Специфика обработки стали 40Х на токарном станке


Сталь после закалки: структура и свойства

Сталь в обычном виде – довольно мягкий и податливый к обработке металл. Особая прочность некоторым маркам (это так называемые стали обыкновенного качества, производимые согласно требованиям ГОСТ 380) и не требуется: тех показателей, что были получены после выплавки, вполне хватает, например, канализационным люкам или оградительным решёткам. Но есть категории сталей – конструкционные и инструментальные, которым изначальных прочностных показателей мало. Их надлежит подвергать термической обработке. Основным её видом считается закалка.
Микроструктура стали 45 после отжига и закалки

Закалка: сущность операции

Как известно, любая сталь представляет собой твёрдый раствор углерода в основной структуре α-железа. При этом марка определяет процентное содержание углерода (например, марка «сталь 65» означает, что в её составе содержится 0,65% С, сталь У13 содержит около 1,3% С, и так далее). Однако этот элемент – довольно химически активный, поэтому в процессе выплавки (при 1600…2000 °С) он активно связывается железом, образуя в результате цементит Fe3C. Всё остальное представляет собой феррит – достаточно мягкую структурную составляющую. Большое количество феррита в малоуглеродистых сталях обуславливает их повышенную пластичность, причём даже в холодном состоянии. Это не касается сталей:

  1. легированных (они производятся согласно требованиям ГОСТ 4543);
  2. подшипниковых по ГОСТ 801;
  3. рессорно-пружинных по ГОСТ 2052 и ГОСТ 14959;
  4. всех типов инструментальных, как легированных, так и нелегированных.

Чтобы понять эффективность закалки, необходимо обратиться к структуре стали после выплавки и последующей горячей прокатки на необходимый профиль – полосу, пруток или специальный профиль (уголок, швеллер и т.п.).

Любая сталь имеет кристаллическую структуру, которую составляет бесконечное множество кристаллов. Если лить сталь с последующим охлаждением расплава, то эти кристаллы превращаются в многогранные образования, называемые зёрнами. Поскольку при этом происходит активное насыщение кислородом, между смежными кристаллами возникают пустоты, которые в процессе охлаждения слитка постепенно заполняются серой, фосфором и прочими легкоплавкими неметаллическими включениями. Это не только снижает пластичность (фосфор и сера – весьма хрупкие химические элементы), но и способствует появлению весьма грубых скоплений зёрен, что делает металл неравномерным по своей плотности. Обрабатывать такие изделия невозможно – слиток начнёт раскалываться. Поэтому сразу после выплавки выполняется прокатка, в ходе которой исходные дефекты залечиваются, и структура становится более однородной. Соответственно, увеличивается плотность, а также исчезают поверхностные трещины.

Температура заготовки в зависимости от цвета при нагреве

Пластическая деформация положительно влияет только на макроструктуру. За изменение микроструктуры отвечает закалка – совокупность технологических методов термической обработки, суть которых состоит в увеличении прочностных показателей стали. Смысл закалки заключается в том, чтобы зафиксировать ряд высокотемпературных составляющих микроструктуры (придающих стали стойкость) для обычных условий эксплуатации изделий. Соответственно, сталь, не изменяя своего химического состава, резко повысит уровень своих некоторых механических характеристик:

  1. предела временного сопротивления σв, МПа;
  2. предела текучести σт, МПа;
  3. предела усталости σи, МПа;
  4. твёрдости по Бринеллю HB или Роквеллу НRC.

При этом некоторые показатели – в частности, ударная вязкость, относительное удлинение, – после закалки становятся ниже. Если это критично с точки зрения последующей эксплуатационной стойкости детали (а в большинстве случаев так и происходит), то правильно после её закалки выполнить ряд дополнительных операций: отпуск, старение и др.

Нормативная документация

ГОСТ 82-70.Прокат стальной горячекатанный широкополосный универсальный.Сталь 40Х.
ГОСТ 103-76.Полоса стальная горячекатанная.Сортамент.Сталь 40Х.

ГОСТ 1051-73.Прокат калиброванный.Общие технические условия.Сталь 40Х.

ГОСТ 1133-71.Сталь кованая круглая и квадратная.Сортамент.Сталь 40Х.

ГОСТ 1577-93 Прокат толстолистовой и широкополосный из конструкционной качественной стали.Технические условия. Сталь 40Х.

ГОСТ 2590-88.Прокат стальной горячекатанный круглый.Сортамент.Сталь 40Х.

ГОСТ 2591-88.Прокат стальной горячекатанный квадратный.Сортамент.Сталь 40Х.

ГОСТ 2879-88.Прокат стальной горячекатанный шестигранный.Сортамент.Сталь 40Х.

ГОСТ 7417-75.Сталь калиброванная круглая.Сортамент.Сталь 40Х.

ГОСТ 8479-70. Поковки из конструкционной углеродистой и легированной стали. Общие технические условия.Сталь 40Х.

ГОСТ 8559-57.Сталь калиброванная квадратная.Сортамент.Сталь 40Х.

ГОСТ 8560-78.Прокат калиброванный шестигранный.Сортамент.Сталь 40Х.

ГОСТ 10702-78. Прокат из качественной конструкционной углеродистой и легированной стали для холодного выдавливания и высадки. Технические условия. Сталь 40Х.

ГОСТ 13663-86 .Трубы стальные профильные.Технические требования.Сталь 40Х.

ГОСТ 19903-74. Прокат листовой горячекатаный. Сортамент. Сталь 40Х.

ГОСТ 4543-71

При производстве стали изготовители руководствуются нормами ГОСТ 4543-71. Он определяет технические условия на прокат из легированной конструкционной стали. Его нормы распространяются на такие виды проката, как слитки, поковки и пр.

ГОСТ 4543-71 даёт чёткую классификацию конструкционных легированных сталей. В соответствии с ней сталь марки 40Х относится к группе хромистых сталей.

В этом же документе определены параметры качества, то есть, определяет максимально допустимое количество примесей, которые влияют на технические характеристики конструкционной легированной стали. К таким примесям относят серу, фосфор, медь и некоторые другие.

Кстати, в этом же документе определены режимы термической обработки проката.

Массовая доля элементов стали 40Х по ГОСТ 4543-2016

C (Углерод)Si (Кремний)Mn (Марганец)P (Фосфор)S (Сера)Cr (Хром)Mo (Молибден)Ni (Никель)V (Ванадий)Ti (Титан)Cu (Медь)N (Азот)W (Вольфрам)Fe (Железо)
0,36 — 0,440,17 — 0,370,5 — 0,8< 0,04< 0,040,8 — 1,1< 0,11< 0,3< 0,05< 0,03< 0,3< 0,012< 0,2остальное

CE = C + Mn/6 + (Cr + Mo +V)/5 + (Ni + Cu)/15. Химический состав может быть изменён по договорённости. Эм = 0,3Cr + 0,5Ni + 0,7Cu. Для цементируемых сталей допускается Al > 0,02. Содержание P может быть изменено по согласованию. По согласованию: Ca < 0,003.

Учитывая сложность производства данной стали, точный процент содержания углерода не определён, и колеблется в диапазоне 0,36 % — 0,44 %. Основная легирующая добавка – хром, от 0,8 % до 1,1 %. Именно этот элемент формирует основные характеристики сплава. Несмотря на то, что содержание никеля, марганца и кремния невелико – до 1,0 %, они влияют на свойства стали при эксплуатации изделий из неё.

Небольшое содержание меди (до 0,035 %) существенного влияния на характеристики не оказывает. Концентрация вредных добавок (серы, фосфора) находится под строгим контролем.

40ХН2МА сталь свойства

σ4551/10000=686 МПа, σ4551/1000=137 МПа, σ5901/10000=13 МПа, σ5901/1000=29 МПа.

Механические свойства стали 40ХН2МА
ГОСТСостояние поставки, режим термообработкиСечение, ммКПσ0,2 (МПа)σв(МПа)δ5 (%)ψ %KCU (Дж / см2)НВ, не более
ГОСТ 4543-71Пруток. Закалка 850 °С, масло. Отпуск 620 °С, вода259301080125078
Пруток. Закалка 850 °С, масло. Отпуск 620 °С, масло.25835980125598
ГОСТ 8479-70Поковки. Закалка. Отпуск500-800440440635113039197-235
300-500 500-80049049065512 1135 3049 39212-248
100-300 300-50054054068513 1240 3549 44223-362
100-300 300-500 500-80059059073513 12 1040 35 3049 44 39235-277
100-300 300-50064064078512 1138 3349 44248-293
100-300685685835123849262-311
До 100 100-30073573588013 1240 3559 49277-321
До 100 100-30078578593012 1140
35
59 49293-331
Механические свойства стали 40ХН2МА в зависимости от температуры отпуска
Температура отпуска, °Сσ0,2 (МПа)σв(МПа)δ5 (%)ψ %KCU (Дж / см2)HB
Закалка 850 °С, масло
200 300 400 500 6001600 1470 1240 1080 8601750 1600 1370 1170 96010 10 12 15 2050 50 52 59 6259 49 59 88 147525 475 420 350 275
Механические свойства стали 40ХН2МА при повышенных температурах
Температура испытаний, °Сσ0,2 (МПа)σв(МПа)δ5 (%)ψ %KCU (Дж / см2)
Закалка 850 °С, масло. Отпуск 580 °С.
20 250 400 500950 830 770 6801070 1010 950 70016 13 17 1858 47 63 8078 109 84 54
Образец диаметром 5 мм, длиной 25 мм, прокатанный. Скорость деформирования 2 мм/мин. Скорость деформации 0,001 1/с
700 800 900 100 1100 1200— — — — —
185 89 50 35 24 1417 66 69 75 72 6232 90 90 90 90 90— — — — — —
Предел выносливости стали 40ХН2МА
σ-1, МПАJ-1, ÌÏÀnТермообработка
447 392 519274 235106Сечение 100 мм. Закалка 850 °C, масло. Отпуск 580 °C, σв=880 МПа. Сечение 400 мм. Закалка 850 °C, масло. Отпуск 610 °C, σв=790 МПа, σ0,2=880 МПа, σв=1080 МПа
Ударная вязкость стали 40ХН2МА KCU
, (Дж/см2)
Т= +20 °СТ= -40 °СТ= -60 °СТермообработка
1039359Закалка 860 °С, масло. Отпуск 580 °С
Механические свойства стали 40ХН2МА в зависимости от сечения
Сечение, ммМесто вырезки образцаσ0,2 (МПа)σв(МПа)δ4 (%)ψ %KCU (Дж / см2)HRCЭ
Пруток. Закалка 850 °С, масло. Отпуск 620 °С
40 60 80 100 120Ц Ц 1/2R 1/2R 1/3R880 830 730 670 6301030 980 880 850 83014 16 17 19 2057 60 61 61 62118 127 127 127 12733 32 29 26 25
Закалка 850 °С, масло. Отпуск 540-660 °С
до 16 16-40 40-100 100-160 160-250Ц Ц Ц Ц Ц1000 900 800 700 6501200-1400 1100-1300 1000-1200 900-1100 850-10009 10 11 12 12— — — — —90 50 60 60 60— — — — —
Прокаливаемость стали 40ХН2МА
Расстояние от торца, ммПримечание
1,5369121521273342Закалка 840 °С
49-59,540,5-6050-6050-59,549-5948-5945-5641,5-5341-50,536,5-48,5Твердость для полос прокаливаемости, HRC
Количество мартенсита, %Критическая твердость, HRCэКритический диаметр в водеКритический диаметр в масле
50 9044-47 49-53153 137-150114 100-114
Физические свойства стали 40ХН2МА
T (Град)E 10- 5 (МПа)a 10 6 (1/Град)l (Вт/(м·град))r (кг/м3)C (Дж/(кг·град))R 10 9 (Ом·м)
202.15397850331
1002.1111.638490
2002.0112.137506
3001.912.737522
4001.7713.235536
5001.7313.633565
60013.931
70029
80027
Краткие обозначения:
σв— временное сопротивление разрыву (предел прочности при растяжении), МПаå— относительная осадка при появлении первой трещины, %
σ0,05— предел упругости, МПа— предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2— предел текучести условный, МПаσизг— предел прочности при изгибе, МПа
δ5,δ4,δ10— относительное удлинение после разрыва, %σ-1— предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж— предел текучести при сжатии, МПаJ-1— предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν— относительный сдвиг, %n— количество циклов нагружения
— предел кратковременной прочности, МПаR и ρ— удельное электросопротивление, Ом·м
ψ— относительное сужение, %E— модуль упругости нормальный, ГПа
KCU и KCV— ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2T— температура, при которой получены свойства, Град
sT— предел пропорциональности (предел текучести для остаточной деформации), МПаl и ë— коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB— твердость по БринеллюC— удельная теплоемкость материала (диапазон 20o — T ), [Дж/(кг·град)]
HV— твердость по Виккерсуpn и r— плотность кг/м3
HRCэ— твердость по Роквеллу, шкала Са— коэффициент температурного (линейного) расширения (диапазон 20o — T ), 1/°С
HRB— твердость по Роквеллу, шкала ВσtТ— предел длительной прочности, МПа
HSD— твердость по ШоруG— модуль упругости при сдвиге кручением, ГПа

xn--402-8cd3de9c.xn--p1ai

Аналоги и номенклатура

Марку стали 40Х можно заменить отечественными аналогами:

Зарубежные аналоги имеют другую маркировку, однако составы этих сплавов приблизительно совпадают:

  • G51400 и H51350 – Соединенные Штаты;
  • 37Cr4, 41Cr4, 41CrS4 – Германия;
  • 35Cr, 38CrA, 40Cr и 40CrA – КНР;
  • SCr435, SCr440 – Япония;
  • 37Cr4, 41Cr4 – Франция;
  • 36CrMn4 – Италия;
  • 2245 – Швеция;
  • 14140 – Чехия.

Классификация конструкционных легированных сталей регламентируется ГОСТом 4543-71. В нем прописаны технические условия на разные виды проката. По характеристикам стали 40Х ГОСТ 4543-71 относит ее к классу хромистых сплавов и устанавливает:

  • предельное содержание примесей, негативно влияющих на технологические свойства материала, например, серы и фосфора;
  • режимы термообработки.

Сталь поставляется в виде:

  • сортового проката по нескольким стандартам;
  • калиброванного прутка;
  • прутка шлифованного и серебрянки по ГОСТу 14955-77;
  • толстого листа и полос;
  • поковок, согласно ГОСТу 8479-70;
  • труб и соединительных частей к ним.

Технические характеристики стали 14Х17Н2

Отечественные

Возможность замены на материал родственного состава должна анализироваться в каждом случае, универсального решения не существует.

  1. 38ХА. Углерода — 0,38%, хрома — до 1,5%, «А» — обозначение сплава стандарта высокого качества;
  2. 40ХН. Углерода — 0,40%, легирование 1,1%-м хромом и 1,5%-м никелем;
  3. 40ХС. Количество углерода и хрома остается тем же, дополнительный легирующий элемент — кремний в концентрации 1,2-1,5%
  4. 40ХФА. Углерод — 0,40%, легирующий элемент — ванадий 1,1%.«А» — железоуглеродный сплав высокого стандарта качества. Используется при температурах до +400°С

Режимы закалки

Поскольку при закалке растут не только прочностные характеристики, но и хрупкость, технология правильного ведения процесса состоит в том, чтобы, с одной стороны, зафиксировать так можно большее количество остающегося аустенита, а другой стороны, снизить негативные проявления таких изменений

Особенно это важно для деталей сложной формы, где уже имеются концентраторы напряжений

Задача решается ускоренным охлаждением деталей, нагретых выше температуры аустенитного превращения на 30…50 °С, с последующим отпуском. В качестве охлаждающей среды используется вода или масло, а итогом такого охлаждения является появление в микроструктуре мартенсита – пересыщенного твёрдого раствора углерода в железе. Мартенсит — значительно более твердая структура, с иным типом кристаллической решётки и игольчатой структурой кристаллов. Он считается так называемой метастабильной фазой, которая в обычных условиях существовать не может.

Закалка подразделяется на следующие виды:

  1. Изотермическую, при которой выполняется непрерывное охлаждение в масле, либо в расплавах солей хлоридов бария и натрия. В результате аустенитное превращение протекает полностью, а в закалённом продукте исключаются трещинообразование и коробление. Изотермическая закалка и отпуск обязательны для конструкций сложной формы и значительных габаритных размеров.
  2. Ступенчатую, при которой после закалки в ванне до окончания мартенситного превращения и выравнивания температурных перепадов по всему сечению, продукцию извлекают из закалочной ёмкости, и в дальнейшем охлаждают уже на спокойном воздухе.
  3. Сквозную, применяемую для деталей небольших размеров. В результате получается наивысшая равномерность механических свойств.

Три вида отпуска после закалки

Особенности закалки инструментальных сталей заключаются в том, что они работают при гораздо повышенных эксплуатационных нагрузках: например, для тяжелонагруженного инструмента они достигают 3000…3500 МПа

Поэтому крайне важно обеспечить удовлетворительное сочетание всех прочностных параметров. Принципиальным отличием всех режимов закалки инструментальных сталей является обязательность отпуска непосредственно после закалки

Наилучший результат дают следующие режимы закалки:

  1. Изотермическая.
  2. Закалка с самопроизвольным отпуском, при которой нагретую деталь кратковременно извлекают из охлаждающей среды (масла), очищают от образовавшейся плёнки окислов, после чего вновь опускают в масляную ванну.
  3. Чистая, при которой нагрев ведут в печах с контролируемой атмосферой, свободной от окислов.
  4. Светлая, когда продукция нагревается в щелочных расплавах.

https://youtube.com/watch?v=I-br0B8ocpI

Нагрев под закалку проводят преимущественно в электропечах или в газовых печах, атмосфера которых содержит инертный газ. Так обеспечивается качество и полнота мартенситного превращения, исключаются неравномерность свойств и поверхностные дефекты.

Химический состав

Цифра 40 в маркировке свидетельствует о том, что процентное содержание углерода в сплаве колеблется в пределах от 0.36 до 0.44, а буквенное обозначение х указывает на наличие легирующего элемента хрома в количестве не менее 0.8 и не более 1.1 процента. Легирование стали хромом придает ей свойство устойчивости к коррозии в окислительной среде и атмосфере. Говоря другими словами, сталь приобретает нержавеющие свойства. Кроме того, хром определяет структуру сплава, его технологические и механические характеристики.

Остальные химические элементы входят в состав стали х 40 в следующем количестве:

  • не более 97% железа;
  • 0,5 — 0,8% марганца;
  • 0,17 — 0,37% кремния;
  • не более 0,3% меди;
  • не более 0,3% никеля;
  • не более 0,035% фосфора;
  • не более 0,035% серы.

Производство стали марки 40х

  1. Подготовка и плавка шихты. Нагревание жидкого металла в специальной ванне. На этом этапе происходит окисление железа, образуется его оксид. Одновременно с этим окисляются основные примеси — фосфор, марганец, кремний. Одна из главных задач этапа — удаление фосфора из состава. Для снижения его процентного содержания нужна небольшая температура ванны со шлаком, металлом. В ней должно содержаться определенное количество оксида железа.
  2. Кипение металлической ванны. Температура повышается постепенно. Если нагрев будет происходить быстро, начнется окисление углерода. На этом этапе снижается содержание серы в сплаве.
  3. Раскисление стали. Выполняется двумя способами. Первый — диффузионный. Осуществляется с помощью шлака. На его поверхность погружается измельченный алюминий, ферросилиций, ферромарганец. С помощью раскислителей оксид железа восстанавливается, его процентное содержание в сплаве уменьшается. Второй способ — осаждение. В жидкую сталь вводятся растворимые раскислители — алюминий, ферросилиций, ферромарганец. Железо восстанавливается, образуются сторонние оксиды, которые уходят в шлак.

Последний этап производства — легирование стали. В расплавленный металл вводятся определенные компоненты, которые нужны для изменения его технических характеристик.

Физические характеристики

Почти все физические свойства металлов прямо или обратно пропорционально зависят от температуры. Такие показатели, как удельное сопротивление, коэффициент линейного расширения и удельная теплоемкость возрастают с ростом температуры, а плотность стали, ее модуль упругости и коэффициент теплопроводности, наоборот, падают при увеличении температуры.

Еще одна физическая характеристика, называемая массой, не зависит практически ни от чего. Образец можно подвергать термической обработке, охлаждать, обрабатывать, придавать ему различную форму, а масса при этом будет оставаться величиной неизменной.

Физические показатели всех известных марок отечественных сталей и сплавов, в том числе и описываемой марки, сведены в таблицы и размещены в справочниках по металловедению.

Общие данные

Заменитель: Сталь 40ХФ, Сталь 40ХР, Сталь 45Х, Сталь 38ХА, Сталь 40ХН, Сталь 40ХС

  • Сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-71, ГОСТ 2591-71, ГОСТ 2879-69, ГОСТ 10702-78.
  • Калиброванный пруток ГОСТ 7414-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73.
  • Шлифованный пруток и серебрянка ГОСТ 14955-77.
  • Лист толстый ГОСТ 1577-81, ГОСТ 19903-74.
  • Полоса ГОСТ 82-70, ГОСТ 103-76, ГОСТ 1577-81.
  • Поковки и кованые заготовки ГОСТ 8479-70. Трубы ГОСТ 8731-87, ГОСТ 8733-87, ГОСТ 13663-68.

Суть процесса

Процедура нормализации выглядит следующим образом. Деталь разогревают до температур, которые превышает максимально допустимые параметры (Ас1, Ас3) на 30 – 50 градусов Цельсия, затем, какое-то время ее выдерживают под воздействием этой температуры, после чего ее охлаждают.

Подбор температуры выполняют, руководствуясь маркой стали. Так, сплавы содержащие 0,8 % углерода так называемые заэвтектоидные, обрабатывают при температурах, лежащих между критическими точками Ас1 и Ас3.

Что такое критические точки – так называют температуры, при которых происходят фазовые изменения и структуры сплава при его нагреве или охлаждении.

Результатом этого становиться то, что в твердый раствор попадает некоторый объем углерода и закрепляется аустенита. То есть, на свет появляется структура, состоящая из мартенсита и цементита. Именно цементит приводит к росту стойкости к износу и твердости. Нагрев высокоуглеродистой стали свыше ас3 приводит к тому, что увеличиваются внутренние напряжения. Это происходит из-за того, что растет количество аустенита, в следствии роста концентрации углерода.

Сталь с содержанием углерода менее 0,8% при нагреве свыше критической точки Ас3 приобретает повышенную вязкость. Это происходит потому что в стали этого типа появляется аустенит (мелкозернистый), переходящий в мартенсит (мелкозернистый).

Доэвтектоидная сталь не обрабатывают при температурах, расположенных в диапазоне Ас1 – Ас3. Так как в этом случае появляются феррит, который снижает параметры твердости.

Время необходимое для выполнения операции

Для получения однородной структуры сплава, при определенной температуре, требуется какое-то время. Это время и будет определено как время выдержки стали при нормализации. Опытным путем определено, что слой металла толщиной в 25 мм через час становится однородным. Таким образом. и определяют время нормализации.

Завершающий этап – охлаждение

Скорость охлаждения играет существенную роль в образовании объема перлита и размера его пластин. Многочисленные исследования показали, что высокая интенсивность охлаждения увеличивает количество перлита и сталь получает повышенную твердость и прочность. Малая интенсивность охлаждения приводит к тому, что сталь теряет твердость и прочность.

При обработке деталей с существенными перепадами размеров, например. валов, целесообразно убрать напряжения, возникающие под воздействием колебания температур. Для этого их предварительно нагревают в емкости, заполненной разными солями. При понижении температуры допускается ускорить этот процесс помещая горячие детали в воду или специально подобранное масло.

Другими словами, нормализация стали устраняет напряжения внутри детали, минимизирует ее структуру. То есть она оказывает прямое влияние на изменение микроструктуры стальных сплавов.

Цель нормализации стали

Цели нормализации стали могут быть различными: например, как для увеличения, так и для снижения прочности и твердости в зависимости от термической и механической истории изделия.

Цели нормализации часто пересекается или даже путается с отжигом, термическим упрочнением и отпуском для снятия напряжений. Нормализацию применяют, например, для улучшения обрабатываемости детали резанием, измельчения зерна, гомогенизации зеренной структуры или снижения остаточных напряжений. Сравнение температурно-временных циклов для нормализации и отжига показано на рисунке 2.

Рисунок 2 ─ Сравнение температурно-временных циклов нормализации и полного отжига. Более медленное охлаждение при отжиге приводит к более высокой температуре феррито-перлитного превращения и более грубой микроструктуре, чем при нормализации.

Для стальных отливок нормализацию применяют для гомогенизации их дендритной структуры, снижения остаточных напряжений и большей восприимчивости к последующему термическому упрочнению.

Изделия, полученные обработкой давлением, могут подвергать нормализации для снижения полосчатости структуры после прокатки или разнозернистость после ковки.

Нормализацию с последующим отпуском применяют вместо обычной закалки, когда изделия имеют сложную форму или резкие изменения по сечению. Это делают, чтобы избежать образования трещин, коробления и чрезмерных термических напряжений.

Закалка стали

Закаливание является операцией по термической обработке металла. Она состоит из нагревания металла до критической температуры, при которой изменяется кристаллическая решетка материала, либо до температуры, при которой происходит растворение фазы в матрице, существующей при низкой температуре.

Важно понимать:

  • После достижения критической температуры металл подвергается резкому охлаждению.
  • После закаливания сталь приобретает структуру мартенсита (по имени Адольфа Мартенса) и поэтому обретает твердость.
  • Благодаря закаливанию прочность стали повышается. Металл становится еще тверже и более износостойким.
  • Следует различать обычную закалку материала и закалку для получения избытка вакансий.

Режимы закалки различаются по скорости протекания процесса и температуре нагревания. А также имеются различия по длительности выдержки при данном температурном режиме и скорости охлаждения.

Характеристика материала.Сталь 40ХН.

Марка сталь 40ХН
Заменитель: сталь 45ХН ,сталь 50ХН ,сталь 38ХГН ,сталь 40Х ,сталь 35ХГФ ,сталь 40ХНР,сталь 40ХНМ ,сталь 30ХГВТ
Классификация Сталь конструкционная легированная.Хромоникелевая
Применение оси, валы, шатуны, зубчатые колеса, валы экскаваторов, муфты, валы-шестерни, шпиндели, болты, рычаги, штоки, цилиндры и другие ответственные нагруженные детали, подвергающиеся вибрационным и динами ческим нагрузкам, к которым предъявляются требования повышенной прочности и вязкости. Валки рельсобалочных и крупносортных станов для горячей прокатки металла.

Химический состав в % материала 40ХН

C Si Mn Ni S P Cr Cu
0.36 – 0.44 0.17 – 0.37 0.5 – 0.8 1 – 1.4 до 0.035 до 0.035 0.45 – 0.75 до 0.3

Температура критических точек материала 40ХН.

Ac1 = 735 , Ac3(Acm) = 768 , Ar3(Arcm) = 700 , Ar1 = 660 , Mn = 305

Механические свойства при Т=20oС материала 40ХН .

Сортамент Размер Напр. sT d5 y KCU Термообр.
мм МПа МПа % % кДж / м2
Пруток ø 25 980 785 11 45 690 Закалка и отпуск
Твердость материала 40ХН после отжига , HB 10 -1 = 207 МПа

Физические свойства материала 40ХН .

T E 10- 5 a 10 6 l r C R 10 9
Град МПа 1/Град Вт/(м·град) кг/м3 Дж/(кг·град) Ом·м
20 2 7820
100 11.8 44 7800
200 12.3 43 7770
300 13.4 41 7740
400 14 39 7700
500 37
T E 10- 5 a 10 6 l r C R 10 9

Технологические свойства материала 40ХН .

Свариваемость: трудносвариваемая.
Флокеночувствительность: чувствительна.
Склонность к отпускной хрупкости: склонна.

Обозначения:

Механические свойства :
– Предел кратковременной прочности ,
sT– Предел пропорциональности (предел текучести для остаточной деформации),
d5– Относительное удлинение при разрыве ,
y– Относительное сужение ,
KCU– Ударная вязкость , [ кДж / м2]
HB– Твердость по Бринеллю ,
Физические свойства :
T– Температура, при которой получены данные свойства ,
E– Модуль упругости первого рода ,
a– Коэффициент температурного (линейного) расширения (диапазон 20o – T ) , [1/Град]
l– Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)]
r– Плотность материала , [кг/м3]
C– Удельная теплоемкость материала (диапазон 20o – T ), [Дж/(кг·град)]
R– Удельное электросопротивление,
Свариваемость :
без ограничений– сварка производится без подогрева и без последующей термообработки
ограниченно свариваемая– сварка возможна при подогреве до 100-120 град. и последующей термообработке
трудносвариваемая– для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки – отжиг

Купить сталь 40ХН.Конструкционная легированная сталь.Хромоникелевая группа стали.

Труба Уголок Швеллер Полоса Круг Шестигранник Арматура Квадрат Балка Лист

Термообработка стали 45, 40х, 20, 30хгса, 65г, 40, 40хн, 35, и стали 20х13

В машиностроении чаще всего подвергают термообработки сталь 45 (в качестве заменителя 40Х, 50, 50Г2), сталь 40х (в качестве заменителя стали 38ха, 40хр, 45х, 40хс, 40хф, 40хн), сталь 20 (в качестве заменителя 15, 25), сталь 30хгса (заменители 40хфа, 35хм, 40хн, 25хгса, 35хгса), сталь 65г, сталь 40хн, сталь 35, и сталь 20х13, также

Термообработка стали 45

Термообработка стали 45 — конструкционная углеродистая. После предварительной термообработки стали 45 — нормализации, довольно легко проходит механическую обработку. Точение, фрезеровку и т. д. Получают детали, например,типа вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки.

После окончательной термообработки стали 45 (закалка), детали приобретают высокую прочность и износостойкость. Часто шлифуются. Высокое содержание углерода (0,45%) обеспечивает хорошую закаливаемость и соответственно высокую твёрдость поверхности и прочность изделия. Сталь 45 калят «на воду». То есть после калки деталь охлаждают в воде. После олаждения деталь подвегается низкотепмературному отпуску при температуре 200-300 градусов Цельсия.

При такой термообработки стали 45 получают твердость порядка 50 HRC.

Термообрабтка стали 45 и применение изделий: Кулачки станочных патронов, согласно указаниям ГОСТ, изготовляют из сталей 45 и 40Х. Твёрдость Rc = 45 -50. В кулачках четырёхкулачных патронов твёрдость резьбы должна быть в пределах Rс = 35-42. Отпуск кулачков из стали 45 производится при температуре 220-280°, из стали 40Х при 380-450° в течение 30-40 мин.

Расшифровка марки стали 45: марка 45 означает, что в стали содержится 0,45% углерода,C 0,42 — 0,5; Si 0,17 — 0,37;Mn 0,5 — 0,8; Ni до 0,25; S до 0,04; P до 0,035; Cr до 0,25; Cu до 0,25; As до 0,08.

Термообработка стали 40Х

Термообработка стали 40Х — легированная конструкционная сталь предназначена для деталей повышенной прочности такие как оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, губчатые венцы, болты, полуоси, втулки и прочих деталей повышенной прочности. Сталь 40Х также часто используется для производства поковок, штампованных заготовок и деталей трубопроводной арматуры. Однако последние перечисленные детали нуждаются в дополнительной термической обработке, заключающейся в закалке через воду в масле или просто в масле с последующим отпуском в масле или на воздухе.

Расшифровка марки стали 40Х. Цифра 40 указывает на то, что углерод в стали содержится в объеме 0,4 %. Хрома содержится менее 1,5 %. Помимо обычных примесей в своем составе имеет в определенных количествах специально вводимые элементы, которые призваны обеспечить специально заданные свойства. В качестве легирующего элемента в данном случае используется хром, о чем говорит соответствующая маркировка.

Термообработка стали 20

Термообработка стали 20 — сталь конструкционная углеродистая качественная. Широкое применение в котлостроении, для труб и нагревательных трубопроводов различного назначения, кроме того промышленность выпускает пруток, лист. Температура начала ковки стали 20 составляет 1280° С, окончания — 750° С, охлаждение поковки — воздушное. Сталь 20 нефлокеночувствительна и не склонна к отпускной способности.

После цементации и цианирования из стали 20 можно изготавливать детали, от которых требуется высокая твёрдость поверхности и допускается невысокая прочность сердцевины: кулачковые валики, крепёжные детали, шпиндели, звёздочки, шпильки, вилки тяг и валики переключения передач, толкатели клапанов, валики масляных насосов.

Сталь 20 применяют для производства малонагруженных деталей ( пальцы, оси, копиры, упоры, шестерни ), цементуемых деталей для длительной и весьма длительной службы (эксплуатация при температуре не выше 350° С), тонких деталей, работающих на истирание и другие детали автотракторного и сельскохозяйственного машиностроения.

Термообработка стали 30хгса

Термообработка стали 30хгса — относится к среднелегированной конструкционной стали.

Сталь 30хгса проходит улучшение – закалку с последующим высоким отпуском при 550-600 °С, поэтому применяется при создании улучшаемых деталей (кроме авиационных деталей это могут быть различные корпуса обшивки, оси и валы, лопатки компрессорных машин, которые эксплуатируются при 400°С, и многое другое), рычаги, толкатели, ответственные сварные конструкции, работающие при знакопеременных нагрузках, крепежные детали, работающие при низких температурах. Сталь 30хгса обладает хорошей выносливостью, отличными показателями ударной вязкости, высокой прочностью. Она также отличается замечательной свариваемостью.

Сварка стали 30хгса тоже имеет свои особенности. Она осуществляется с предварительным подогревом материала до 250-300 °С с последующим медленным охлаждением. Данная процедура очень важна, поскольку могут появиться трещины из-за чувствительности стали к резким перепадам температуры после сварки. Поэтому по завершении сварных работ горелка должна отводиться медленно, при этом осуществляя подогрев материала на расстоянии 20-40 мм от места сварки.

Также, не более, чем спустя 8 часов по завершении сварки сварные узлы стали 30ХГСА нуждаются в закалке с нагревом до 880 °С с последующим высоким отпуском. Далее изделие охлаждается в масле при 20-50 °С. Отпуск осуществляется нагревом до 400 — 600 °С и охлаждением в горячей воде. Сварку же необходимо выполнять максимально быстро, дабы избежать выгорания легирующих элементов.

Нормализация стали

Нормализацию стали часто рассматривают с двух точек зрения — термической и микроструктурной.

В термическом смысле и классическом понимании, нормализация стали — это нагрев стали до аустенитного состояния с последующим охлаждением на спокойном воздухе. Иногда к нормализации относят также и операции с охлаждением ускоренным воздухом.

Место температуры нормализации на диаграмме состояния железо-углерод показано на рисунке 1.


Рисунок 1 – Упрощенная диаграмма состояния железо-углерод. Заштрихованная полоса – температура нормализации сталей

С точки зрения микроструктуры нормализованной структурой считают перлит для стали с содержанием углерода 0,8 %, а для сталей с меньшим содержанием углерода — доэвтектоидных сталей — смесь перлита и феррита .

Операцию нормализации применяют для большинства сталей и, в том числе стальных отливок. Очень часто сварные стальные швы нормализуют для измельчения структуры стали в зоне воздействия сварки.

Цель нормализации стали

Цели нормализации стали могут быть различными: например, как для увеличения, так и для снижения прочности и твердости в зависимости от термической и механической истории изделия.

Цели нормализации часто пересекается или даже путается с отжигом, термическим упрочнением и отпуском для снятия напряжений. Нормализацию применяют, например, для улучшения обрабатываемости детали резанием, измельчения зерна, гомогенизации зеренной структуры или снижения остаточных напряжений. Сравнение температурно-временных циклов для нормализации и отжига показано на рисунке 2.


Рисунок 2 ─ Сравнение температурно-временных циклов нормализации и полного отжига. Более медленное охлаждение при отжиге приводит к более высокой температуре феррито-перлитного превращения и более грубой микроструктуре, чем при нормализации.

Для стальных отливок нормализацию применяют для гомогенизации их дендритной структуры, снижения остаточных напряжений и большей восприимчивости к последующему термическому упрочнению.

Изделия, полученные обработкой давлением, могут подвергать нормализации для снижения полосчатости структуры после прокатки или разнозернистость после ковки.

Нормализацию с последующим отпуском применяют вместо обычной закалки, когда изделия имеют сложную форму или резкие изменения по сечению. Это делают, чтобы избежать образования трещин, коробления и чрезмерных термических напряжений.

Скорость охлаждения стали при нормализации

Скорость охлаждения при нормализации обычно не является критической величиной. Однако, когда изделие имеет большие различия по размерам сечения, принимают меры по снижению термических напряжений, чтобы избежать коробления.

Выдержка при температуре нормализации

Роль длительности выдержки при температуре нормализации заключается только в том, чтобы обеспечить гомогенизацию аустенитной структуры до начала охлаждения. Один час выдержки на каждые 25 мм толщины сечения является нормой.

Скорость охлаждения при нормализации значительно влияет на количество перлита, его размеры и толщину перлитных пластин. Чем выше скорость охлаждения, тем больше образуется перлита, а его пластины становятся тоньше и ближе друг к другу. Увеличение доли перлита в структуре и его измельчение дают повышение прочности и твердости стали. Более низкие скорости охлаждения означают менее прочную и твердую сталь.

После того, как изделия однородно охладились по своему сечению ниже нижней критической точки Аr1, их можно охлаждать в воде или масле для снижения общей длительности охлаждения.

Термическая обработка

Во многих случаях термическая обработка позволяет существенно повысить эксплуатационные качества металла. Термическая обработка стали 40Х проводится с учетом особенностей структуры. Рекомендации по выполнению подобной процедуры следующие:

  1. Закалка стали 40Х проводится в масляной среде. Это позволяет существенно повысить качество поверхностного слоя структуры.
  2. Проводимая закалка 40Х проводится с последующим охлаждением заготовки. Для этого может применяться обычная воздушная или масляная среда. Масло позволяет существенно повысить качество получаемого изделия, в то время как на воздухе охлаждение происходит при больших размерах. Применение водной среды может привести к появлению окалины и других дефектов.
  3. Обязательно проводится отпуск, который позволяет снизить внутренние напряжения. Отпуск проводится в масле или на воздухе.

Термообработка стали 40Х проводится в зависимости от нагрузок, на которые рассчитаны изделий. Расчет проводится в зависимости от трех критических точек. Закалка проводится при температуре 860 градусов Цельсия. Показатель часового интервала составляет 4 часа. Отпуск на воздухе может проводиться при температуре 200 градусов Цельсия, при применении масляной ванны показатель повышается до 500 градусов Цельсия. В некоторых случаях проводится нормализация стали 40Х.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]