работ покупать дорогостоящее оборудование нецелесообразно.

Медь

Данный металл абсолютно не требователен к флюсам. Лучше всего подойдет хлорид цинка или спиртовой раствор канифоли. А вот с припоем нужно быть аккуратнее: олово повышает хрупкость соединения, свинец придает вязкость, поэтому рекомендуем использовать составы на серебряной основе.

Рабочая температура не должна превышать 900 Сº.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]