Дефектоскопия трубопроводов — ультразвуковой способ контроля труб, сварных швов и соединений

Ультразвуковая дефектоскопия сварных швов успешно используется для выявления изъянов сварных соединений, начиная с 1930 года. За столь длительный период времени учеными совместно с практикующими специалистами были разработаны разные методики эхолокации. С их помощью несложно выявить нарушения в целостности диффузного слоя, отклонения в химическом составе наплавки, обнаружения шлаков, примеси оксидов. Ультразвуковая диагностика (УЗД) по точности не уступает рентгену или радиолокации. Прибор выявляет даже самые мелкие дефекты, отрицательно влияющие на прочность стыка.

Среди используемых сегодня неразрушающих методов определения дефектов сварного шва УЗД стал наиболее эффективным и одним из самых доступных, которые поставлены на поток. По результатам проверки ведется специальный журнал в разрезе по каждому сварщику. Область применения контроля при помощи УЗД ограничивается исключительно геометрическими данными заготовок. Диагностике подвергаются сварочные швы трубопроводов, которые испытывают высокое давление.

Что такое УЗК сварных швов трубопроводов

В основу метода положены физические возможности ультразвука. Его особенность заключается в том, что он отражается от границы разделения разных по своему составу сред. По своей природе ультразвук является упругим механическим колебанием, который генерируется различными методами. Его звуковой диапазон находится вне пределов доступных для человеческого уха. Излучатели не оказывают вредного воздействия на организм человека.

Ультразвуковая диагностика выполняется в широком диапазоне частот: от 20 кГц до 500 МГц. Волны, направленные от излучателя в какую-либо сторону, распространяются с одинаковой скоростью при условии однородности среды. При изменении среды они преломляются или отражаются, подобно лучу света. Скорость продольной волны практически в два раза больше, чем поперечной.

Чувствительность приборов зависит от его конструктивных особенностей и сильно варьируется. Большой ассортимент объясняется тем, что генерируемые волны могут отражаться только от тех дефектов, которые равны длине волны или больше ее. Ультразвук отлично определяет мелкие дефекты сварного стыка, а именно: пустоты, раковины, разного рода включения, шлаки, зерна и прочие примеси, понижающие прочность шва.

Теория технологии

В основе данной технологии находятся особые свойства акустической волны, имеющей частоту колебания выше 20 кГц. Человеческое ухо не воспринимает ультразвук, но он без труда проникает в структуру металла. Длина ультразвуковой волны указывает на расстояние между его частицами, находящимися в равновесии. На этот параметр влияет скорость прохождения волны через сварной шов, а также частота её колебаний. Исследования показали, что в продольном направлении ультразвуковые волны двигаются значительно быстрее, чем в поперечном. Изменения скорости движения указывает на наличие разнообразных дефектов, так как волна начинает отражаться от стенок раковин, трещин и пустот. Кроме того, меняется не только скорость, но и амплитуда отраженной волны, позволяющая определить размер дефектов. Это отражается на мониторе прибора, который применяется при ультразвуковом обследовании сварных соединений. Опытный специалист способен по этим параметрам быстро выявить, какие именно дефекты возникают на пути движения акустической волны.

Преимущества и недостатки УЗД дефектоскопии

Важные достоинства:

  • неразрушающий метод контроля качества сварных соединений. Нет потребности в том, чтобы вырезать часть металлоконструкции и везти ее в лабораторию для проведения исследований;
  • дефектоскопы универсальны. Они подходят для использования в полевых условиях или в оборудованной лаборатории;
  • метод одинаково хорошо подходит для определения дефектов как однородных, так и разнородных соединений;
  • не требуется много времени для того, чтобы определить состояние шва. Результат готов буквально сразу;
  • приборы абсолютно безопасны в использовании. Они не оказывают вредного влияния на организм человека;
  • диагностике поддаются большинство видов дефектов. Очень высока достоверность полученного результата.

Недостатки оборудования связаны с ограничениями его применения и необходимостью подготовки специалистов для эксплуатации техники. Дело в том, что ультразвуковой сигнал затухает в крупнозернистых структурах. Нужно использовать специальные преобразователи с конкретным радиусом кривизны подошвы.

Общие сведения

Диагностика трубопроводов – это несколько технологий, которые делятся на две основные группы: разрушающие и неразрушающие. При использовании первой производится разрушение стыка двух труб, после которого обследуются кромки соединенных участков на предмет качества и обнаружения дефектов. Такой вариант возможен, если проводится ремонт трубопровода (полная его остановка).

Вторая технология не требует разрушения, что дает возможность проводить контроль на действующих участках. Ее используют сегодня повсеместно, особенно в сфере нефте- и газотранспортировки, плюс ЖКХ. Такая дефектоскопия, именно так называют неразрушающий контроль, проводится для определения дефектов насосных станций, резервуаров разного назначения, на заводах сжиженного газа и прочих предприятиях.

Знакомо ли вам данное понятие?

Да, я неоднократно проводил дефектоскопию металлических труб у себя дома.

100%

Нет, впервые слышу.

0%

Проголосовало: 1

Виды и методы ультразвукового контроля сварных соединений

Для диагностирования стыков ультразвуком используют разные методики:

  • прямой луч;
  • отражение однократное;
  • отражение двукратное;
  • отражение многократное.

Касательно направления луча, то его подбирают по нормали, где опасность дефектов особенно высока. Наиболее распространенные варианты измерений:

  • эхо-импульсная диагностика. Прибор генерирует волну и настроен на прием оклика. Если его нет, то это значит, что дефекты не обнаружены. Если же результат обратный, то в исследуемой массе есть разделение сред;
  • эхо-зеркальный. Подразумевает использование генерирующего волну датчика и приемника-улавливателя. Размещение приборов – под углом к оси стыка. Приемник ловит все ультразвуковые излучения и по ним диагностируются трещины или их отсутствие;
  • теневая диагностика. Волны проходят по всей площади стыка. Приемник располагается позади сварного соединения. В случае, когда излучение отражается и не попадает на приемник, фиксируется теневой участок;
  • зеркально-теневая дефектоскопия. Технология сочетает теневой и зеркальный методы исследований. Используется комплект датчиков, которые улавливают отраженные звуковые колебания. Если идет чистая волна, то это значит, что шов не имеет дефектов;
  • дельта-метод подразумевает воздействие на объект направленным лучом. По отражению звукового сигнала определяются изъяны стыка. Когда возникает необходимость в получении точных результатов, то можно воспользоваться к тонкой настройке диагностического оборудования.

На практике чаще всего определяют проблемные участки сварки при помощи эхо-импульсной и теневой диагностики. Метод неразрушающего контроля дает возможность выявить бракованный отрезок, который со временем может привести к разгерметизации сварочного шва. Это отличный метод профилактики аварийных ситуаций. Особенное, если речь идет о магистралях высокого давления.

Подробно о способах

Дефектоскопия трубопроводов – процедура, которую обязательно нужно проводить после монтажа магистрали. Это позволит избежать ее возможной деструкции в процессе эксплуатации. Дефектоскопия дает возможность выявить любые дефекты в трубах. Принцип работы сканеров, которые используют в процессе диагностики, отличается. Потому стоит сначала более детально изучить каждый из них.

Вихретоковые дефектоскопы

Принцип работы прибора основан на создании вихревых токов, которые направляются от внешней плоскости трубопровода к внутренней через сварной шов. Ток, проходящий через однородную структуру металла, не изменяет своих параметров. Если внутри шва присутствуют дефекты, то есть его однородность нарушена, возрастает сопротивление, которое снижает силу вихревого тока.

Дефектоскоп это снижение фиксирует и расшифровывает, определяя качество металла шва, дефекты и неоднородность.

Плюсы метода:

  • высокая скорость проведения работ;
  • низкая погрешность результата;
  • невысокая стоимость проводимых операций.

Минусы:

  • толщина исследуемого шва – не больше 2 мм;
  • надежность прибора низкая.


Принцип действия вихретокового дефектоскопа

Ультразвуковые дефектоскопы

Ультразвуковая дефектоскопия трубопроводов считается самой используемой технологией. Она проводится с применением пяти разных способов обнаружения дефектов:

  1. Эхо-импульсный метод.
  2. Теневой.
  3. Эхо-зеркальный.
  4. Зеркально-теневой.
  5. Дельта метод.

В первом случае ультразвук отправляется прибором через слой сварного шва. Если внутри металла есть дефекты, происходит отражение импульса в виде эха. То есть, ультразвук возвращается обратно. Прибор фиксирует время возврата, которое определяет глубину расположения раковины или поры.

Во втором случае используют не только прибор, отправляющий ультразвуковой сигнал, но и отражатель. Последний устанавливают на противоположной стороне сварного стыка трубопровода. Если известно расстояние между двумя частями прибора и время прохождения звука, то при изменении второго параметра (увеличения) можно определить, где располагается дефект, какого он размера.

Третий вариант ультразвуковой дефектоскопии напоминает первый. Только к дефектоскопу прилагается отражатель, который устанавливается на верхней поверхности шва, как и излучатель сигнала. Оба элемента располагаются параллельно друг к другу. Если на приемник пришел сигнал, значит, внутри металла есть дефект, который отразил луч.

Следующий метод напоминает предыдущий. Отличие – сигнализатор и отражатель располагаются друг к другу под углом 90°.

Пятый способ ультразвуковой дефектоскопии используется редко. Причины – сложность настройки оборудования, длительная расшифровка полученных результатов. В его основе лежит перенаправление ультразвуковой энергии, направление которой меняет дефект сварного шва.

При этом подается луч поперечный, трансформирующийся в продольный. Частично происходит зеркальное отражение. Отражатель ловит именно продольный сигнал, от силы которого зависит величина изъяна в стали.

Магнитно-порошковые дефектоскопы

В основе этой дефектоскопии лежит свойство стали менять магнитное поле около участков, отличающихся от основной части низкой плотностью. Здесь оно становится слабее. У трещин, раковин или пор внутри металла плотность низкая за счет воздуха, находящегося в них.

Для обнаружения дефектов в трубопроводах применяется магнитный порошок, он же ферромагнитное вещество. Его засыпают на сварной шов, куда подают электрический ток с помощью двух катушек – намагничивающей и дополнительной. Электричество внутри металла образует магнитное поле. Если присутствуют дефекты, вокруг них оно ослабевает. Это причина притягивания магнитного порошка.

Если в процессе проведения исследования на поверхности собирается порошок, это говорит об одном – на этом участке обнаружен изъян сварного шва. Внутритрубная дефектоскопия магистральных трубопроводов проводится именно этим способом.

Существует два варианта проведения проверки – сухой и мокрый. В первом случае используется магнитный порошок. Во втором суспензия этого порошка – водный раствор.

Чтобы качество проводимой проверки с помощью второго варианта было высокое, необходимо исследуемую поверхность дополнительно обработать промежуточным материалом – техническим маслом, солидолом и прочими.

К преимуществам магнитно-порошковой дефектоскопии можно отнести:

  • наглядный результат, видимый без дополнительных приборов;
  • низкую цену.

Недостатки:

  • небольшая глубина исследования – до 1,5 мм;
  • использовать можно только на трубопроводах, собранных из ферромагнитных сплавов;
  • сложность размагничивания крупных труб.

Капиллярные дефектоскопы

Эта технология используется для выявления мелких поверхностных трещин, которые не видны невооруженным глазом. Они являются подтверждением того, что металл в стыке двух участков трубопровода неоднороден.

Процесс дефектоскопии трубопровода проводится так:

  1. На сварной шов наносится индикаторное вещество – пенетрант. Оно имеет свойство проникать в мельчайшие дефекты под действием капиллярных сил. Отсюда и название метода.
  2. Обработанную поверхность очищают от нанесенного вещества, которое уже проникло вглубь металла.
  3. Поверх наносят проявитель в виде порошка белого цвета. Это может быть тальк, окись магния или другое вещество. Оно обладает важным свойством – адсорбцией. То есть, может впитывать в себя другие вещества.
  4. Проявитель начинает вытягивать из трещин пенетрант, который образует на поверхности белого порошка рисунок изъянов стыка. При этом индикатор хорошо виден в лучах ультрафиолета.

Эту разновидность дефектоскопии трубопроводов обычно используют, если необходимо обнаружить поверхностные изъяны металла на стыке. Для глубоких дефектов он бесполезен. И это минус. Главное достоинство – простота проведения.

Технология проведения ультразвукового контроля: область использования

УЗК используется для проверки сварных швов цветных металлов, стали углеродистой и легированной, чугуна. При помощи диагностического оборудования выявляется:

  • пористость, образованную атмосферными газами;
  • ржавчину внутри застывшего расплава;
  • не проваренные места;
  • нарушение геометрии на отдельных участках;
  • трещины;
  • включения инородных тел и прочие отличия в структуре;
  • расслоения;
  • складки, образованные наплавом;
  • дефекты сквозного характера;
  • внестыковое провисание диффузного слоя.

При помощи УЗК контролируются соединения самых разных конструкционных элементов:

  • фланцевые, трубные и прочие кольцевые соединения;
  • тавровые швы;
  • стыки, независимо от их конфигурации (в т.ч. и сложные формы);
  • швы поперечные и продольные, которые испытывают высокое давление или нагрузки разнонаправленного характера.

При прохождении через металлическую решетку звуковые волны рассеиваются. Это их свойство накладывает определенные ограничения на область использования оборудования. Все они изложены в инструкции производителя, которая прилагается к аппарату.

Ограничения геометрического характера:

  • толщина проверяемых заготовок не может быть больше 50-80 см, или меньше 8-10 мм;
  • расстояние до объекта контроля: минимальное – 3 мм, максимальное – 10 метров.

Методика отлично зарекомендовала себя в строительстве, машиностроении; на предприятиях, имеющих магистрали высокого давления.

Оборудование для дефектоскопии трубопроводов

Современные технологии дефектоскопии – это, в основном, внутритрубная диагностика. Для этого используется специальное оборудование, которое называется внутритрубные дефектоскопы. Они помещаются внутрь трубопровода и доводятся до требуемых участков, где самостоятельно проводят контроль. Многие из них снабжены камерами: фото и видео.

С их помощью определяют:

  • форму поперечного сечения трубы;
  • наличие коррозии;
  • вмятины;
  • произошло ли утончение металла и прочие изъяны.

Некоторые аппараты двигаются по трубопроводу за счет перемещаемого потока. Некоторые за счет установленного электродвигателя. Внутри есть датчики, функция которых – накапливать и сохранять полученную информацию.

Внутритрубная дефектоскопия магистральных трубопроводов – это технология, которая позволяет не использовать аппаратуру, ведущую систематические исследования. При этом скорость контроля выше всех известных методов дефектоскопии. Но используется этот вариант только в трубопроводах большого диаметра.

Исследования трубопроводов этим методом проводится в несколько этапов:

  • подготовка, она же диагностика;
  • очистительные мероприятия внутреннего пространства трубопровода;
  • калибровка – это обеспечение внутренней проходимости труб;
  • использование профилемера – так обследуются изгибы, повороты и прочие неровности;
  • применение ультразвуковой дефектоскопии и магнитной;
  • определение безопасности работы трубопровода.

Устройство ультразвукового дефектоскопа

Каждое устройство имеет излучатель, усилитель и приемник ультразвука. Основное отличие разных моделей заключается в типе генераторе. Наибольшее распространение получили пьезоэлементы. Датчик отправляет сигналы через равные промежутки времени.

Паузы между импульсами составляют несколько микросекунд. Их длительность задается пользователем с учетом искомых дефектов, плотности и структуры металла. По отражению выявляется брак и основные его параметры: размер и глубина местонахождения. Излучатель размещен в динамичном щупе, который передвигается по исследуемым швам.

Точность работы аппарата зависит от чувствительности приемника, который улавливает отраженную волну. Пользователю важно учитывать тот факт, что на границы сред волна меняет направление. Легче обстоят дела с определением теневых участков – в этих местах волна отражается. Прибор ловит звуковой сигнал, преобразует его в электричество и показывает на осциллографе.

Как проводится ультразвуковая дефектоскопия?

Этапы проведения теневого метода ультразвукового контроля сварных швов:

  • зачистка сварного шва и всех участков, прилегающих к нему на ширину 50-70 мм с каждой стороны;
  • нанесение на шов солидола, глицерина или любого другого технического масла;
  • настройка дефектоскопа и установка излучателя с одной стороны шва;
  • перемещение вдоль сварного стыка приемника с поворотами вокруг своей оси на 10-15°;
  • отслеживание появления на мониторе сигнала с максимальной амплитудой;
  • при обнаружении дефекта выполняется запись его точных координат в специальном журнале.

Критические углы

При выполнении ультразвукового контроля оператору нужно выбрать тип преобразователя, выполнить калибровку и настройку прибора на предполагаемые дефекты объекта. Критические углы падения (продольные и поперечные) необходимо учитывать в том случае, когда ультразвук проходит через твердые поверхности материалов.

Первый критический угол – это наименьший угол падения продольной волны, при котором преломленный луч не пересекает границу второй твердой среды. Например, для границы оргстекло-сталь он равен 27,5º.

Рекомендуем к прочтению Как разделывать металлические кромки под сварку

Вторым критическим углом считают наименьший угол падения продольного луча, при котором преломление не проникает через границу во вторую твердую среду и при этом не обнаруживаются внутренние повреждения. Для оргстекла-стали он составляет 57,5º.

Третий критический угол – наименьший угол падения поперечного луча, при котором отсутствует отраженная продольная волна. Луч идет по поверхности объекта, не распознавая дефектов внутри него. Для пересечения границы сталь-воздух угол равен 33,3º.

История

  • Жак и Пьер Кюри в 1880—1881 годах обнаружили обратимый пьезоэлектрический эффект, что позволило использовать кварц как преобразователь электрических колебаний в звуковые
  • Первый дефектоскоп для обнаружения повреждений в электроцепи был разработан Дмитрием Александровичем Лачиновым в конце 1880-х годов — Дефектоскоп Лачинова
  • Лорд Рэлей в 1885—1910 годах разработал теорию распространения звука в твердых веществах
  • Эхо-импульсный способ впервые применили Лангвэн и Шиловски с пьезоэлектрическими преобразователями в водной среде в 1915—1917 гг
  • В 1922 году запатентован магнитный метод обнаружения дефектов артиллерийских стволов с помощью магнитного порошка, открытый Уильямом Э. Хоуком во время Первой мировой войны
  • Первые дефектоскопы, работающие на непрерывном звуке, создали в 1928 С. Я. Соколов и в 1931 г. Мюльхойзер
  • 1937—1938 год — первая в мире установка, использующая переменный ток для контроля конструкций железной дороги и колесных пар (компания MAGNAFLUX, США)
  • Эхо-импульсные дефектоскопы (принцип действия и прибор) создали впервые в 1939—1942 г. Файрстон в США, Спрулс в Великобритании и Крузе в Германии
  • Первые эхо-импульсные дефектоскопы были выпущены в 1943 г. почти одновременно (Данберри, США) и «Кельвин энд Хьюз лтд.» (Лондон)

Магнитно-порошковые дефектоскопы

Дефектоскоп позволяет контролировать различные по форме детали, сварные швы, внутренние поверхности отверстий путём намагничивания отдельных контролируемых участков или изделия в целом циркулярным или продольным полем, создаваемым с помощью набора намагничивающих устройств, питаемых импульсным или постоянным током, или с помощью постоянных магнитов. Принцип действия основан на создании поля рассеяния над дефектами контролируемой детали с последующим выявлением их магнитной суспензией. Наибольшая плотность магнитных силовых линий поля рассеяния наблюдается непосредственно над трещиной (или над другой несплошностью) и уменьшается с удалением от неё. Для обнаружения несплошности на поверхность детали наносят магнитный порошок, взвешенный в воздухе (сухим способом) или в жидкости (мокрым способом). На частицу в поле рассеяния будут действовать силы: магнитного поля, направленная в область наибольшей плотности магнитных силовых линий, то есть к месту расположения трещины; тяжести; выталкивающего действия жидкости; трения; силы электростатического и магнитного взаимодействия, возникающие между частицами.

В магнитном поле частицы намагничиваются и соединяются в цепочки. Под действием результирующей силы частицы притягиваются к трещине и накапливаются над ней, образуя скопление порошка. Ширина полоски (валика) из осевшего порошка значительно больше ширины раскрытия трещины. По этому осаждению — индикаторному рисунку определяют наличие дефектов.

Радиационный метод

Для контроля качества сварки используют радиационные методы и устройства. По сути это тот же рентгеновский аппарат, используемый в больницах, или прибор с источником гамма-излучения, приспособленный для облучения сварных соединений.

Он основан на способности этих лучей, проникать через любые материалы. Интенсивность проникновения зависит от вида исследуемых веществ. Благодаря этому на фотопленке, стоящей за исследуемым изделием, остается изображение, характеризующее состояние данного материала.

Все дефекты сварки в виде неоднородностей выявляются на пленке. Метод контроля очень точный, но дорогой и вредный для людей, требует подготовительных работ по установке защитных экранов и проведения организационных мероприятий.

Разновидности методов МК

Чтобы выявлять и фиксировать потоки рассеяния, указывающие на присутствие деформаций и повреждений, применяют несколько методов МК, различающихся в соответствии с ГОСТ 24450-80 по способам получения исходных данных:

  1. Магнитопорошковый – наиболее распространенный и востребованный метод. Отличающийся простотой применения, высокой сенсетивностью и универсальностью, он используется для обнаружения поверхностных и расположенных на глубине до 2 мм деформаций с помощью магнитного порошка в качестве индикатора
  2. Индукционный – основан на применении индукционных преобразователей (катушек), улавливающих локальные потоки возмущения поля, образующиеся над повреждениями намагниченного объекта контроля
  3. Магниторезисторный – использует магниторезистивные преобразователи для выявления и регистрации потоков рассеивания над деформациями намагниченного объекта контроля
  4. Магнитографический – использование записи магнитного поля исследуемого объекта на соответствующем носителе. Воспроизведение полученной сигналограммы анализируется для выявления дефектов
  5. Пондеромоторный – построен на пондеромоторном взаимодействии фиксируемого магнитного поля исследуемого объекта и магнитного поля постоянного магнита, электромагнита или рамки с током
  6. Феррозондовый – использование феррозондовых преобразователей для обнаружения и регистрации рассеяния магнитных полей сварочных швов и прочих исследуемых объектов
  7. Метод эффекта Холла – применение одноименных преобразователей для фиксации локальных возмущений полей над объектами контроля
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]