Аустенитные нержавеющие стали: структура и свойства


Межкристаллитная коррозия в аустенитных нержавеющих сталях

Склонность стали к межкристаллитной коррозии проявляется в результате выделения карбидных фаз. Поэтому при оценке коррозионных свойств стали важнейшим фактором является термокинтетические параметры образования в ней карбидов.

Склонность к межкристаллитной коррозии закаленной стали типа 18-10 определяется, в первую очередь, концентрацией углерода в твердом растворе. Повышение содержания углерода расширяет температурный интервал склонности стали к межкристаллитной коррозии.

Сталь типа 18-10 при выдержке в интервале 750-800 ºС становится склонной к межкристаллитной коррозии:

  • при содержании углерода 0,084 % — уже в течение 1 минуты;
  • при содержании углерода 0,054 % — в течение 10 минут;
  • при содержании углерода 0,021 5 – через более чем 100 минут.

С уменьшением содержания углерода одновременно снижается температура, которая соответствует минимальной длительности изотермической выдержки до начала межкристаллитной коррозии.

Стабилизация стали титаном и ниобием

При введении в хромоникелевую сталь типа 18-10 титана и ниобия, которые способствуют образования карбидов, меняются условия выделения карбидных фаз. При относительно низких температурах 450-700 ºС преимущественно выделяются карбиды типа Cr23C6, которые и дают склонность к межкристаллитной коррозии. При температурах выше 700 ºС преимущественно выделяются специальные карбиды типа TiC или NbC. При выделении только специальных карбидов склонности к межкристаллитной коррозии не возникает.

для теплоустойчивых хромистых сталей

12XM, 12MX, 15XM, 15X5M, 15X5M-У:

  1. При расчетных температурах ниже 20 °С допускаемые напряжения принимают такими же, как при 20 °С при условии допустимого применения материала при данной температуре.
  2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют линейной интерполяцией с округлением результатов до 0,5 МПа в сторону меньшего значения.
  3. Допускаемые напряжения, расположенные ниже горизонтальной черты, действительны при ресурсе 105 ч. Для расчетного срока эксплуатации до 2*105 ч допускаемое напряжение, расположенное ниже горизонтальной черты, умножают на коэффициент 0,85.

Азот в аустенитных нержавеющих сталях

Азот, как и углерод, имеет переменную растворимость в аустените. Азот может образовывать при охлаждении и изотермической выдержке самостоятельные нитридные фазы или входить в состав карбидов, замещая в них углерод. Влияние азота на склонность к межкристаллитной коррозии хромоникелевых аустенитных сталей значительно слабее, чем у углерода, и начинает проявляться только при содержании его более 0,10-0,15 %. Вместе с тем, введение азота повышает прочность хромоникелевой аустенитной стали. Поэтому на практике применяют в этих сталях небольшие добавки азота.

Жаростойкие и жаропрочные аустенитные стали

Аустенитные стали c ГЦК решёткой имеют значительно более высокую жаропрочность по сравнению со сталями с ОЦК решёткой.

Жаростойкие стали аустенитного класса

, применяемые для изготовления деталей печного оборудования, характеризуются не только высокой жаростойкостью (окалиностойкостью), но и высокой жаропрочностью. К
жаростойким аустенитным сталям
относятся 20Х23Н18, 20Х25Н20С2, имеющие окалиностойкость до 1100°C.

Жаропрочные аустенитные стали

. Из жаропрочных аустенитных сталей изготавливают роторы, диски, лопатки газовых турбин, клапаны дизельных двигателей, работающие при температурах 600-700&deg:C. Хромоникелевые аустенитные стали для увеличения жаропрочности дополнительно легируют вольфрамом, молибденом, ванадием, ниобием, бором и другими элементами. К
жаропрочным сталям аустенитного класса
относятся стали 09Х14Н16Б, 09Х14Н19В2БР, 45Х14Н14В2М.

Влияние содержания хрома

С повышением концентрации хрома растворимость углерода в хромоникелевом аустените уменьшается, что облегчает выделение в нем карбидной фазы. Это, в частности, подтверждается снижением ударной вязкости стали с повышением содержания хрома, что связывают с образованием карбидной сетки по границам зерен.

Вместе с тем, повышение концентрации хрома в аустените приводит к существенному снижению склонности стали к межкристаллитной коррозии. Это объясняют тем, что хром существенно повышает коррозионную стойкость стали. Более высокая концентрация хрома в стали дает меньшую степень обеднения им границ зерен при выделении там карбидов.

для теплоустойчивых хромистых сталей

12XM, 12MX, 15XM, 15X5M, 15X5M-У:

  1. При расчетных температурах ниже 20 °С допускаемые напряжения принимают такими же, как при 20 °С при условии допустимого применения материала при данной температуре.
  2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют линейной интерполяцией с округлением результатов до 0,5 МПа в сторону меньшего значения.
  3. Допускаемые напряжения, расположенные ниже горизонтальной черты, действительны при ресурсе 105 ч. Для расчетного срока эксплуатации до 2*105 ч допускаемое напряжение, расположенное ниже горизонтальной черты, умножают на коэффициент 0,85.

Дельта-феррит в хромомолибденовой аустенитной стали

Присутствие дельта-феррита в структуре аустенитной хромоникелевой стали типа 18-10 оказывает отрицательное влияние на ее технологичность при горячей пластической деформации – прокатке, прошивке, ковке, штамповке.

Количество феррита в стали жестко лимитируется соотношением в ней хрома и никеля, а также технологическими средствами. Наиболее склонна к образованию дельта-феррита группа сталей типа Х18Н9Т (см. также Нержавеющие стали). При нагреве этих сталей до 1200 ºС в структуре может содержаться до 40-45 % дельта-феррита. Наиболее стабильными являются стали типа Х18Н11 и Х18Н12, которые при высокотемпературном нагреве сохраняют практически чисто аустенитную структуру.

Применение сплавов

Стали аустенитного класса используются при изготовлении устройств, работающих при высоких температурах, начиная от 200 °C: парогенераторов, роторов, турбин и сварочных механизмов. Недостатком использования аустенита в этих механизмах является низкая прочность металла. При длительном контакте железных сплавов различными гидроокисями могут образоваться дополнительные трещины, что приведет к поломке рабочих поверхностей устройств. Устранить этот недостаток можно при добавлении в раствор железа дополнительных химических элементов: ванадия и ниобия. Они формируют карбидную фазу, увеличивающих показатели прочности стали.

Нержавеющие аустенитные стали используются в механизмах, функционирующих в сложных условиях и при сильных перепадах температурных показателей. Чаще всего они используются при сварке коррозионностойких труб. Во время этого процесса между крепежными элементами образуется шовное пространство. При нагревании нержавеющих труб из аустенита до температуры плавления они приобретают монолитную структуру, защищающей металл от процессов окисления и высоких перепадов температур.

Также аустенитные стали обладают высокой устойчивостью к электромагнитным излучениям. Поэтому ее применяют при производстве отдельных деталей для радиоэлектронного оборудования. Аустенит улучшает прочность механизмов радио и не теряет свои свойства при изменениях структуры магнитного поля. По этой причине радиотехническая аппаратура будет легко принимать необходимые сигналы.

Аустенитные сплавы железа нашли широкое применение в производстве механизмов, работающих в водной среде. Нержавеющая сталь устойчива к образованию коррозии. Она используется в качестве защитного материала. При правильном соотношении хрома и никеля аустенит может сформировать тонкий слой, снижающим влияния водной среды на рабочую поверхность металлического приспособления. В результате снижается износ устройства. Но при значительном вымывании никеля материал полностью теряет устойчивость к коррозии.

В современных корпусах турбин также используются аустенитные стали с большим пределом текучести. Они позволяют избежать коробления данного устройства и улучшить показатели его прочности. Благодаря наличию крупнозернистой структуры, при помощи аустенита с высоким пределом текучести также можно укрепить конструкцию ротора турбины. Недостатком этой технологии является значительное повышение стоимости механизмов из-за использования большого количества дорогой аустенитной стали.

Мартенсит в хромоникелевых аустенитных сталях

В пределах марочного состава в сталях типа Х18Н10 хром, никель, углерод и азот способствуют понижению температуры мартенситного превращения, которое вызывается охлаждением или пластической деформацией.

Влияние титана и ниобия может быть двояким. Находясь в твердом растворе, оба элемента повышают устойчивость аустенита в отношении мартенситного превращения. Если же титан и ниобий связаны в карбонитриды, то они могут несколько повышать температуру мартенситного превращения. Это происходит потому, что аустенит в этом случае обедняется углеродом и азотом и становится менее устойчивым. Углерод и азот являются сильными стабилизаторами аустенита.

Термическая обработка хромоникелевых аустенитных сталей

Для хромоникелевых аустенитных сталей возможны два вида термической обработки:

  • закалка и
  • стабилизирующий отжиг.

Параметры термической обработки отличаются для нестабилизированных сталей и сталей, стабилизированных титаном или ниобием.

Закалка является эффективным средством предупреждения межкристаллитной коррозии и придания стали оптимального сочетания механических и коррозионных свойства.

Стабилизирующий отжиг закаленной стали переводит карбиды хрома:

  • в неопасное для межкристаллитной коррозии состояние для нестабилизированных сталей;
  • в специальные карбиды для стабилизированных сталей.

Закалка аустенитных хромоникелевых сталей

В сталях без добавок титана и ниобия под закалкой понимают нагрев выше температуры растворения карбидов хрома и достаточно быстрое охлаждение, фиксирующее гомогенный гамма-раствор. Температура нагрева под закалку с увеличением содержания углерода возрастает. Поэтому низкоуглеродистые стали закаливаются с более низких температур, чем высокоуглеродистые. В целом интервал температуры нагрева составляет от 900 до 1100 ºС.

Длительность выдержки стали при температуре закалки довольно невелика. Например, для листового материала суммарное время нагрева и выдержки при нагреве до 1000-1050 ºС обычно выбирают из расчета 1-3 минуты на 1 мм толщины.

Охлаждение с температуры закалки должно быть быстрым. Для нестабилизированных сталей с содержанием углерода более 0,03 % применяют охлаждение в воде. Стали с меньшим содержанием углерода и при небольшом сечении изделия охлаждают на воздухе.

Нержавеющие стали AISI-304 -321 -316L: технический обзор

Свойства металлов

Красноломкость — свойство металлов давать трещины при горячей обработке давлением (ковка, штамповка, прокатка) в области температур красного или жёлтого каления (850-1150°C).
Хладноломкость — склонность металла растрескиваться и ломаться при холодной механической обработке.

Определение нержавеющей стали

Нержавеющая сталь (коррозионностойкие стали) — легированная сталь, устойчивая к коррозии в атмосфере и агрессивных средах.

Классификация

Нержавеющие стали делят на 3 группы:

1. Коррозионностойкие стали — от них требуется стойкость к коррозии в несложных промышленных и бытовых условиях (из них можно изготавливать детали оборудования для нефтегазовой, легкой, машиностроительной промышленности, хирургические инструменты, бытовую нержавеющую посуду и тару).

2. Жаростойкие стали — от них требуется жаростойкость, то есть стойкость к коррозии при высоких температурах в сильно агрессивных средах, например, на химических предприятиях.

3. Жаропрочные стали — от них требуется жаропрочность, то есть хорошая механическая прочность при высоких температурах.

По химическому составу нержавеющие стали делятся на 3 группы:

1. Хромистые

  • Мартенситные;
  • Полуферритные (мартенисто-ферритные);
  • Ферритные.

2. Хромоникелевые

  • Аустенитные;
  • Аустенитно-ферритные;
  • Аустенитно-мартенситные;
  • Аустенитно-карбидные.

3. Хромомарганцево-никелевые

Стали марки AISI-304 -321 -316L относятся к хромоникелевым сталям, аустенитному классу высоколегированных сталей, образующих при кристаллизации преимущественно однофазную аустенитную структуру γ-Fe c гранецентрированной кристаллической (ГЦК) решеткой, которая сохраняет форму при охлаждении материала до криогенных температур. Содержание другой фазы — высоколегированного феррита (δ-Fe с объёмно-центрированной кристаллической (ОЦК) решеткой) изменяется от 0 до 10%.

Такие стали содержат 18-25% Сг (хрома) обеспечивающего жаро- и коррозионную стойкость, а также 8-35% Ni (никеля), стабилизирующего аустенитную структуру и повышающего жаропрочность, увеличивая пластичность и технологичность сталей в широком интервале температур.

Это позволяет использовать аустенитные стали в качестве коррозионностойких, жаропрочных, жаростойких, криогенных конструкционных материалов в химических, теплоэнергетических и атомных установках, где они подвергаются совместному сочетанию воздействия напряжений, высоких температур и агрессивных сред.

Обозначения стандартных нержавеющих сталей по AISI включают в себя три цифры и следующие за ними в ряде случаев одну, две или более буквы. Первая цифра обозначения определяет класс стали. Так, обозначения аустенитных нержавеющих сталей начинаются с цифр 2ХХ и 3ХХ, в то время как ферритные и мартенситные стали определяются по классу 4ХХ.

Дополнительные буквы, следующие за цифрами, используемые для обозначения нержавеющих сталей по AISI означают:

xxxL Низкое содержание углерода <0,03%
xxxS Нормальное содержание углерода <0,08%
xxxN Добавлен азот
xxxLN Низкое содержание углерода <0,03% + добавлен азот
xxxF Повышенное содержание серы и фосфора
xxxSe Добавлен селен
xxxB Добавлен кремний
xxxH Расширенный интервал содержания углерода
xxxCu Добавлена медь

Основным преимуществом сталей аустенитного класса AISI-304 -321 -316L являются их высокие эксплуатационные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность. Поэтому аустенитные коррозионностойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения.

Теоретически изделия из аустенитных нержавеющих сталей при нормальных условиях — немагнитные, но после холодного деформирования (любой механической обработки) могут проявлять некоторые магнитные свойства (часть аустенита превращается в феррит).

Таблица стандартов

Европейская норма EN10088-2 Аналоги стали
UNS SIS BS JIS Япония ГОСТ Россия AISI США Германия
1.4301 S30400 2332/33 304S31 SUS304 08X18H10 304 X5CrNi1810
1.4404 S31603 2348 316S11 SUS316L 03X17H13M2 316L X2CrNiMo17-12-2
1.4541 S32100 2337 321S31 SUS321 08X18H10T 321 X6CrNiTi18 -10

Различия сталей AISI

AISI-304

Аустенитная, с низким содержанием углерода. Модификация стали AISI-304 имеет широкую сферу применения и большой спрос у потребителей, поскольку является универсальным продуктом. AISI-304 обладает лучшими (относительно других марок) показателями по свариваемости, сопротивлению коррозии и окислению. Сталь этой марки обладает отличными низкотемпературными свойствами и одновременно рекомендована к использованию при высоких температурах. Среди множества других сплавов ее также выделяют механические свойства, химический состав и относительно невысокая стоимость. AISI 304 обладает высокой пластичностью для таких операций механической обработки как прокат, волочение.

AISI-316L

Сталь аналогичная AISI-304 с очень низким содержанием углерода и добавлением молибдена около 2,5%. Стальной сплав AISI-316L представляет собой оптимизированный вариант версии AISI-304, который дополнительно обогащен молибденом. Для этого сплава характерно более высокое содержание никеля. Данная версия стали имеет в разы большую способность к сопротивлению коррозии в агрессивных средах. В условиях паров уксусной кислоты, едкого хлора или морской воды добавление молибдена позволяет стали приобрести устойчивость к различным видам коррозии, среди которых можно назвать, в том числе, питтинговую (точечную) и щелевую. Более низкая общая коррозионная устойчивость в относительно малоагрессивных средах позволяет показывать прекрасное сопротивление коррозии в загрязненном воздухе и в приморской зоне.

AISI-321

Хромоникелевая сталь с добавкой титана (Ti). Модификация стали AISI-321 обладает отличными характеристиками устойчивости к коррозии и высоким температурам, однако при этом она недостаточно сопротивляется воздействию серосодержащих сред. Данную сталь рекомендуется использовать при температурах от 600°С до 800°С. Стоит отметить, что срок ее службы может быть очень длительным. Сталь AISI321 не подвержена межкристаллитной коррозии, поскольку в ее составе есть титан, применяемый для придания сплавам высокой твердости. Особое внимание стоит обратить на то, что в сваренном состоянии сталь AISI-321 не должна применяться в чрезмерно кислых агрессивных средах. Сталь более устойчива к механическому воздействию в отличии от AISI-304 -316L.

Применение сталей AISI

AISI-304

Это наиболее распространенная в применении сталь. Она обладает высокой пластичностью, что позволяет широко использовать AISI-304 в штампованных изделиях с высоким уровнем вытяжки и сложным рельефом, например при изготовлении моек, раковин и тому подобных предметов быта. Благодаря низкому содержанию углерода сталь AISI-304 обладает улучшенными сварочными характеристиками.

Пищевая промышленность: изготовление различных емкостей, передающих устройств. Изготовление дымоходов, систем дымоудаления и вентиляции. Практически во всех молочных и пивоваренных производствах используется сталь AISI-304 в качестве основного материала для изготовления оборудования, инструмента и приборов.

Вторыми по значимости отраслями промышленности, которые без преувеличения не могут обойтись без стали AISI-304, можно назвать фармацевтическую и медицинскую. В этих отраслях AISI-304 применяют при производстве медицинского и фармакологического оборудования и инструмента, имплантатов и медицинской мебели.

Самый большой объем потребления стали AISI-304 приходится на нефтехимические и химические производства. Благодаря высокой сопротивляемости агрессивным средам трубы из AISI-304 в этих отраслях применяются повсеместно. Также, в нефтегазовой сфере большой объем потребления приходится на производство скважинных фильтров, плоских щелевых решеток, плоских щелевых сит, которые изготавливаются из профилированной нержавеющей проволоки.

AISI-316L

Из-за своего выдающегося сопротивления коррозии и окислению, выдающихся механических свойств и технологичности, AISI-316 применяется во многих секторах промышленности. Некоторые из них включают: баки и судна для хранения коррозионных жидкостей, специализированное промышленное оборудование в химическом, продовольственном, бумажно-целлюлозном, горнодобывающем, фармацевтическом и нефтехимическом секторах экономики, архитектурные конструкционные элементы, находящиеся в коррозионных средах.

AISI-321

Нержавеющая сталь AISI-321 применяется во многих областях производства.

Машиностроение и металлообработка: для изготовления деталей механизмов и машин.

Пищевая и химическая промышленность: для изготовления резервуаров и трубопроводов (труб и трубопроводной арматуры), контактирующих с кислыми и щелочными средами, в том числе, с продуктами питания.

Производство оборудования, работающего в диапазоне высоких температур: печной арматуры, теплообменников, корпусов тепловых и паровых котлов.

Нефтегазовая промышленность: для производства емкостей и цистерн высокой прочности, предназначенных для хранения веществ (сжатых и сжиженных газов) под давлением.

Монтаж сварных конструкций (опор, колонн, балок), взаимодействующих с агрессивными средами.

Значение химических элементов, присутствующих в нержавеющих сталях AISI

С

углерод

С увеличением содержания углерода в структуре стали увеличивается количество цементита — очень твердой и хрупкой фазы. Твердость цементита превышает твердость феррита примерно в 10 раз, поэтому прочность и твердость стали растут с повышением содержания углерода, а пластичность и вязкость, наоборот снижаются.

Si

кремний

Содержание кремния как технологической примеси обычно не превышает 0,37%. Кремний как технологическая примесь влияния на свойства стали не оказывает. В сталях, предназначенных для сварных конструкций, содержание кремния не должно превышать 0,12-0,25%.

Mn

марганец

Марганец вводят в стали как технологическую добавку для повышения степени их раскисления и устранения вредного влияния серы. Марганец считается технологической примесью, если его содержание не превышает 0,8%. Марганец как технологическая примесь существенного влияния на свойства стали не оказывает.

P

фосфор

Пределы содержания фосфора как технологической примеси составляют 0,025-0,045%. Фосфор, как и сера, относится к наиболее вредным примесям в сталях и сплавах. Увеличение его содержания, даже на доли процента, повышая прочность, одновременно повышает текучесть, хрупкость и порог хладноломкости, снижает пластичность и вязкость. Вредное влияние фосфора особенно сильно сказывается при повышенном содержании углерода.

S

сера

Вредная примесь. Повышение содержания серы существенно снижает механические и физико-химические свойства сталей, в частности, пластичность, ударную вязкость, сопротивление истиранию и коррозионную стойкость. При горячем деформировании сталей и сплавов большое содержание серы ведет к красноломкости. Кроме того, повышенное содержание серы снижает свариваемость готовых изделий.

N

азот

Азот увеличивает прочность и твердость стали, но снижает пластичность. Повышенное количество азота вызывает деформационное старение. Старение медленно развивается при комнатной температуре и ускоряется при нагреве до 250°С.

Cr

хром

Основной легирующий элемент, обеспечивающий коррозионную стойкость стали в любых средах, в том числе окислительных. Хром образует на своей поверхности защитную оксидную пленку и благодаря этому приобретает высокую химическую стойкость. При добавлении хрома в сталь с концентрацией не менее 11,7 % он прочно соединяется с железом и придает ему антикоррозионные свойства, причем эти свойства увеличиваются пропорционально содержанию хрома.

Ni

никель

В сталях является элементом, способствующим образованию и сохранению аустенита. Никель повышает упрочняемость сталей. В комбинации с хромом и молибденом никель еще больше повышает способность сталей к термическому упрочнению, способствует повышению вязкости и усталостной прочности сталей. Растворяясь в феррите, никель повышает его вязкость. Никель увеличивает сопротивление коррозии хромоникелевых аустенитных сталей в неокисляющих кислотных растворах.

Mo

молибден

Молибден повышает коррозионную стойкость сталей и поэтому широко применяется в высоколегированных ферритных нержавеющих сталях и в хромоникелевых аустенитных нержавеющих сталях. Высокое содержание молибдена снижает склонность нержавеющей стали к точечной (питтинговой) коррозии. Молибден оказывает очень сильное упрочнение твердого раствора аустенитных сталей, которые применяются при повышенных температурах.

Ti

титан

Титан повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Таблица параметров химических элементов

Марка стали AISIХимический состав, %
CSiMnPSNCrMoNiTi
304<0,07<1,00<2,00<0,045<0,015<0,01117,00-19,508,00-10,50
316 L<0,030<1,00<2,00<0,045<0,015<0,01116,50-18,502,00-2,5010,00-13,00
321<0,08<1,00<2,00<0,045<0,01517,00-19,009,00-12,00<0,70

Физические параметры сталей AISI

СвойстваEдиница измеренияAISI 304AISI 316LAISI 321
Предел текучести, RpN/mm²190200190
Временное сопротивление разрыву, RmN/mm²500-700500-700500-700
Относительное удлинение, А100%454045
ТвердостьHRC215215215
Плотностькг/м³7,938,07,9
Температура плавления°С1 4201 4401 420
Удельная теплоемкостьJ/kg∙K500500500
Тепловое расширениеW/m∙K151515
Электрическое сопротивлениеОм0,730,750,73
Магнитная проницаемостьkA/m1,0151,0051,01
Модуль упругости, ЕMPa200200200

Стабилизирующий отжиг аустенитных хромоникелевых сталей

В нестабилизированных сталях отжиг проводят в интервале температур между температурой нагрева под закалку и максимальной температуры проявления межкристаллитной коррозии. Величина этого интервала в первую очередь зависит от содержания хрома в стали и увеличивается с повышением его концентрации.

В стабилизированных сталях отжиг проводят для перевода углерода из карбидов хрома в специальные карбиды титана и ниобия. При этом освобождающийся хром идет на повышение коррозионной стойкости стали. Температура отжига обычно составляет 850-950 ºС.

Марки стали аустенитного ферритного класса

Нержавеющая сталь представляет собой сложный многокомпонентный сплав на основе железа. В его состав входят углерод и другие элементы, повышающие устойчивость к агрессивной среде. Одним из основных легирующих компонентов является хром, содержание которого в сплаве должно быть не менее 12%. Присутствие хрома обеспечивает:

  • повышение прочности сплава;
  • хорошую свариваемость;
  • продление срока эксплуатации;
  • эстетичный вид.

Стали с добавкой хрома хорошо поддаются холодной механической обработке. На поверхности металла образуется оксидная пленка, которая защищает детали от коррозии. Кроме хрома в состав стали включают титан, никель, кобальт, ниобий, титан и молибден. Нержавеющие стали с разным качественным и количественным составом отличаются технологическими и эксплуатационными свойствами и применяются в разных отраслях.

Стойкость аустенитных хромоникелевых сталей к кислотам

Способность к пассивации обеспечивает хромоникелевым аустенитным сталям достаточно высокую стойкость в азотной кислоте. Стали 12Х18Н10Т, 12Х18Н12Б и 02Х18Н11 имеют первый балл стойкости:

  • в 65 %-ной азотной кислоте при температуре до 85 ºС;
  • в 80 %-ной азотной кислоте при температуре до 65 ºС;
  • 100 %-ной серной кислоте при температуре до 65 ºС;
  • в смесях азотной и серной кислот: (25 % + 70 %) и 10 % + 60 %) при температуре до 70 ºС;
  • в 40 %-ной фосфорной кислоте при 100 ºС.

Аустенитные хромоникелевые стали имеют также высокую стойкость к растворах органических кислот — уксусной, лимонной и муравьиной, а также в щелочах КОН и NaOH.

Что такое аустенитные стали

Легированные стали с внедрением в структуру никеля 8%-10% приобретают другие свойства. Никель способен сохранять аустенитную фазу при комнатной температуре, вплоть до плавления. В кристаллической решетке металла происходит замещение атомов железа на никель. Форма имеет структуру в виде куба.

Что обеспечивает прочное соединения и придает различные спецефические свойства. Обладают такие металлы коррозионностойкостью, хорошей пластичностью. Такую столь используют в пищевой промышленности, машиностроении, нефтеперерабатывающие предприятия. К примеру несколько видов сталей 08Х18Н10Т, AISI 306, AISI 316.

При температуре свыше 570 градусов происходит распад аустенитной фазы на феррит и ледебурит. В чистом железе наблюдается аустенитное состояние от 910 до 1401 градуса. В углеродистых сталях твердый раствор ( аустенит) существует чуть ниже 727 Цельсия. Когда углерод замещает атомы железа. Аустенитная структура может существовать как и во всей кристаллической решетке так и в верхних слоях металла.

Имеются и другие сплавы с повышенной стойкостью к коррозии при высоких температурах. Их еще называют жаростойкие с умеренным рабочим давлением и жаропрочные с нагрузкой. Эксплуатация таких сталей проходит при температуре до 1100 градусов. К таким сталям относятся марки 08Х16Н9М2, 10Х14Н16Б, 10Х14Н14В2БР. Применяют в турбинах выхлопной системы, Производство клапанов впускных и выпускных, в головках двигателя. Где происходит динамическая нагрузка при высокой температуре сгорания топлива.

А ток же хладостойкие сплавы используемые в криогенных установках по сжижению газов, заморозки различных клеток и тому подобное. Диапазон работы такой стали очень большой. Но при комнатной температуре его свойства ослабевают. Главная особенность коррозионостойкость к жидкому азоту и другим веществам. Есть несколько типов сталей с такими свойствами 03Х20Н16АГ6, 7Х13Н4АГ2. Все известные стали придерживаются норм по ГОСТ 5632-72.

Все стали имеющие аустенитную структуру решетки относятся к классу коррозиестойких при различных температурах эксплуатации в широком диапазоне. Такие стали трудно обрабатываются механически. Плохая теплопроводность затрудняет использование горячей ковки. И не все стали нержавеющие можно закалять. Приводит к потери своих свойств. Большая часть металлов имеет хорошую вязкость. Режущая часть инструмента подвержена коррозионной диффузии. Налипанию материла на кончик резца. Сам материал при незначительной деформации уплотняется что приводит к изменению физических свойств. Это обосновывает затраты на производство таких сталей и ее стоимость.

  • Кузнечная сварка дамасской стали Даже не смотря на то, что кузнечная сварка давно уже уступила место в промышленности сварке дуговой, еще существуют области, в которых она по прежнему востребована. В частности, мастера-ножеделы применяют ее…
  • Электроды ниат-5 Сварочные электроды на основе никеля хрома молибдена и азота. Важные составляющие стержня. Ограничение по сварке в потолочном режиме и на спуск. При концентрации азота в металле шва образуются поры. Маркой…
  • Сварочные электроды нч-2 Электроды для чугуна НЧ-2 говорят за себя. Наплавка на чугун второго типа. Применяется для ковкого графитового, высокопрочного чугуна. В основ ном для устранения дефектов литья трещин. В составе проволоки электрода…
  • Электроды цл-9 Универсальные электроды для сварки нержавейки и разнородны сталей представлены маркой ЦЛ-9. Первое предназначение для сваривания двухслойной стали со стороны поверхности подверженной к агрессивным средам. Иными словами шов стойко переносит воздействие…
  • Технология сварки алюминия со сталью Надежный способ сваривание железа и алюминия через биметалл. Биметалл-это композиционный материал состоящий из нескольких слоев разнородных металлов. Способы его изготовления путем одновременного проката через валы. Происходит диффузия молекул между слоями.…
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]