Как можно повысить твердость металлов и сплавов кратко?


Влияние термической обработки на качество

Сталь в исходном состоянии представляет собой довольно пластичную массу и поддается обработке путём деформирования. Ее можно ковать, штамповать, вальцевать.
Для изменения механических свойств и достижения необходимых качеств применяется термическая обработка металла. Суть термической или тепловой обработки заключается в применении совокупности операций по нагреву, выдержке и охлаждению твердых металлических сплавов. В результате такой обработки сплав изменяет свою внутреннюю структуру и приобретает определенные, необходимые производителю и потребителю, свойства.

Критические точки

Критические точки — это температуры, при которых изменяется структура стали и ее фазовое состояние. Вычислены в 1868 году русским металлургом и изобретателем Дмитрием Константиновичем Черновым, поэтому иногда их называют точками Чернова.

Обозначают такие точки буквой А. Нижняя точка А1 соответствует температуре, при которой аустенит превращается в перлит при охлаждении или перлит в аустенит при нагреве. Точка А3 — верхняя критическая точка, соответствующая температуре, при которой начинается выделение феррита при охлаждении или заканчивается его растворение при нагреве.

Если критическая точка определяется при нагреве, то к букве «А» добавляется индекс «с», а при охлаждении — индекс «r».

Для данной стали определена следующая температура критических точек:

Алгоритм термообработки стали и сплавов:

  • отжиг:
  • закалка;
  • отпуск;
  • нормализация;
  • старение;
  • криогенная обработка.

Термообработка для стали 40х. Характеристика температурного режима в соответствии с требованиями ГОСТ 4543–71:

  • закалка стали 40х в масляной среде при температуре 860*С;
  • отпуск в воде или масле при температуре 500*С.

В результате такой термической обработки данная сталь приобретает повышенную твердость (число твердости НВ не более 217), высокий предел прочности при разрыве (980 Н/м2) и ударную вязкость 59 Дж/см2.

Предел текучести

Говоря о механических свойствах, нужно обязательно упомянуть о такой важной характеристике, как предел текучести. Если приложенная нагрузка слишком велика, то конструкция или ее детали начинают деформироваться и в металле возникают не упругие (полностью исчезающие, обратимые), а пластические (необратимые остаточные) деформации

Говоря другими словами, металл «течет».

Предел текучести — это граница между упругими и упругопластическими деформациями. Значение предела текучести зависит от множества факторов: режима термической обработки, наличия примесей и легирующих элементов в стали, микроструктуры и типа кристаллической решетки, температуры.

В металловедении различают понятия физического и условного предела текучести.

Физический предел текучести — это такое значение напряжения, при котором деформация испытываемого образца увеличивается без увеличения приложенной нагрузки. В справочниках эта величина обозначается σт и для марки 40х ее значение не менее 785 Н/мм2 или 80 КГС/мм2.

Следует отметить, что пластические (необратимые) деформации появляются в металле не мгновенно, а нарастают постепенно, с увеличением приложенной нагрузки. Поэтому, с точки зрения технологии, уместнее применение термина «условный (технический) предел текучести».

Условным (или техническим) пределом текучести называется напряжение, при котором опытный образец получает пластическое (необратимое) удлинение своей расчетной длины на 0.2%. В таблицах эта величина обозначается как σ 0,2 и для стали 40х составляет:

  • при температуре от 101 до 200*С — 490 МПа;
  • при температуре от 201 до 300*С — 440 МПа;
  • при температуре от 301 до 500*С — 345 МПа.

https://youtube.com/watch?v=CUV4o6sd6VY

Используемые технологии

Преимущественное распространение получили три варианта улучшения:

  1. Закалка при повышенной температуре (в расплавленной соли или в горячем масле), которая способствует существенному снижению деформации деталей. Этот процесс используется в основном для легированных сталей и деталей с резкими перепадами сечений;
  2. Аустенитизация – вариант, реализуемых для изделий с тонкими профилями. Используется для большинства марок средне- или высокоуглеродистых сталей, а также для габаритных деталей, изготовленных из легированных сталей. Аустенитизация требует высокотемпературной закалки и выдержки, обычно в расплаве соли, но зато минимизирует риск искажения формы, а образующаяся структура не требует последующего отпуска;
  3. Закалка от обычных температур в воде или масле, но с последующим двухступенчатым отпуском: вначале при более высоких, а затем — при более низких температурах. Применяется для рессорно-пружинных сталей, у которых формирование сорбита отпуска затруднено.

Для улучшаемых инструментальных сталей вместо отпуска проводят отжиг, при этом температуру закалки (по сравнению с рекомендуемой) увеличивают на 20…300С. Такую термообработку предусматривают после черновых металлорежущих операций.

Какая сталь – улучшаемая? Такой вопрос часто задают термисты, учитывая, что класс улучшаемых при термической обработке изделий чётко не выражен. По современным воззрениям, в расчёт преимущественно принимаются два критерия – прокаливаемость и хладноломкость.

История и технология отжига стали

Отжиг стали предполагает применение переменных температур: нагревание до высоких значений без потери формы и охлаждение в заданном температурном режиме приводит к структурным изменениям кристаллической решетки, сплав получает новые качества, нужные для решения конкретных задач.

Отжиг стали улучшает технологические характеристики металлов. Принято различать 2 разновидности отжига — 1 и 2-го рода.

При первом воздействие выполняется наклепом, который понижает внутренние напряжения рекристаллизацией. Этим устраняются последствия обработки давлением, снижение прочностных характеристик и увеличение пластичности. Изделия приобретают повышенную надежность и долговечность.

Второй род воздействия включает прогревание проката до уровня, превышающего критические точки, в особых режимах охлаждения по сроку и температуре. Итогом становится качественное изменение структурных решеток и получение заданных характеристик материала. Проведение отжига сопряжено с риском пережога. Возникновение необратимых негативных изменений структуры приводит к переплавке проката и изделий.

Точки Чернова

Расчет температурных режимов выполняют, используя открытые в 1868 г. русским ученым Д.К. Черновым критические точки, зависящие от значения температур и %-ого содержание углерода, в которых изменяются фазовые состояния и структурное строение металлов. Открытие Чернова — фундамент создания науки о металлах: впервые установлена связь между режимом обработки, структурным видом и характеристиками сплавов. Применение критических точек дает возможность построения различных режимов термообработки металла. Точки Чернова обозначают литерой А с добавлением индекса, указывающего соответствие точки воздействию:

  • «c» — нагреву, от французского chauffage – нагревание;
  • «r» — охлаждению, refroidissement – на французском языке.

Диаграмма, построенная на точках Чернова:

Сечение «I» на диаграмме соответствует доэвтектоидной стали. Пересечение линии диаграммы, по горизонтали температуры и вертикали, соответствующей %-му содержанию углерода в сплаве, определяет искомые критические значения.

В процессе нагревания сечение «I»проходит следующие критические точки:

  • При температуре 210°С пересекает пунктир, проходящий по линии QP — точка Ас 0, которая отмечает потерю цементитом магнитных свойств.
  • t=727°С на линии PG находится точка Ас 1 превращения перлита в аустенит.
  • t=768°С на линию PG приходится точка Ас 2 потери магнитных свойств — магнитного железо переходит в немагнитное.
  • Последующее повышение t° до пересечения с линией GS показывает переход стального сплава в однофазное аустенитное состояние (перекристаллизация заканчивается. Температура этой точки зависит от состава конкретного металла.

Охлаждение не меняет номеров точек, не вызывает обратной перестройки материала.

Линия «II» выстроена для эвтектоидных сталей.

В промышленности для термообработки проката и изделий используют в печи конструкций:

  • камерные — для заготовок небольшого объема;
  • шахтные — работают на газе и электроэнергии, выполняют различные технологические задания;
  • печи с выдвигающимся полом — обработка крупногабаритного проката и узлов;
  • вакуумные — для быстротекущих сплавов, тугоплавкого металла, титана, меди.

Что называется отжигом стали виды отжига?

Отжигом называют термообработку, в результате которой в сплаве получают равновесную структуру. Существует несколько видов этой операции, но все они включают нагрев до температуры, зависящей от марки стали, выдержку и охлаждение с небольшой скоростью.

Интересные материалы:

Кто был лидером группы Битлз? Кто был мужем Ксении Собчак? Кто был назначен главой правительства при Брежневе? Кто был первым космонавтом вышедшим в открытый космос? Кто был первым Вокалоидом? Кто был по национальности Андропов? Кто был по национальности Кутузов? Кто был после Берке хана? Кто был после князя Владимира? Кто был последним киевским князем?

Как протекает процесс

Провести подобную процедуру обработки металла в домашних условиях практически невозможно. Для этого требуется использовать промышленное оборудование и рабочие смеси газов. Обработка проходит в несколько этапов:

  1. Процесс проведения азотирования начинается после шлифовки заготовки и доведения её до конечных габаритов.
  2. Далее места, которые не требуется насыщать азотом, защищаются от его воздействия. Защитный слой получается из жидкого стекла или олова, которое наносится на поверхность заготовки в процессе электролиза.
  3. Проводится азотирование металла.

Последним этапом является финишная обработка детали. Это может быть дополнительная шлифовка или полировка.

Термообработка стали 45

Термообработка
стали 45
, так же как и термическая обработка любой другой марки стали выполняется для улучшения технических характеристик данного материала. Такая обработка подразумевает первоначальный нагрев металла и последующее его охлаждение. Собственно, в зависимости от времени нагрева материала и скорости охлаждения,
термообработка стали 45
и других марок подразделяется на 3 последовательно выполняемых операции:

  1. Отжиг стали 45
  2. Закалка стали 45
  3. Отпуск стали 45

Отжиг стали 45

— это нагрев материала в специальной печи до очень высокой температуры и последующее его охлаждение, которое выполняется естественным образом, то есть вместе с печью. Существует отжиг первого рода, при котором нагрев идет до критических значений, но не превышает их. Также существует и отжиг второго рода, при котором температура уже превышает критическую отметку и приводит к некоторым изменениям в структуре.

Так или иначе, любой из данных способов позволяет избавиться от неоднородности состава, а также снять внутреннее напряжение материала и достичь зернистой структуры. Кроме того, проведение отжига стали 45 поможет снизить твердость сплава, что значительно облегчит в дальнейшем процесс переработки. Примечательно, что отжиг второго рода подразделяется на несколько следующих категорий, различающихся по их назначению и исполнению:

  • диффузионный отжиг
  • полный отжиг
  • неполный отжиг
  • изотермический отжиг
  • рекристализационный

Как правило, для углеродистых сталей применяется полный отжиг. Суть данной технологии состоит в том, что заготовки нагреваются до температуры, которая превышает критическую отметку (верхняя точка Ас3) примерно на значение от +30°С до +50°С. После этого сталь 45 охлаждают с медленной скоростью от +150°С до +200°С до тех пор, пока ее температура не сравняется со значением температуры в рабочем интервале от +500°С до +550°С.

Кстати говоря, при отжиге первого и второго рода охлаждение материала происходит в печи, в которой был произведен нагрев. Если же процесс охлаждения производят уже на открытом воздухе, то такая технология будет называться не отжиг стали 45, а нормализация. Поскольку при нормализации стали охлаждение происходит быстрее, перлит получает тонкое строение и наибольшую твердость. Поэтому нормализованная сталь тверже отожженной.

Отпуск стали 45

Отпуск
стали 45
производят сразу после этапа закалки. Эта разновидность термообработки нужна для того, чтобы существенно уменьшить или полностью снять остаточное напряжение в материале, которое появилось после изменения структуры посредством его закаливания. В целом,
отпуск стали 45
позволяет также повысить вязкость заготовок и уменьшить степень их хрупкости. Однако этот процесс немного уменьшает твердость стали.

Технология процесса отпуска стали
45
, в зависимости от температуры, выполняется через:

  • печи с принудительной циркуляцией воздуха;
  • специальные ванны с селитровым раствором;
  • специальные ванны с минеральным маслом;
  • ванны, заполненные расплавленной щелочью.

Принцип отпуска стали 45

состоит в том, что материал первоначально нагревают до отметки ниже, чем критический уровень, а после этого охлаждают. Однако такой режим термической обработки имеет несколько различных способов проведения, которые будут отличаться друг от друга в зависимости от скорости охлаждения заготовки и температуры её нагрева. Отпуск углеродистых сталей принято классифицировать на 3 следующие категории:

  1. Высокий. Температура нагрева стали составит от +350°С до +600°С до критической отметки. Как правило, такой метод используют для металлических конструкций.
  2. Средний. Температура обработки составляет от +350°С до +500°С. Этот способ по большей части используется для пружинных изделий и рессор.
  3. Низкий. Температура нагрева заготовки не превышает +250°С. Подобный способ принято задействовать для достижения высокой прочности и износостойкости.

Таблица значений термической обработки стали 45

Марка стали Твёрдость (HRC) Температура закалки, °С Температура отпуска, °С Температура закалки ТВЧ, °С Температура отжига, °С Среда закалки
Сталь 45 20…25 820…860 550…600 Вода
20…28 550…580
24…28 500…550
30…34 490…520
42…51 180…220
49…57 200…220 880…920
До 22 780…860

Закалка и отпуск высокоуглеродистой стали

Высокоуглеродистые стали обычно обладают высокой твердостью уже как бы сами по себе. Однако процесс закалки может сделать их значительно тверже, хотя при этом они становятся более хрупкими. Поэтому закалку почти всегда совмещают с отпуском. В результате отпуска твердость стали снижается, а пластичность повышается.

После отжига, нормализации или отпуска углеродистая сталь состоит из феррита, свободного и пластинчатого, и включений карбидов (цементита). Феррит обладает низкой прочностью и высокой пластичностью. Цементит же имеет очень высокую твердость (около 800 НВ) и практически нулевую пластичность. При малом количестве цементитных включений пластическая деформация развивается относительно легко и твердость стали поэтому невысока.

Производство стали

Новейшие технологии добычи металлов позволяют получать сталь. Она образуется путем соединения углерода с железом и разными гелирующими элементами (если есть такая необходимость). Способов ее выплавки существует несколько. Вот самые высокопродуктивные и современные:

  1. Электроплавильный. Суть метода ─ выплавление качественной легированной стали с помощью дуговых печей. Подобные агрегаты характеризуются тем, что металл в них плавится очень быстро. Кроме того, возможно получение стали и сплавов любого состава. Неметаллические включения, сера и фосфор содержатся в них в небольшом количестве. Использование данного способа пока ограничено из-за высокой стоимости электроэнергии.
  2. Конверторный. Основа процесса – это продувка кислородом жидкого металла, окисление чугуна и трансформирование его в сталь. Из преимуществ метода следует отметить высокую производительность, низкую себестоимость стали, компактность и простоту устройства конвертера.

Диффузия азота и углерода в поверхностный слой стали

Насыщение поверхностного слоя изделия из стали азотом и углеродом, что и подразумевают под собой нитроцементация и цианирование, происходит за счет диффузии данных элементов во внутреннюю структуру стального сплава. В поверхностном диффузионном слое стального изделия при повышении температуры во время цианирования снижается количество азота, а количественное содержание углерода, наоборот, увеличивается.

Содержание углерода в диффузионном слое может увеличиваться непрерывно или только до определенного момента, а снижаться оно начинает только на последних этапах выполнения технологической операции. За счет такой особенности процесса диффузии углерода насыщение поверхностного слоя стального изделия данным элементом может фиксироваться при разных температурах выполнения цианирования. На степень насыщения большое влияние оказывают науглероживающие способности среды, в которой выполняется эта технологическая операция.

Температура цианирования влияет на глубину и состав нанесенного слоя

На параметры процесса совместной диффузии серьезно влияет азот, от которого, в частности, зависят:

  • глубина слоя металла, на которую будет происходить диффузия углерода;
  • степень насыщения такого слоя углеродом.

Между тем большое содержание азота в среде для цианирования может привести к тому, что диффузия углерода в структуру стали будет протекать недостаточно активно. Объясняется это тем, что азот, когда в рабочей среде для цианирования его содержится слишком много, способствует формированию на поверхности обрабатываемого изделия карбонитридных фаз или образований.

Процесс насыщения поверхностного слоя стального изделия азотом и углеродом при выполнении цианирования и нитроцементации протекает в две стадии, которые имеют мало общего, если сравнивать их кинетические показатели. Так, на первой стадии, которая может продолжаться от 60 до 180 минут, поверхностный слой изделия насыщается и азотом, и углеродом. На следующем этапе отдельные атомы азота, уже абсорбированные в структуру стали, могут десорбироваться, то есть перейти обратно в газовую фазу и выйти наружу через поверхность сплава. При протекании второй фазы цианирования наружный слой обрабатываемой стали продолжает насыщаться углеродом.

Установка для цианирования

Процесс уменьшения количества азота и увеличения содержания углерода в составе обрабатываемой стали, протекающий при увеличении температуры в ходе цианирования, имеет линейный характер. При этом такая линейность характерна лишь для верхнего слоя диффузионной зоны, в то время как в слоях стального изделия, располагающихся на большей глубине от его поверхности, она не наблюдается.

Характерной особенностью цианирования является то, что углерод проникает в обрабатываемое изделие на меньшую глубину, чем азот. Глубина проникновения этих элементов в структуру стали зависит преимущественно от микроструктуры обрабатываемого материала. Цианированные изделия небольшой толщины могут отличаться более высокой хрупкостью, если сравнивать их с деталями, обработанными по стандартной технологии цементации.

Микроструктура игольчатого мартенсита.

Свойства стали зависят от ее химического состава и структуры. С помощью термической обработки мы изменяем структуру, а следовательно, и свойства стали.

В качестве примера рассмотрим конструкционную сталь 45. Нагреем ее до аустенитного состояния, т. е. выше температуры точки 3 на диаграмме состояния (см. рис. 5). В результате такого нагрева, как мы уже знаем, атомная решетка железа из объемно-центрированной превратится в гранецентрированную. При этом весь углерод, который раньше входил в состав перлита в виде кристалликов химического соединения Fe 3 C (цементита), перейдет в состояние твердого раствора, т. е. атомы углерода окажутся внедренными в гранецентрированную решетку железа. Теперь резко охладим сталь, например, погружением в воду, т. е. проведем закалку. Температура стали быстро снизится до комнатной. При этом неминуемо должна произойти обратная перестройка атомной решетки — из гранецентрированной в объемно-центрированную. Но при комнатной температуре подвижность атомов углерода ничтожно мала, и они не успевают при быстром охлаждении выйти из раствора и образовать цементит. В этих условиях углерод как бы насильственно удерживается в решетке железа, образуя пересыщенный твердый раствор. При этом атомы углерода распирают решетку железа, создавая в ней большие внутренние напряжения. Решетка вытягивается вдоль одного направления так, что каждая ячейка из кубической превращается в тетрагональную, т. е. принимает форму прямоугольной призмы (рис. 9).

Рис. 9. Атомная решетка тетрагонального мартенсита:

светлые кружки — атомы железа; черный кружок — атом углерода

Такое превращение сопровождается и структурными изменениями. Возникает игольчатая структура, известная под названием мартенсит. Кристаллы мартенсита представляют собой очень тонкие пластины. В поперечном сечении, которое получается на микрошлифе, такие пластины под микроскопом представляются в виде игл (рис. 10). Мартенсит имеет очень высокую твердость и прочность. Это объясняется причинами, приведенными ниже.

Рис. 10. Микроструктура игольчатого мартенсита:

темные участки — мартенситные иглы; светлые — остаточный аустенит

1. Удельный объем мартенсита (т. е. объем, занимаемый единицей массы, например, 1 г) больше удельного объема аустенита, из которого этот мартенсит образуется, поэтому возникающая пластина мартенсита оказывает давление на окружающий ее со всех сторон аустенит. Последний же, сопротивляясь, создает ответное давление на мартенситную пластину. В результате образование мартенсита сопровождается возникновением больших внутренних напряжений, а это, в свою очередь, приводит к появлению большого числа дислокаций в кристаллах мартенсита. Если теперь закаленную сталь с мартенситной структурой попытаться деформировать, то многочисленные дислокации, двигаясь в различных направлениях, будут встречаться и блокировать друг друга, взаимно препятствуя их дальнейшему перемещению. Нечто подобное будет наблюдаться, если расставить кегли в правильном порядке, аналогично атомам в решетке, и катить между рядами в разных направлениях шары (вдоль, поперек, по диагонали) по аналогии с движением многочисленных дислокаций. Сталкиваясь, шары будут останавливаться, блокируя друг друга. Сказанное схематически поясняет рис. 11. Таким образом создаются многочисленные препятствия для движения дислокаций, что повышает сопротивление пластической деформации, а следовательно, увеличивает твердость и прочность стали.

Рис. 11. Схема пересечения и взаимной блокировки дислокаций.

Значком обозначены дислокации

2. Под действием больших внутренних напряжений кристаллы мартенсита разбиваются на отдельные блоки (рис. 12). Как можно видеть на этом рисунке, атомные плоскости, которые в пределах одного кристалла должны быть строго параллельными, в действительности оказываются многократно «надломленными» на очень небольшой угол. Такая структура напоминает мозаику, а возникающие блоки называются блоками мозаик.

Рис. 12. Блоки мозаик в мартенситном кристалле

Теперь поясним, почему это способствует повышению прочности и твердости. Представим себе несколько зерен, плотно прилегающих друг к другу, как это действительно имеет место в металле (рис. 13). В пределах каждого зерна атомы располагаются на определенном расстоянии друг от друга, образуя атомную решетку. Такая решетка в каждом из зерен оказывается произвольно повернутой на какой-то угол.

Рис. 13. Искажение атомной решетки на границах зерен

Очевидно, ближайшие к границе атомы, принадлежащие двум соседним зернам, не могут находиться на равном расстоянии друг от друга. В результате на границе зерен нарушается равновесное взаимодействие между атомами, и решетка в этих местах искажается. Искажения же решетки, как мы знаем, препятствуют перемещению дислокаций.

С учетом сказанного теперь уже нетрудно уяснить, почему мелкозернистая сталь обладает большей прочностью, чем крупнозернистая. Во-первых, при мелкозернистой структуре число границ зерен, которые лежат на пути движения дислокаций, больше, т. е. создается больше препятствий для их перемещения. Во-вторых, если предположить, что в одинаковых условиях нагружения в среднем в каждом зерне возникает одинаковое число дислокаций, то, очевидно, в одном и том же объеме металла при мелкозернистой структуре будет получаться больше дислокаций, чем в крупнозернистой (рис. 14). Как одно, так и другое способствует повышению прочности.

Рис. 14. Дислокации в мелкозернистой (а) и крупнозернистой (б) структурах

1. Тема и цель работы.

4. Режимы отжига, нормализации, закалки и отпуска сталей 45 и У10.

5. Результаты измерения твердости сталей 45 и У8 после различных видов термической обработки в соответствии с заданиями.

Лабораторная работа № 8

СТРУКТУРА СТАЛЕЙ В НЕРАВНОВЕСНОМ СОСТОЯНИИ

: изучение влияния закалки и отпуска на структуру углеродистых сталей, установление связи между структурой термически обработанных сталей, их диаграммами изотермического распада аустенита и механическими свойствами.

Эксплуатационные свойства стали зависят от ее химического состава и структуры. Желаемое изменение структуры, а, следовательно, и механических свойств, достигается термической обработкой. Различные структуры стали формируются в процессе ее охлаждения из аустенитного состояния.

Незначительная степень переохлаждения или весьма медленное охлаждение обеспечивает получение равновесных структур (лабораторная работа № 7). Чем больше степень переохлаждения аустенита или скорость его охлаждения, тем при более низких температурах происходит превращение аустенита, тем более неравновесная структура получаемой стали. Сталь при этом может приобрести структуры сорбита, троостита, игольчатого троостита (бейнита) илимартенсита.

Закалка, обеспечивающая получение наиболее неравновесной структуры стали – мартенсита, сопровождается возникновением больших внутренних напряжений. Поскольку эти напряжения могут вызвать коробление или разрушение детали, их уменьшают путем отпуска.

Рис. 8.1. Микроструктура закаленной низкоуглеродистой (0,15 % С) стали. Х200

При отпуске из структур закаленной стали образуются структуры отпуска (троостит, сорбит, перлит). Рассмотрим подробнее структуры углеродистых сталей, образующиеся при закалке, а затем при отпуске. Получаемая структура стали зависит не только от скорости охлаждения аустенита, но и от температуры нагрева и химического состава стали.

Низкоуглеродистая сталь, содержащая до 0,15 % углерода, нагретая выше температуры А С3 и закаленная в воде, имеет структуру малоуглеродистого мартенсита (рис. 8.1).

Рис. 8.2. Изменение температурного интервала мартенситного превращения — а

(область М н – М к

заштрихованная, сплошная линия –
t комн
) и массовой доли остаточного аустенита –
б
(возможная доля
А ост
, заштрихована) от содержания углерода в стали

Мартенсит

это пересыщенный твердый раствор углерода в a-железе. Он содержит столько углерода, сколько было в аустените, т.е. в стали. Мартенсит имеет тетрагональную объемно центрированную решетку. С увеличением содержания углерода тетрагональность кристаллической решетки мартенсита, твердость и прочность закаленной стали возрастают. Он имеет характерное пластинчатое, под микроскопом – игольчатое, строение. Рост пластин мартенсита происходит со скоростью около 1000 м/с по бездиффузионному механизму. Они ориентируются по отношению друг к другу под углом 60 и 120 о в соответствии с определенными кристаллографическими плоскостями аустенита пределах аустенитного зерна, и чем выше температура нагрева под закалку и чем, следовательно, крупнее зерно аустенита, то тем более крупноигольчатым и хрупким он будет.

Твердость мартенсита весьма высока, например, для среднеуглеродистой стали – 55…65 HRC, (НВ = 5500…6500 МПа). Превращение аустенита в мартенсит сопровождается увеличением удельного объема стали, поскольку мартенсит имеет больший объем, чем аустенит. В сталях, содержащих более 0,5 % С, не происходит полного превращения аустенита в мартенсит и сохраняется так называемый остаточный аустенит. Чем выше содержание углерода в стали, тем ниже температурный интервал (М н – М к

) мартенситного превращения (рис. 8.2, а

)и больше остаточного аустенита (рис. 8.2, б). При обработке холодом можно достичь температуры
М к
и обеспечить переход аустенита остаточного в мартенсит.

В доэвтектоидных сталях, закаленных с оптимальных температур (на 30…50 о С выше А С3

), мартенсит имеет мелкоигольчатое строение (рис. 8.3).

Заэвтектоидные стали подвергают неполной закалке (температура нагрева на 30…50 0 С превышает А С1

). Сталь приобретает структуру мартенсита с равномерно распределенными зернами вторичного цементита и остаточного аустенита (5…10 % А ост

.) (рис. 8.4).

Рис. 8.4. Микроструктура закаленной заэвтектоидной стали:

мартенсит, аустенит остаточный, зерна цементита вторичного. Х400

Рис. 8.5. Микроструктура перегретой закаленной стали:

мартенсит крупноигольчатый, аустенит остаточный. Х400

Рис. 8.6. Микроструктура троостита закалки:

увеличение 500; б – увеличение 7500

Закалка на мартенсит обеспечивается охлаждением углеродистых сталей в воде со скоростью выше критической. При более медленном охлаждении стали из аустенитного состояния, например, в масле со скоростью, меньше критической, аустенит при температурах 400…500 о С распадается на высокодисперсную феррито-цементитную смесь пластинчатого строения, называемую трооститом закалки
.
Троостит – структура с повышенной травимостью (рис. 8.6, а) и характерным пластинчатым строением (рис. 8.6, б).

Еще более медленное охлаждение стали (например, в струе холодного воздуха) вызывает при температурах 500…650 0 С распад аустенита на более грубую, чем троостит, феррито-цементитную смесь также пластинчатого строения, называемую сорбитом закалки.

По мере уменьшения скорости охлаждения и перехода от структур мартенсита к трооститу, сорбиту и, наконец, перлиту твердость стали уменьшается.

Рис. 8.7. Микроструктура троостита (а)и сорбита (б) отпуска. Х7500

Сталь с неравновесной мартенситной структурой при нагреве получает равновесную перлитную структуру. При нагреве закаленной стали до температур 150…250 о С (низкий отпуск) образуется структура кубического (отпущенного) мартенсита
.
Увеличение температуры отпуска (300…400 о С – средний отпуск и 550…650 о С – высокий отпуск) ведет к появлению структуры зернистых
троостита
и
сорбита отпуска
соответственно. Эти структуры показаны на рис. 8.7, а и 8.7, б. Сталь со структурой троостита с твердостью 35…45 HRC (НВ = 3500…4500 МПа) обеспечивает максимальную упругость, необходимую, как правило, при изготовлении рессор, пружин, мембран. Сталь со структурой зернистого сорбита отпуска (25…35 HRC) обладает наилучшим комплексом механических свойств и высокой конструкционной прочностью. Именно поэтому закалку и высокий отпуск называют термическим улучшением.

Нагрев закаленной стали вплоть до температуры А С1

(727 о С) обеспечивает получение равновесной структуры зернистого перлита, т.е. менее дисперсной, чем сорбит и троостит, ферритно-цементитной смеси. Если сталь является доэвтектоидной, в ней обособляются зерна избыточного феррита.

Таким образом, при переохлаждении аустенита по мере увеличения скорости охлаждения образуются перлит, сорбит, троостит пластинчатого строения и мартенсит закалки, а при распаде мартенсита по мере повышения температуры отпуска формируются мартенсит кубический (отпущенный), троостит, сорбит, перлит зернистого строения.

Зернистые структуры, образующиеся при отпуске, характеризуются более высокой пластичностью и ударной вязкостью по сравнению с аналогичными структурами пластинчатого строения.

Порядок выполнения работы

1. Ознакомиться с теоретическими сведениями и в случае необходимости, определяемой преподавателем, сдать теоретический зачет по теме.

2. Вычертить двойную диаграмму состояния железоуглеродистых сплавов, ее участок, соответствующий сталям и нанести на него температурные интервалы нагрева сталей под термическую обработку.

3. Начертить диаграммы изотермического распада аустенита для исследуемых сталей и нанести на них режимы термической обработки (температуры изотермических выдержек, скорости охлаждения).

4. Изучить и зарисовать микроструктуры термообработанных сталей, указать их твердость.

5. Сделать выводы и отчет по работе в соответствии с заданиями.

1. Что называется мартенситом? Каковы его структура и свойства?

2. Какая фаза называется остаточным аустенитом? Причина появления остаточного аустенита в закаленной стали? Условия, от которых зависит количество остаточного аустенита в структуре закаленных сталей? Влияние остаточного аустенита на свойства закаленных сталей.

3. Оптимальные температуры нагрева под закалку доэвтектоидных и заэвтектоидных сталей. Каковы структура и свойства сталей после закалки?

4. Что называется сорбитом, трооститом закалки, сорбитом и трооститом отпуска? Условия образования этих структур. Каковы их структура и свойства?

5. Что называется низким, средним и высоким отпуском?

1. Тема и цель работы.

2. Краткие ответы на контрольные вопросы.

3. Область диаграммы состояния сплавов системы Fe – C

, относящаяся к сталям с температурными интервалами нагрева сталей под термическую обработку.

4. Диаграммы изотермического распада аустенита для исследуемых сталей с режимами термической обработки (температуры изотермических выдержек, скорости охлаждения).

5. Результаты микроструктурного анализа сплавов, выполненного в соответствии с заданиями.

Лабораторная работа № 9

Технологии придания большей твердости металлам и сплавам совершенствовались в течение долгих веков. Современное оборудование позволяет проводить термическую обработку таким образом, чтобы значительно улучшать свойства изделий даже из недорогих материалов.

Типы азотируемых сталей

Обработке по технологии азотирования могут подвергаться как углеродистые, так и легированные стали, характеризующихся содержанием углерода в пределах 0,3–0,5%. Максимального эффекта при использовании такой технологической операции удается добиться в том случае, если ей подвергаются стали, в химический состав которых входят легирующие элементы, формирующие твердые и термостойкие нитриды. К таким элементам, в частности, относятся молибден, алюминий, хром и другие металлы, обладающие подобными характеристиками. Стали, содержащие молибден, не подвержены такому негативному явлению, как отпускная хрупкость, которая возникает при медленном остывании стального изделия. После азотирования стали различных марок приобретают следующую твердость:

Твердость сталей после азотирования

Легирующие элементы, находящиеся в химическом составе стали, увеличивают твердость азотированного слоя, но вместе с тем уменьшают его толщину. Наиболее активно на толщину азотируемого слоя оказывают влияние такие химические элементы, как вольфрам, молибден, хром и никель.

38Х2МЮА

Это сталь, которая после азотирования отличается высокой твердостью наружной поверхности. Алюминий, содержащийся в химическом составе такой стали, снижает деформационную стойкость изделия, но в то же время способствует повышению твердости и износостойкости его наружной поверхности. Исключение алюминия из химического состава стали позволяет создавать из нее изделия более сложной конфигурации.

40Х, 40ХФА

Данные легированные стали используются для изготовления деталей, применяемых в области станкостроения.

30Х3М, 38ХГМ, 38ХНМФА, 38ХН3МА

Эти стали служат для производства изделий, подвергающихся в процессе своей эксплуатации частым циклическим нагрузкам на изгиб.

30Х3МФ1

Из данного стального сплава изготавливаются изделия, к точности геометрических параметров которых предъявляются высокие требования. Для придания более высокой твердости деталям из данной стали (это преимущественно детали топливного оборудования) в ее химический состав могут добавлять кремний.

Характеристики некоторых сталей после азотирования

Цементуемые легированные стали (ГОСТ 4543-71)

Цементуемые стали – это низкоуглеродистые (до 0,25 С), низко- (до 2,5%) и среднелегированные (2,5-10% суммарное содержание легирующих элементов) стали. Эти стали (табл. 4) предназначены для деталей машин и приборов, работающих в условиях трения и испытывающих ударные и переменные нагрузки. Работоспособность таких деталей зависит от свойств сердцевицы и поверхностного слоя металла. Цементуемые стали насыщают с поверхности углеродом (цементуют) и подвергают термической обработке (закалке и отпуску). Такая обработка (см. гл. V) обеспечивает высокую поверхностную твердость (HRC 58-63) и сохраняет требуемую вязкость и заданную прочность сердцевины металла.

Таблица 4. Цементуемые легированные стали

Хромоникелемолибденованадиевые стали

Кроме молибдена, добавляют ванадий, который способствует получению мелкозернистой структуры. Стали марок 38ХН3МФ и 36Х2Н2МФА применяют для деталей больших сечений (1000…1500 мм и более). В сердцевине после закалки образуется бейнит, а после отпуска — сорбит. Стали обладают высокой прочностью, пластичностью и вязкостью, низким порогом хладноломкости. Молибден, присутствующий в стали, повышает ее теплостойкость. Эти стали можно использовать при температурах 400…450 С при изготовлении наиболее ответственных деталей турбин, компрессоров, для которых требуется материал особой прочности в крупных сечениях (поковки валов и цельнокованных роторов турбин, валы высоконапряженных турбовоздуходувных машин, детали редукторов и т.д.).

Пружинно — рессорные стали >Дальше >

Улучшаемые стали

Улучшаемые стали — это конструкционные материалы:

  1. углеродистые;
  2. малолегированные;
  3. среднелегированные.
IIIIII
Углеродистыемалолегированныесреднелегированные
ГОСТ 1050-82ГОСТ 4543-71ГОСТ 4543-71
30-60Морганцовистые 30Г-65Г, хромистые 30Х-40Х38Х2МЮА и другие, но с содержанием углерода не больше 0,4%
Хроммолибденовые 30ХМ-40ХМ, 50Г2
Многокомпонентные 30-40ХГСА, 30-40ХМФА45ХН2МФА

Легированные стали можно разделить на пару категорий:

  • хромистые;
  • хромомарганцевые (хромансиль);
  • никелесодержащие;
  • с добавкой вольфрама и молибдена.

Особо стоит отметь плохую свариваемость улучшаемых металлов. Она выполняется при воплощении отдельных мер, сохраняющих требуемые характеристики.

Если вы нашли погрешность, пожалуйста, выдилите фрагмент текста и нажмите Ctrl+Enter.

Сталь марки 45: применение

Сталь 45 марки широко используется в промышленности, в частности, она идет на изготовление валов (распределительных и коленчатых), шестерней, блиндажей, шпинделей, кулачков, цилиндров и т.п. 45-й металл позволяет получать нормализованные, улучшаемые поверхности, для которых характерна повышенная прочность. При необходимости на порядок улучшить характеристики готовых изделий технологи применяют металл марки 45, легированный хромом – 45х (доля хрома 0,8-1,1%), или литейную сталь 45л.

Сталь 45 считается материалом трудносвариваемым, однако ему не свойственна отпускная хрупкость. Это достаточно весомый фактор при создании конструкций сложных форм и конфигураций. Сварка данного металла производится 2 способами: КТС и РДС.

Определение твердости металла

Метод Бринелля.

Сущность метода заключается во вдавлива­нии шарика (стального или из твердого спла­ва) в образец (изделие) под действием силы, приложенной перпендикулярно поверхности образца в течение определенного времени, и измерении диаметра отпечатка после снятия силы.

Твердость по Бринеллю обозначают симво­лом НВ или HBW:

НВ — при применении стального шарика (для металлов и сплавов твердостью менее 450 единиц);

HBW — при применении шарика из твер­дого сплава (для металлов и сплавов твердо­стью более 450 единиц).

Символу НВ (HBW) предшествует число­вое значение твердости из трех значащих цифр, а после символа указывают диаметр шарика, значение приложенной силы (в кгс), продолжительность выдержки, если она отли­чается от 10 до 15 с.

250 Н В 5/750 — твердость по Бринеллю 250, определенная при применении стального шарика диаметром 5 мм при силе 750 кгс

(7355 Н) и продолжительности выдержки от 10 до 15 с;

575 HBW 2,5/187,5/30 — твердость по Бринеллю 575, определенная при применении шарика из твердого сплава диаметром 2,5 мм при силе 187.5 кгс (1839 Н) и продолжитель­ности выдержки 30 с.

При определении твердости стальным ша­риком или шариком из твердого сплава диа­метром 10 мм при силе 3000 кгс (29420 Н) и продолжительности выдержки от 10 до 15 с твердость по Бринеллю обозначают только числовым значением твердости и символом НВ или HBW.

Пример обозначения: 185 НВ, 600 HBW.

Метод Виккерса.

Метод измерения твердости черных и цветных металлов и сплавов при нагрузках от 9,807 Н (1 кгс) до 980,7 Н (100 кгс) по Виккерсу регламентирует ГОСТ 2999 — 75* (в редакции 1987 г.).

Измерение твердости основано на вдавливании алмазного наконечника в форме правильной четырехгранной пирамиды в образец (изделие) под действием силы, приложенной в течение определенного времени, и измерении диагоналей отпечатка, оставшихся на поверхности образца после снятия нагрузки.

Твердость по Виккерсу при условиях испытания — силовое воздействие 294,2 Н (30 кгс) и время выдержки под нагрузкой 10 … 15 с, обозначают цифрами, характеризующими величину твердости, и буквами HV.

Пример обозначения: 500 HV — твердость по Виккерсу, полученная при силе 30 кгс и времени выдержки 10 … 15 с.

При других условиях испытания после букв HV указывают нагрузку и время выдержки.

Пример обозначения: 220 HV 10/40 — твердость по Виккерсу, полученная при силе 98,07 Н (10 кгс) и времени выдержки 40 с.

Общего точного перевода чисел твердости, измеренных алмазной пирамидой (по Виккерсу), на числа твердости по другим шкалам или на прочность при растяжении не существует. Поэтому следует избегать таких переводов, за исключением частных случаев, когда благодаря сравнительным испытаниям имеются основания для перевода.

Метод Роквелла.

Метод измерения твердости металлов и сплавов по Роквеллу регламентирует ГОСТ 9013 — 59* (в редакции 1989 г.).

Сущность метода занимается во внедрении в поверхность образца (или изделия) алмазного конусного (шкалы А. С, D) или стального сферического наконечника (шкалы В, Е, F, G. Н, К) под действием последовательно прилагаемых предварительной и основной сил и в определении глубины внедрения наконечника после снятия основной силы.

Твердость по Роквеллу обозначают символом HR с указанием шкалы твердости, которому предшествует числовое значение твердости из трех значащих цифр.

Пример обозначения: 61,5 HRC — твердость по Роквеллу 61,5 единиц по шкале С.

С целью обеспечения единства измерений введен государственный специальный эталон для воспроизведения шкал твердости Роквелла и Супер-Роквелла и передачи их при помощи образцовых средств измерений (рабочих эталонов) рабочим средствам измерений, применяемым в стране (ГОСТ 8.064 — 94).

Диапазоны шкал твердости по Роквеллу и Супер-Роквеллу, воспроизводимых эталоном, приведены в табл. 1

1. Диапазоны шкал твердости по Роквеллу и Супер-Роквеллу, воспроизводимых эталоном по ГОСТ 8.064 – 94

ШкалыДиапазоны измерений
РоквеллаА70 — 93 HRA
В25 — 100 HRB
С20 — 67 HRC
Супер-РоквеллаN1570 — 94 HRN 15
N3040 — 86 HRN 30
N4520 — 78 HRN 45
Т1562 — 93 HRT 15
Т3015 — 82 HRT 30
T4510 — 72 HRT 45

2. Сравнение чисел твердости металлов и сплавов по различным шкалам

Виккерс HVБринелль НВРоквелл HRBσв, МПаВиккерс HVБринелль НВРоквелл HRCσв,
МПа
10010052,433324524521,2815
10510557,535025025022,1835
11011060,936225525523,0855
11511564,138226026023,9865
12012067,040226526524,8880
12512569,841027027025,6900
13013072,443027527526.4910
13513574,745028028027,2930
14014076,647028528528.0950
14514578,348029029028,8970
15015079,950029529529,5980
15515581,452030030030,21000
16016082,853031031031,61030
16516584,255032031933,01060
17017085,656533032834,21090
17517587,058034033635,31120
18018088,360035034436.31150
18518589,562036035237,21180
19019090,664037036038,11200
19519591,765038036838,91230
20020092,866539037639,71260
20520593,868540038440.51290
21021094,869541039241,31305
21521595,771542040042,11335
22022096,673543040842,91365
22522597,574544041643,71385
23023098,476545042544,51410
23523599,278546043445,31440
240240100,079547044346,11480

Табл. 2 Продолжение

Виккерс HVРоквелл HRCВиккерс HVРоквелл HRCВиккерс HVРоквелл HRCВиккерс HVРоквелл HRC
49047,560054,272060,284065,1
50048,262055,474061,186065,8
52049,664056,576062,088066,4
54050,866057,578062,890067,0
5605268058,480063,6111469
58053,170059,382064,3122072

Примечание. Погрешность перевода чисел твердости по Виккерсу в единицы Бринелля ± 20 НВ; в единицы Роквелла — до ± 3 HRC (HRB); значения σв до ± 10 %.

В табл. 2 приводятся приближенные соотношения между числами твердости, определенные различными методами. С достаточной степенью точности для конструкционных углеродистых и легированных сталей перлитного класса, для которых 150 НВ, можно принять σ0,2 = 0.367 НВ, для стали НВ 150) σв * ≈ 0,345 НВ. Для более точного пересчета НВ на HRC рекомендуется пользоваться ГОСТ 22761-77.

Хромоникелевые стали

Обладают высокой прокаливаемостью, прочностью, хорошей вязкостью. Применяются для изготовления крупных изделий сложной конфигурации, работающих при вибрационных и динамических нагрузках. Никель, особенно в сочетании с молибденом, сильно снижает порог хладноломкости. Чем выше содержание никеля, тем ниже допустимая температура применения стали и выше ее сопротивления хрупкому разрушению. Рекомендуется вводить до 3 % Ni. При большем содержании получается много остаточного аустенита. Для тяжелонагруженных деталей с диаметром сечения до 70 мм используют стали марок 40ХН, 45ХН, 50ХН.

Механические свойства после улучшения

У улучшаемых углеродистых сталей невысокая прокаливаемость. Поэтому стали с 30 по 50 используются для изготовления деталей диаметром не больше 10 мм. После улучшения для них характерны следующие параметры:

  • ϬВ (предел прочности) — 600…700 МПа;
  • KCU (ударная вязкость) – 0,4…0,5 МДж/м2;
  • HRC (твердость) – 40…50.

Если элементу по условиям эксплуатации требуется большая поверхностная прочность, то его подвергают закалке токами высокой частоты (ТВЧ).

Для изделий диаметром более 30 мм для придания качеств, полученных улучшением применяются легированные металлы. При высокой скорости закаливания, большего критического диаметра наряду с мелким зерном, у них наблюдаются малые остаточные напряжения после ТО и высокая стойкость к отпуску.

Так, сплав железа, имеющий в своем составе хром и никель, после улучшения имеет следующие параметры:

  • ϬВ (предел прочности) — 1020 МПа;
  • Ϭ-1 (предел усталости) – 14 Мпа;
  • ψ% (поперечное сужение) – 41%;
  • HВ (твердость) – 241.

Кроме широко используемых легирующих элементов для измельчения зерна используют титан, ниобий и цирконий. Для повышения прокаливаемости применяют бор.

Виды обработки стали: отжиг

Отжиг – это один из способов высокотемпературной обработки стали, с которым отлично справится установка ТВЧ. В основе его принципа лежит нагрев металла до заданной температуры, выдержка, а затем медленное охлаждение. Производится отжиг стали для того, чтобы выровнять структуру металла, улучшить пластичность, а также уменьшить напряжение металла, если перед отжигом производились какие-либо другие процессы термической обработки. Отжиг, как и другие виды термообработки стали, подразделяется на подтипы:

  1. Отжиг первого рода. Во время произведения данного вида термической обработки не происходит перекристаллизация, называемая фазовыми превращениями. Если данные превращения и произведутся, то на итоговые результаты вовсе не скажутся. Производиться отжиг первого рода может при температуре, которая будет ниже или выше температуры фазовых превращений.
  2. Диффузионный отжиг. По-другому называется гомогенизацией. Во время произведения данного вида отжига происходит длительная выдержка изделия в среде, имеющей температуру выше 950 градусов. Диффузионный отжиг позволяет устранить или уменьшить химическую неоднородность стали, которая негативно сказывается на металле, снижая его пластичность и повышая хрупкость. Время выдержки изделия при произведении гомогенизации определятся исходя из параметров и марки стали, однако колеблется в пределах 50-100 часов.
  3. Отжиг второго рода. Во время произведения отжига второго рода сталь нагревается до температуры, которая будет выше точек АС1 или АС3 (смотрите изображение 1), затем происходит выдержка и медленное охлаждение. В результате медленного охлаждения фазовые превращения внутри металла приводят к получению почти равновесного состояния структуры металла.
  4. Полный отжиг. Еще данный тип отжига называют высоким. Производится он при нагреве металла под температурой, которая будет на 30-50 градусов ниже, чем верхняя критическая точка АС3, также изделие выдерживается при этой температуре, а затем медленно охлаждается вместе с установкой. Полный отжиг позволяет произвести полную перекристаллизацию металла, получив перлитную структуру.
  5. Неполный отжиг. До термической обработки сталь имеет слишком высокую твердость и тяжело поддается обработке. Внутри структуры имеется напряжение металла. Неполный отжиг применяется для устранения этого недостатка в виде уменьшения твердости металла. При неполном отжиге сталь нагревают, придерживаясь интервала температур между точкам АС1 и АС3. После произведения неполного отжига металл полностью избавляется от внутреннего напряжения, а сталь становится более податливой.
  6. Сфероидизирующий отжиг. Высокоуглеродистая заэвтектоидная сталь, обладающая структурой пластинчатого перлита очень плохо поддается обработке при помощи режущих инструментов, поэтому должен быть произведен сфероидизирующий отжиг для изменения структуры на зернистый перлит. Для это металл нагревают ниже точки АС1, выдерживают при этой температуре несколько часов, а затем остужают. На изображении 2 вы можете заметить схему отжига на зернистый перлит.
  7. Изометрический отжиг. Производится для получения ферритно-перлитовой смеси из аустенита при постоянной температуре. Изометрический отжиг предусматривает нагрев стали на 30-50 градусов выше точек АС3 или АСm, выдержку при соблюдении этой температуры и дальнейшее охлаждение до температуры перлитного превращения, которая как правило равняется 620-680 градусов, а затем снова выдерживают до конечного превращения аустенита в перлит.
  8. Рекристализационный отжиг. По-другому называется разупрочняющим отжигом. Рекристализационный отжиг производится в отношении изделий, которые были подвержены наклепу металла, и кристаллическая решетка которых исказилась. Разупрочняющий отжиг производится при температуре ниже точки АС1, то есть 630-650 градусов.
  9. Светлый отжиг. Производится для того, чтобы сохранить блестящую и чистую поверхность стальных листов, лент, прутков и т.п.

Как видите, существует немало видов отжига, позволяющих добиться нужных изменений в структуре металла. Установка ТВЧ способна с высокой точностью и хорошим качеством производить отжиг стали, приводя ее структуру в нужное состояние.

Цементация низкоуглеродистой стали

Хотя низкоуглеродистая сталь является относительно мягкой, с помощью процесса, которые называется цементацией, ее можно сделать значительно тверже. Этот процесс термической обработки буквально заставляет сталь поглощать углерод из твердой, жидкой или газообразной среды богатой углеродом. Обычно углерод поглощается только поверхностным слоем стали. Это дает очень твердый поверхностный слой детали, что полезно, например, для износостойкости. Сердцевина детали остается малоуглеродистой и поэтому пластичной и вязкой. Это весьма благоприятно для надежности и стойкости к хрупкому разрушению для детали в целом

Какая температура цианирования лучше

Важно учитывать многие факторы, которые будут влиять на эксплуатацию прибора. При низкотемпературном цианировании металл нагревается на минимальных показателях

Горячее цианирование предлагает использование ванн со средней температурой около 850 градусов.

В среднем цианирование занимает до 6 часов, поэтому первый результат видно достаточно быстро. На низких температурах происходит меньше деформации, поэтому изделия сохраняют свою геометрию и функциональность. В отдельных случаях бывает недостаточно низких температур, поэтому рекомендуется использование цианированных деталей горячим способом.

Почему понадобилось улучшать свойства металлов?

Дело в том, что на сегодняшний основным способом придать стали (и другим металлам) полезные свойства вроде прочности, износостойкости и так далее является процесс под названием «легирование». Легирование — это, говоря простым языкаом, добавление в состав металлов дополнительных веществ (примесей) для изменения физических и химических свойств требуемого материала. Сегодня традиционные методы легирования, как сообщается, исчерпали свой технологический потенциал. Поэтому металлы все чаще подвергаются воздействию пучков заряженных частиц, потоков плазмы и лазерного излучения для того, чтобы добиться нужных результатов.

Ионная имплантация (ионное легирование) является одним из методов, позволяющих изменять элементный состав, микроструктуру и морфологию поверхностных слоев, определяющих такие свойства, как износостойкость, коррозионная стойкость, прочность и др. Томские ученые разработали новый метод ионной имплантации, который резко расширяет область применения метода в промышленности. По словам заведующего лабораторией высокоинтенсивной ионной имплантации Александра Рябчикова, им удалось экспериментально повысить износостойкость нержавеющей стали более, чем в сто раз.

Экспериментальная установка по увеличению прочности стали

Кроме того, данная технология позволяет изготавливать детали и изделия с необходимыми удельными поверхностными свойствами. Например, барьерный слой (то есть внешний слой изделия) образуется путем ионного легирования циркония титаном, что предотвращает проникновение кислорода. Это может быть использовано для увеличения срока службы и безопасности при эксплуатации, например, на атомных станциях и использовании таких металлов в ядерных реакторах.

Таким образом можно будет, как считают ученые, добиться более хороших результатов при создании высокопрочных и износостойких металлов. Полученные в лаборатории результаты подтверждают эту гипотезу. Созданные образцы стали имеют поверхностный слой глубиной в несколько сотен микрометров, в то время как другие методы ионного легирования позволяют получить глубину лишь в несколько десятков нанометров. Авторы подчеркивают, что применение новой технологии позволит изготавливать металлы с уникальными свойствами, что даст возможность в несколько десятков раз повысить качество выпускаемой продукции.

Выводы

Описанные выше современные достижения компаний, являющихся членами Института стали VDEh, касаются в основном повышения безопасности и стабильности процессов, улучшения качества стали, реализации модульного принципа организации производства, обеспечения производственной гибкости предприятий. Стратегия развития компаний в традиционном формате должна ставить целью дальнейшее укрепление их позиций на мировом рынке. В будущем литье тонких слябов останется чрезвычайно перспективной областью приложения научных и производственных усилий. Необходимо улучшать эту технологию и внедрять в повседневную производственную практику. Представляет большой интерес наблюдение за работой сооружаемых в настоящее время установок литья тонких полос и прямого непрерывного литья полос. Однако только будущие исследования позволят окончательно оценить экономиические преимущества этих процессов.

  • Т. Болендер
  • Р. Фандрих
  • Х.А. Юнгблют
  • Г. Кемпер
  • Р. Мюллер
  • Х.П. Нарцт
  • Г. Ней
  • Х. Шнитцер

Несмотря на продолжающийся мировой финансовый и экономический кризис, в ближайшие годы ожидается дальнейший рост производственных мощностей по непрерывному литью заготовок традиционного профиля – блюмов, слябов, сортовых и балочных. Одновременно получат дальнейшее развитие новые технологические процессы литья, такие, как литье тонких слябов и тонких полос. Все технологические процессы непрерывного литья характеризуются разными потенциальными возможностями с точки зрения соответствия требованиям заказчиков, качества продукции и производительности. Для того чтобы технология оставалась конкурентоспособной, она должна постоянно совершенствоваться. Исходя из этого, можно определить основные задачи, стоящие перед металлургией в будущем: производство сверхчистых сталей с отличной микроструктурой и высоким качеством поверхности; разработка новых марок сталей; стратегия бездефектной продукции; системы гарантированного качества в сочетании с высокой производительностью и хорошей производственной гибкостью.

  • непрерывное литье,
  • качество,
  • микроструктура,
  • сляб,
  • полоса,
  • кристаллизатор,
  • оборудование,
  • огнеупоры,
  • производительность.
  1. Datenbank “Plantfacts” des Stahlinstituts VDEh, Düsseldorf; Stand: 30. Juni 2008.
  2. Ney, G.; Korte, E.; Richter, K.J.; Rüppel, R.: stahl u. eisen 125 (2005) Nr. 11, S. 51/62.
  3. Kemper, G.: Beitrag zur Reibung zwischen Strang und Kokille beim Knüppelstrangguss von Stahl, RWTH Aachen, 1991 (Dr.-lng.-Diss.).
  4. Hodnik, P.; Fürst, C.; Illie, S.; Etzelsdorfer, K.; Priemetshofer, C.: Operational results on casting 335 mm thickness slab on a bow-type caster at voestalpine Stahl Linz, Proc. 6. Europ. Conf. on Continuous Casting 2008, 3.–6. Juni 2008, Riccione, Italy.
  5. Kaiser, H..P.; Kemper, G.; Liebisch, K.-O.: New SlabbCasting Technologies at the Hüttenwerke Krupp Mannesmann GmbH Steel Plant, Proc. 4. Europ. Continuous Casting Conf. 2002, 14.–16. Okt. 2002, Birmingham, UK.
  6. Thome, R.; Ostheimer, V.; Ney, G.; Rüppel, F.; Girgensohn, A.; Plociennik, U.; Schmitz, W.; Geerkens,C.; Becker, M.: stahl u. eisen 127 (2007) Nr. 2, S. 43/30.
  7. Schueren, M.; Campbell, P.; Blejde, W.; Mahapatra, R.: Iron & Steel Techn. (2008) Nr. 7, S. 65/70.
  8. Fisher Jr., F.; Schueren, M.; Campbell, P.; McQuillis, G.; Bleijde, W.; Mahapatra, R.: The Castriprocess: commercialized thin strip casting of steel, Proc. 3. Internat. Conf. on New Developments in Metallurgical Process Technologies, 11.–15. Juni 2007, Düsseldorf, S. 200/207.
  9. Wans, J.; Hennig, W.; Bilgen, C.; Neumann, N.: Endabmessungsnahe Gieβtechnologien CSP – DSC – TRCi – Gieβverfahren für innovative Stahlwerkstoffe, Proc. 26. Verformungskundliches Kolloquium, 10.–13. März 2007, Donnerbach, Österreich, S. 91/104.
  10. Schäperkötter, M.; Eichholz, H.; Kroos, J.; Niemeyer, M.; Schmidt-Jürgensen, R.; Spitzer, K.-H.: Direct Strip Casting (DSC) – an option for the production of HSD steel grades, Proc. 1. Internat. Conf. SuperrHighhStrength Steels, 2.–4. Nov. 2005, Rom, Italien, S. 188.
  11. Fischer, H.: Belt strip technology – broadening the steel portfolio, Proc. IISII41 – Steel: Innovative Solutions for Energy and Resource Challenges, 7.–10. Okt. 2007, Berlin.
  12. Jungbauer, A.; Penn, J.; Lanschützer, J.; Ebner, H.: Revue de Métallurgie-CIT (2008) Nr. 4, S. 206/11.
  13. Penn, J.; Jungbauer, A.; Ebner, H.; Hügel, N.; Wahl, H.: Liquirob – a new answer for caster safety, Proc. 6. Europ. Conf. on Continuous Casting 2008, 3.–6. Juni 2008, Riccione, Italien.
  14. Schwinn, V.; Schütz, W.; Flüss, P.; Bauer, J.: Prospects and stateeofftheeart of TMCP: steel plates for structural and linepipe applications, Thermec’ 2006, 4.–8. Juli 2006, Vancouver, Kanada.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]