Авиационный керосин, марки и требования к качеству

Химический состав и свойства керосина

Химический состав полученного при крекинге керосина может меняться в зависимости того, производной из какой нефти он является, а также используемой технологии ее переработки и дальнейшей очистки керосинового дистиллята. В среднем этот нефтепродукт может включать:

  • алифактические углероды в процентном соотношении от 20 до 60;
  • нафтеновые углероды в процентном соотношении от 20 до 50;
  • бициклические ароматические углероды в процентном соотношении от 5 до 25;
  • непредельные углероды в процентном соотношении до 2.

При более высоких температурах процессов получения керосина

количество бициклических ароматических углеродов возрастает. В тоже время, их более низкое содержание в готовом нефтепродукте способствует повышению интенсивности и яркости пламени. Высокое процентное содержание тяжелых фракций приводит к ухудшению горения этого нефтепродукта, поэтому после его получения производится специальная химическая и гидроочистка.

Следует учитывать также высокие показатели испаряемости данного продукта. При концентрации в воздухе превышающей 300 мг/м3 существует угроза отравления парами керосина. Это накладывает определенные требования на условия хранения данного нефтепродукта.

Ракетное топливо

Керосин применяется в ракетной технике в качестве углеводородного горючего и одновременно рабочего тела гидромашин. Использование керосина в ракетных двигателях было предложено Циолковским в 1914 году. В паре с жидким кислородом используется на нижних ступенях многих РН: отечественных — «Союз», «Молния», «Зенит», «Энергия»; американских — серий «Дельта» и «Атлас». Для повышения плотности, и, тем самым, эффективности ракетной системы, топливо часто переохлаждают. В СССР в ряде случаев использовался синтетический заменитель керосина, синтин, позволявший поднять эффективность работы двигателя, разработанного под керосин, без существенных изменений в конструкции. В перспективе предполагается замена керосина на более эффективные углеводородные горючие — метан, этан, пропан и т. п.

Основные теплофизические характеристики керосина

Керосин — это средний дистиллят процесса нефтепереработки, определяемый как доля сырой нефти, которая кипит при температуре от 145 до 300°C. Керосин может быть получен путём перегонки сырой нефти (прямогонный керосин) или из крекинга более тяжёлых нефтяных потоков (крекинг-керосин).

Сырой керосин обладает свойствами, которые делают этот нефтепродукт пригодным для смешивания с различными эксплуатационными добавками, определяющими его использование в различных коммерческих целях, в том числе в транспортном топливе. Керосин представляет собой сложную смесь соединений с разветвлённой и прямой цепью, которые обычно можно разделить на три класса: парафины (55,2% по массе), нафтены (40,9%) и ароматические соединения (3,9%).

Для эффективности применения все марки керосина должны обладать максимально возможной удельной теплотой сгорания и удельной теплоёмкостью, а также характеризоваться достаточно широким диапазоном температур воспламенения. Для различных групп керосинов эти показатели составляют:

  • Удельная теплота сгорания, кДж/кг — 43000±1000.
  • Температура самовоспламенения, 0С, не ниже – 215.
  • Удельная теплоёмкость керосина при комнатной температуре, Дж/кг·К – 2000…2020.

Точно установить большинство теплофизических показателей керосина невозможно, поскольку сам продукт не имеет постоянного химического состава и определяется характеристиками исходной нефти. Кроме того, плотность и вязкость керосина зависит от внешних температур. Известно только, что по мере приближения температуры к зоне устойчивого горения нефтепродукта, удельная теплоёмкость керосина существенно повышается: при 2000С она составляет уже 2900 Дж/кг·К, а при 2700С — 3260 Дж/кг·К. Соответственно снижается кинематическая вязкость. Совокупность этих параметров определяет хорошее и устойчивое воспламенение керосина.

Удельная теплота сгорания топлива

Полностью сгорая, определенное количество топлива выделяет конкретное количество тепла. Чем больше тепла выделяется одним килограммом или литром топлива (в этой статье преимущественно речь пойдет о жидком топливе), тем больше энергетической ценностью он обладает. А это значит, что топливо будет расходоваться экономично.

В физике используется формула вычисления Q = q * m, где Q – это количество выделенной теплоты в Дж, q – удельная теплота сгорания, выраженная в Дж/м3, m – масса в килограммах. Чем выше q, тем больше энергии получается в процессе работы двигателя.

Путем сложных исследовательских процессов была определена стандартная удельная теплота сгорания большинства видов твердого, жидкого и газообразного топлива, поэтому q представляет собой табличную величину. Удельная теплота сгорания самых востребованных жидких видов смесей колеблется в пределах 43-46 МДж/кг.

Основные характеристики керосина

СвойстваПараметры
Вязкость (определяют при 20°С) в мм2/сОт 1,2 до 4,5
Плотность (определяют при 20°С) в кг/м3От 770 до 850
Температура вспышки в °СОт +28 до +72
Теплота сгорания в МДж/кгОт 42,9 до 43,2
Температура самовоспламенения в °С+ 216°
Максимальная высота некоптящего пламени при давлении 101,3 кПа в ммОт 14,7 до 42,8
Концентрационный предел воспламенения в процентах (%)От 1,2 до 8
Температура помутнения в °С-12
Кислотное число в мг/мл0,7 на 100


Кинематическая вязкость углеводородов, находящихся в керосине меняется в зависимости от температуры. При низких температурах она повышается, что оказывает влияние на процесс сгорания топливной смеси в авиационных двигателях.
Плотность керосина относится к наиболее важным характеристикам. В начале развития нефтеперерабатывающей промышленности это показатель служил единственной качественной характеристикой керосина.

Показатель температуры вспышки демонстрирует пожароопасность нефтепродукта. Его величина для авиационного топлива регламентируется международными стандартами и строго контролируется. Следует учесть, что при попадании в керосин бензина его огнеопасность существенно увеличивается.

Теплота сгорания определяется количественными показателями получаемой теплоты в процессе сгорания одного килограмма нефтепродукта (для газов учитывается единица объема).

Под температурой самовоспламенения понимают способность смеси испарений керосина и воздуха к самостоятельному устойчивому горению. В качестве такого показателя используется минимальное температурное значение, при котором происходит воспламенение без посторонних источников огня. Это свойство нефтепродуктов используется в дизельных моторах.

Высота некоптящего пламени керосина демонстрирует возможность горения нефтепродукта без образования копоти в стандарной лампе, фитиль которой равен 0,6см. Этот показатель имеет зависимость от фракционного или химического состава, и влияет принадлежность керосина к той или иной марке топлива.

Армейские фото на Shutterstock: Army and military photos.

Под концентрационным пределом воспламенения (КПВ) понимают отношение объема парообразного состояния керосина и интервала его концентрации в воздухе (который служит окислительной средой) в пределах которого возможно возгорание от внешнего источника с дальнейшим самостоятельным распространением пламени по смеси.

Температурным показателем помутнения нефтепродукта определяется начало процесса образования в керосине кристаллов углеродов. Этот показатель влияет на свойства горения керосина при низких температурах. Образующиеся кристаллы снижают силу горения. Для определения температуры помутнения используются оптические методы.

Поскольку керосин содержит различные соединения органических кислот, которые также снижают его качество, этот продукт подвергают щелочному очищению. Показатели кислотности керосина строго лимитируется и указывается в соотношении количества КОН в мг необходимых для нейтрализации свободных кислот в 100 мл керосина. Чтобы предотвратить обратное растворение нафтеновых кислот вторичная очистка керосина выполняется при 40°С.

рассчитать доставку керосина
ЗДЕСЬ.

Теплота сгорания низшая и высшая

Поскольку определение точной удельной теплоты – это сложный процесс, необходимо заранее определиться с используемыми терминами. В нашем случае нужно отделить низкую теплоту сгорания от высшей.

Высшая теплота – это количество теплоты при сгорании топлива в полном объеме, включая выпадение конденсата в виде водяных паров во время охлаждения веществ. Процесс горения сопровождается выделением воды из-за содержания в топливном продукте органического водорода, под воздействием высокой температуры вода переходит в состояние пара. Низшая теплота не включает в себя конденсацию паров – в этом случае конденсация количественно выражается в скрытой теплоте сгорания.

В исследовательской среде низшая теплота сгорания принимается за 100%, а охлаждение горючего допускается до температуры, при которой начинается конденсироваться пар. Все остальное относят уже к области скрытой теплоты сгорания, которая может дополнительно составлять свыше 10%.

Посчитать низшую теплоту корректно не считается возможным, поэтому её определяют путем вычитания из количественного выражения высшей теплоты сгорания числового выражения теплоты, получаемой от образования водяных паров как самого топлива, так и продуктов сжигания. Низшая теплота является табличной величиной и для основных видов топлива определена путем тестирований.

Поскольку q определена как справочная величина, становится легко сравнить целесообразность использования того или иного вида топлива в различных ситуациях. Благодаря составленным таблицам можно сравнить энергоэффективность твердого и жидкого топлива с газовым эквивалентом. Так, один литр бензина по КПД сопоставим с 1,3 м3 газового топлива.

Отличие керосина от бензина

Способ получения авиационного керосина – прямая перегонка малосернистой и сернистой нефти. Для улучшения физико-химических свойств керосина применяются различные присадки и гидроочистка. Керосин имеет ряд преимуществ перед бензином:

  • высокий показатель теплоты сгорания (как массовой, так и объёмной);
  • низкая испаряемость;
  • меньшая температура замерзания;
  • небольшая кинематическая вязкость.
  • Кроме того, керосин менее пожароопасен, чем бензин.

Существенный плюс в использовании керосина – широта применения. Кроме топлива для реактивных силовых установок, он используется на борту как хладагент или теплоноситель для радиаторов. Для управления сечением сопла двигателя используется гидросистема, рабочей жидкостью в которой также может быть керосин. Излишне напоминать, что данный вид топлива – прекрасный растворитель

Это крайне важно при организации процесса технического обслуживания реактивных авиадвигателей

Интересно: Почему китайцы не пьют молоко? Причины, фото и видео

Авиационный керосин

Авиационный керосин используется в качестве топлива в двигателях самолетов, реактивной техники. Кроме того, он необходим для смазывания деталей в летательных аппаратах, используется в качестве хладагента. Авиационный керосин характеризуется достаточно мощными противоизносными качествами. Кроме того, он обладает высокими показателями температуры сгорания, хорошими данными по термоокислительной стабильности, низкотемпературными свойствами.

Получение авиационного керосина осуществляется путем прямой перегонки нефти из среднедистиллятной фракции. Также возможно получение керосина такого типа в смеси с демеркаптанизированным или гидроочищенным компонентом. Гидроочистка необходима для доведения авиационного керосина под требования стандартов.

Виды горючего

Оно бывает разным. Но нефтепродукты и другое топливо легко поддаются воспламенению.

Классификация следующая:

В каком агрегатном состоянии находитьсяПроисхождение горючих материалов
ЕстественныеИскусственные
ЖидкомНефть.Бензин, дизельное топливо, смолы, керосин.
ГазообразномПриродный и промышленный.Генераторный, светильный, водяной.
ТвердомУголь, сланцы, дрова и торфяные породы.Кокс, пылевидное и в брикетах топливо.

Температура возгорания керосина и других продуктов отличается. Измерять ее достаточно сложно. Также разняться правила тушения. Твердыми материалами естественно пользуются для нагрева помещений люди, имеющие котел.

Теплота сгорания топлива таблица

Поскольку удельная теплота сгорания – это справочная величина, представляем таблицу с данным показателем, определенным индивидуально в каждом случае лабораторным путем. Таблица содержит информацию по основным видам горючего, используемого в коммерческих и промышленных целях.

Таблица 1

Теплота сгорания топлива

Наименование Удельная теплота сгорания, МДж/кг
Ацетилен 48,3
Водород 119,83
Пропан-бутан 43,8
Изобутан 45,6
Метан 50
n-гексан 45,1
Природный газ 41…49
Сжиженный газ 45,2
Пропан 46,3
Пропилен 45,8
Этан 47,5
Бензин марки АИ-72 44,2
Бензин марки АИ-93 43,6
Бензин авиационный Б-70 44,1
Дизельное топливо 43,4 – 43,6
Ракетное топливо с керосином 9,2
Авиационный керосин 42,9
Мазут 39 – 41,7
Метанол 21,1
Бутанол-1 36,8
Нефть 43,5 – 46
Этанол 30,6
Толуол 40,9

#Бензин#Керосин#Дизельное топливо

Основные показатели физических свойства керосина

Физические свойства керосина насчитывают множество подпунктов. К базовым относят те, которые влияют на качество и сферу применения вещества.

Плотность керосина

Степень плотности является широко применяемой характеристикой нефтепродуктов. Для ее определения используется относительная величина. Так при 20°С, она будет достигать от 780 до 850 кг/м 3 . При расчетах важна температура вещества, действительная плотность продукта и дистиллированной воды.

Цвет керосина варьируется от желтоватого до светло-коричневого, так же он может быть бесцветным

Кинематическая вязкость керосина

Состав керосина определяет его вязкость. При этом, чем выше температура вещества, тем ниже данный показатель. Рассматриваемая характеристика отражается на:

  • Свойствах эксплуатации топливных систем.
  • Качестве образуемой смеси.
  • Процессах сгорания в двигателе.

При 20°С уровень вязкости составит 1,2 – 4,5 мм 2 /с.

Чтобы керосин послужил арктическим топливом, в него нужно добавлять присадки, повышающие цетановое число и снижающие износ двигателя

Температура вспышки керосина

Химический состав керосина отражается на температуре его вспышки. Величина показателя от 28°С до 60°С определяет уровень пожарной безопасности вещества. Все нормы регламентируются действующими ГОСТами.

Теплота при горении керосина

Рассматриваемая характеристика демонстрирует количество выделенного тепла при абсолютном сгорании массовой единицы сырья. Для керосина показатель составляет от 42,9 до 43,1 МДж/кг.

Удельная теплота сгорания бензина

Удельная теплота сгорания бензина не зависит от октанового числа топлива и определяется только химическим составом продукта. Чем больше в нем соединений водорода, тем больше влаги и паров будет образовываться во время горения и тем ниже будет удельная теплота. Это прямым образом снижает КПД продукта.

Определенная исследовательским методом удельная теплота бензина составляет 43,5–44,5 МДж/кг. Для примера – числовая характеристика для бензина марки АИ-93 – 43,6 МДж/кг. А вот у авиационного бензина (Б-70 в соответствии с ГОСТ) показатель уже равен 44,1 МДж/кг. Это значит, что Б-70 – более энергоэффективное топливо.

На практике, простому автолюбителю определить влияние удельной теплоты сгорания на работу транспортного средства сложно. Однако существуют ситуации, в которых происходит заметное снижение количества теплоты и энергии топлива. Одна из них – наличие в составе топливной массы минеральных соединений и несгорающих остатков. Концентрация горючей массы снижается, а минеральные соединения и зола, не подверженные сгоранию, забирают часть выделяемой энергии.

Наличие серного компонента в составе топливного продукта также снижает q. В процессе нагрева и горения, сера выделяет газ, который оседает на внутренних деталях рабочего механизма и попадает в легкие человека. Это приводит к образованию коррозии и преждевременному изнашиванию рабочих элементов, загрязняет окружающий воздух. Поэтому очень важно выбирать топливо, свободное от большинства вредных примесей, и заправляться в проверенных сетях АЗС, следящих за репутацией представляемых продуктов.

История

Нефтеперегонный куб братьев Дубининых

Нефтеперегонные устройства конца XIX века

Керосиновый завод в Баку, 1890 год

Очередь за керосином. Москва, 1920-е годы

До середины XIX века для освещения сжигали всевозможные жиры или светильный газ. Однако жиры давали меньше света, больше копоти, неприятно пахли, оставляли большой нагар и засоряли лампы отложениями. Промышленная добыча китовой ворвани для осветительных целей привела к катастрофическому уменьшению поголовья китов. Светильный газ был неудобен и не получил значительного распространения. Появление керосина оценили по достоинству, и он быстро вытеснил жиры.

Сведения о дистилляции нефти начинаются с X века н. э. Однако широкого применения продукты дистилляции не находили, несмотря на сведения об использовании нефти в масляных лампах. В 1733 году врач Иоганн Лерхе, посетив бакинские нефтепромыслы, записал наблюдения о перегонке нефти:

В 1746 году рудознатец Ф. С. Прядунов поставил нефтеперегонный завод на реке Ухте на естественном источнике нефти. Однако удалённость от цивилизации затруднила работу завода, который не смог обеспечить прибыльность и четверть века спустя был заброшен. В 1823 году крепостные крестьяне братья Дубинины построили нефтеперегонный куб на Северном Кавказе, недалеко от Моздока, возле аула Акки-Юрт. Это предприятие проработало более 20 лет, поставляя несколько сот пудов продуктов перегонки нефти в год для аптечных и осветительных целей. По видимому, это первая промышленная установка перегонки нефти, сведения об устройстве которой дошли до наших дней. Получавшиеся при этом бензин и мазут имели крайне ограниченное применение. Например, бензин применялся в аптекарских и ветеринарных целях, а также в качестве бытового растворителя, и поэтому большие его запасы нефтепромышленники попросту выжигали в ямах или сливали в водоёмы. Мазут ограниченно применяли как заменитель угля в паровых машинах, а также для получения смазочных масел.

Начало массовому промышленному использованию светлых нефтепродуктов в освещении было положено в 1840-х — 1850-х годах. Разными людьми было продемонстрировано получение из угля, битума, нефти светлой малопахучей горючей жидкости путём нагрева этих веществ и отгонки продуктов. Был получен ряд патентов.

Название «керосин» предложил канадский физик и геолог , в 1846 году продемонстрировавший полученное нагреванием угля осветительное масло, не дававшее копоти. Метод Геснера не позволял получить дешёвый продукт, но дал толчок дальнейшим исследованиям.

В 1851 году вступила в строй первая промышленная перегонная установка в Англии.

В 1853 году во Львове И. Лукасевичем и Я. Зехом была изобретена безопасная керосиновая лампа. В 1854 году была зарегистрирована торговая марка «керосин». Начался процесс трансформации масляных ламп в керосиновую лампу. Именно развитие керосинового освещения в середине XIX века привело к повышению спроса на нефть и к развитию способов её добычи. С этого момента начинается бурное развитие керосинового промысла, потянувшее за собой нефтедобычу. В 1857 году Василий Кокорев в Сураханах близ Баку построил нефтеперегонный завод начальной мощностью 100 тыс. пудов керосина в год. К концу века в России производили уже около 100 млн пудов керосина в год.

В дореволюционной России керосин входил в состав денежно-натуральной формы заработка заводских рабочих.

Востребованность керосина в быту в конце XIX — начале XX веков повысилась в связи с появлением приборов для приготовления пищи — примуса и керосинки. На территории России и СССР последняя, заменив дровяные плиты, пользовалась популярностью с середины 1920-х годов до конца 1950-х.

В начале XX века керосин уступил своё лидирующее положение на мировом рынке нефтепродуктов бензину из-за распространения двигателей внутреннего сгорания и электрического освещения. Вновь значение керосина начало возрастать только с 1950-х годах, ввиду развития реактивной и турбовинтовой авиации, для которой именно этот вид нефтепродуктов (авиакеросин) оказался практически идеальным топливом.

КЕРОСИН

(петролеум, фотоген, гелиозоль, астралол, олеофин и проч.). — Продукт, обращающийся ныне под этими названиями в огромном количестве в житейском обиходе, состоит из смеси различных веществ, получаемых перегонкой из нефти и подвергнутых некоторой химической обработке для очищения. Природная или сырая нефть (см.) представляет смесь многообразных, преимущественно жидких углеводородных соединений, отличающихся друг от друга различными температурами кипения, плотностью, внутренним трением и др. свойствами. При перегонке нефти из нее отделяются, в парообразном состоянии, т. е. в форме отгонов, смеси этих веществ; их удельный вес [При возрастании температуры кипения продуктов перегонки нефти, хотя в обычных (технических) условиях происходит постепенное увеличение удельного веса, но при тщательной (лабораторной) дробной перегонке тех порций нефти, которые отвечают бензину и керосину, как для русской, так и для американской нефти замечается всегда, что после возрастания удельного веса наступает его уменьшение, затем вновь увеличение, опять уменьшение и т. д. Это наблюдение сперва сделано было Менделеевым, потом изучалось подробнее г-ми Расинским и Тищенко. Зависит оно от содержания в нефти смеси различных гомологических рядов углеводородов (см. Нефть, химический состав, Нафтены). Д. Менделеев.] и температуры кипения постоянно повышаются по мере приближения перегонки к концу. Нефтяной отгон, сгущаемый в холодильниках, разделяется по особым сборникам (фракционируется) и получаемые таким образом различного свойства жидкие продукты носят (торговые) названия: газолина, лигроина или нефтяного эфира, бензина, керосина, парфюмерного солярового масла, за ними следуют разной густоты смазочные масла и нефтяные остатки (мазут). В настоящей статье будет рассмотрен К., главным образом с точки зрения заводского производства, употребляемые в последнем перегонные и др. аппараты и химическая обработка. Для разделения отгонов следующих друг за другом, по мере того как идет последовательный нагрев нефти в перегонном кубе, на практике руководствуются не столько температурой их кипения, сколько их удельным весом, находящимся в связи с температурами кипения. Контроль над ходом перегонки более или менее ограничивается одним определением удельного веса дистиллятов, который и кладется в основу их классификации. Собственно К. (из русской нефти) называется смесь, состоящая из продуктов с удельным весом (при 15° Ц.) от 0,800 до 0,845 или в среднем 0,820 — плотность, которую должен иметь этот осветительный материал, чтобы быть пригодным для горения в лампах обычного устройства. Удельный вес, однако, сам по себе еще недостаточно характеризует свойства продукта, так как возможно получить смеси среднего удельного веса из самых тяжелых и легких составных частей, непригодные по своей огнеопасности, а между тем по среднему удельному весу сходные или тожественные с К. Поэтому для правильного составления К. из дистиллятов руководствуются еще, помимо удельных весов, температурой вспышки (см.). После перемешивания собранных в общий сборник погонов, составляющих К., испытывают эту смесь (см. Вспышка керосина), чтобы узнать этим путем температуру ее вспышки. Американский К. легче русского и имеет в среднем удельный вес 0,800; существуют, однако, американские К. с удельным весом до 0,795, но в то же время достаточно безопасные, например так называемое астральное масло имеет в среднем удельный вес 0,788. Это зависит от разницы в натуре углеводородов той и другой нефти: составные части американской нефти отличаются от русской меньшим удельным весом, при той же температуре кипения (см. ниже таблицу). Еще более существенная разница является в отношении выходов К. из нефти; американская (пенсильванская) нефть дает до 70% осветительных масел, тогда как из русской нефти может быть получено всего лишь 25-35% К. [Изложенные суждения об относительных свойствах русской (бакинской) и американской (пенсильванской) нефти опираются на обычное определение керосина как нефтяного масла, со вспышкой от 20° до 40°, горящего в обыкновенных керосиновых лампах, приноровленных к американскому К., который появился в потреблении с конца 50-х гг., тогда как русский К., приноровленный поныне к тем же лампам, появился в России в сколько-либо значительных количествах лишь с середины 60-х гг., а за границу начал вывозиться лишь с 80-х гг. Дело в том, что керосин, пригодный для таких ламп, получается из бакинской нефти лишь в количестве 20-30% и это потому одному, что русской нефти должны отвечать другие лампы. Тип их известен (см. Горелки и Лампы), но их еще мало делают и применяют. Тяжелая смесь всех, кроме самых летучих, продуктов перегонки бакинской нефти, имея после очищения удельный вес около 0,86, совершенно и равномерно до конца способна гореть, как обычный керосин, в лампах подходящего устройства, как я испытывал и демонстрировал еще в середине 80-х гг., смесь же (названная мной «бакуоль») обычного бакинского керосина с промежуточными маслами, имея удельный вес около 0,84, отлично горит в лампах, употребляемых для так называемого солярового масла. Первой смеси из бакинской нефти легко получается до 75%, второй до 50%. Эти смеси или эти виды осветительных нефтяных масел представляют то большое преимущество перед распространенным ныне К., что имеют температуру вспышки гораздо высшую, чем К., а именно: первая смесь легко получается со вспышкой более 70°, а вторая более 40°, а потому они гораздо безопаснее для потребителей, чем К. Вот эти-то осветительные масла, отвечающие бакинской нефти (и мало соответствующие пенсильванской), найдут со временем, когда устроятся в России столь же большие нефтепроводы, как в Америке (см. Вазелин и Нефтепроводы), обширнейшее всемирное применение. Ныне в России получается около 300 млн. пудов нефти, из них около 80 млн. пудов К., из которых около 30 млн. пудов применяется в самой России и около 50 млн. вывозится за границу. В Северной Америке получается также около 300 млн. пудов нефти, они дают около 200 млн. пудов К., которого Америка вывозит раза в 3 больше, чем Россия. Цена сырой нефти в Баку ныне едва 2-4 коп. за пуд, в Америке на местах добычи 12-17 коп. за пуд. Успехи русского нефтяного дела всецело зависят от осуществления двух мер: построения длинных нефтепроводов (от Баку до Батума, от Грозного до Новороссийска, от Баку до Персидского залива и др.) и распространения (фабрикации в большом виде и уменья распространять) ламп для сжигания тяжелых масел, отвечающим нашей нефти и соответствующих пожарной безопасности. Д. Менделеев.]. Независимо от того, выходы легких осветительных масел в пропорции к тяжелым смазочным могут быть из одной и той же нефти неодинаковы, смотря по методу и приемам перегонки. Малое содержание легких составных частей вызывает иногда со стороны наших керосинозаводчиков введение в состав К., с целью увеличения его выходов, продуктов, значительно разнящихся по своему удельному весу от указанных выше норм, так как прибавлением к нормальному К., с одной стороны, более тяжелых продуктов, с другой — легких, возможно получить смесь, достаточно хорошо горящую в обыкновенных керосиновых лампах. Количество этих подмесей, возможное для такого увеличения выходов К., сдержано правительственными установлениями, касающимися предельной температуры вспышки (для России не ниже 28° Ц.), понижение которой именно и зависит от относительного содержания, в общей смеси, более легких нефтяных продуктов. Увеличивая выход К. из русской нефти этим путем, возможно довести его до 35-40% от веса нефти, без существенного уклонения от узаконенной температуры вспышки. В состав обыкновенного К. из балаханской кавказской нефти входит весь погон в пределах удельного веса 0,775-0,860. Прилагаемая таблица представляет сравнительный состав (по анализам Биля) торгового сорта русского и американского К.:

Слишком тяжелый К. в лампах обыкновенного нынешнего устройства дает слабое и коптящее пламя или вовсе не горит; для его сжигания требуются особое устройство лампы, несколько типов которых уже существует в настоящее время, но они еще недостаточно разработаны и распространение не имеют. Введение во всеобщее употребление ламп, годных для сжигания тяжелых осветительных масел, представляет для нашей нефтяной промышленности существеннейший вопрос, так как наша нефть по своим свойствам наиболее пригодна именно для производства тяжелых сортов К., со вспышкой в 50-60° Ц., и, следовательно, более удобного для повсеместного распространения в качестве дешевевшего и вполне огнебезопасного осветительного материала. Такой К. возможно получать из бакинской нефти в количестве до 60%. Дробная перегонка сырой нефти в современной заводской практике распадается на две отдельные операции: 1) перегонку нефти с получением всех легких продуктов и К. и 2) перегонку остающегося от первой операции легкого или первого нефтяного остатка (мазута), с получением из него парфюмерных, соляровых и смазочных масел, после чего остающееся в котлах представляет тяжелые нефтяные остатки (гудрон) — весьма ценный материал для добычи из него полужидких и твердых нефтяных продуктов, особенно — натурального вазелина (см.); ныне гудрон у нас потребляется более как топливо. Следует заметить, что и первый, легкий, остаток после отгонки К. не всегда перерабатывается на русских заводах, а иногда весь, иногда частью употребляется и продается как топливо. Перегонка на нынешних крупных керосиновых заводах ведется почти исключительно в цилиндрических лежачих котлах из котельного железа, вместимостью в 600-2000 пудов сырой нефти. Употреблявшиеся прежде простые перегоночные кубы, а также плоские стоячие цилиндрические котлы с гофрированным днищем (Cheese-box stills), имевшие наиболее широкое распространение, и огромные американские так называемые вагонные кубы, с внутренними дымоходами, в настоящее время почти всюду оставлены. Большой размер их (некоторые из них вмещают свыше 15000 пудов нефти), большая стоимость, сложный уход за топками (под большими кубами системы Cheese-box устраивается до 17 отдельных топок) оказались на деле непрактичными; такие котлы сохранились еще лишь кое-где на старых фабриках, дослуживая до износа. С другой стороны, слишком мелкие перегонные кубы простейшего устройства все еще очень распространены на Кавказе на небольших армянских и персидских кустарных заводах, фабрикующих К. по самым примитивным приемам. Нагрев перегонных котлов всегда производится голым огнем, причем топливом служит у нас на Кавказе преимущественно нефть и нефтяные остатки, сжигаемые при помощи форсунок или на особых колосниках. На американских заводах работают преимущественно на каменном угле, иногда заменяя его газообразными и другими малоценными продуктами нефти. Во время перегонки в куб постоянно впускается в обильном количестве перегретый водяной пар из парового котла, так что вся перегонка может быть названа паровой, хотя часть нагрева столь же постоянно идет от наружных топок. Перегонные котлы нередко устраиваются с одной или несколькими внутренними жаровыми трубами, наподобие английских паровых котлов (корнвалийского и ланкаширского); такая конструкция, однако, на деле оказалась также малопрактичной, по причине чаще случающегося в них лекажа и неравномерности нагрева содержимого, и в настоящее время отдается предпочтение обыкновенным цилиндрическим котлам с простой печной вмазкой. Для некоторого дефлегмирования дистиллята, т. е. отделения паров его от механически увлеченных частиц жидкостей с высшей температурой кипения и большим удельным весом, вылет пара устраивается через особые паросушители, состоящие, как видно на фиг. 1, из шлема C и изогнутой паропроводной трубы, входящей в сепаратор A, откуда сгущенные через воздушное охлаждение жидкости стекают обратно в котел; по трубе B пар проводится в холодильник.
***
амер.Kerosinc

Керосин — продукт перегонки тяжелых нефтепродуктов; смесь углеводородов с температурой кипения 110-320 град.С. Керосин применяется как топливо и как растворитель.
***
КЕРОСИН (английское kerosene), бесцветная жидкость легче воды; смеси углеводородов, выкипающие при 110-320шC. Получают дистилляцией нефти или крекингом тяжелых нефтепродуктов (промышленное производство впервые начато в 1823 братьями Дубиниными в России). Керосин применяют как реактивное топливо, горючий компонент жидкого ракетного топлива, горючее при обжиге стеклянных и фарфоровых изделий, для бытовых нагревательных и осветительных приборов и в аппаратах для резки металлов, как растворитель, сырье для нефтеперерабатывающей промышленности.

В процессе перегонки нефти на производстве получается керосин, обладающий слегка желтоватым оттенком. Он имеет маслянистую консистенцию и своеобразный запах. В его состав входят углеводороды с низкой летучестью. На сегодняшний день керосин используют как горючее и это отличное реактивное топливо, а также после специальной обработки выступает в качестве отличного растворителя красок. Давайте рассмотреть основные виды керосина.

Авиационный керосин заливается в двигатель воздушного транспорта, им могут смазывать детали в летательных агрегатах. Он обладает хорошими противоизносными качествами, имеет высокую температуру сгорания. С изменением температуры меняется показатель вязкости углеводородов. Если она увеличивается, то вязкость будет уменьшаться. Второй важной характеристикой керосина считается плотность.

Её показатель составляет 790 — 840 кг/м3 при температуре 20 °С. Воспламеняется керосин, когда нагревается до 300 градусов. На производстве получают авиационный керосин из среднедистиллятной фракции после прямой перегонки нефти. Чтобы жидкость соответствовала потом всем стандартам, осуществляют её гидроочистку. На украинском рынке по низкой рыночной стоимости можно купить в неограниченном количестве качественный в , которая осуществляет свою деятельность в Киеве.

На официальном сайте организации «https://kerosinoil.com.ua» оставляйте свою заявку и вам обеспечат доставку товара в любой регион прямо к месту хранения. Используется керосин как ракетное топливо в гидромашинах, но уже планируется его заменить более выгодным типом горючего наподобие пропана, этана или метана. Пользуется большим спросом на рынке технический керосин. Он является основным сырьём при изготовлении ароматических углеводородов, входит в основу пропилена с этиленом.

Выступает технический керосин отличным растворителем. Что касается растворителей, то они существуют трёх видов: легколетучие (вайт спирит), среднелетучие (это керосин) и труднолетучие (основным считается растворитель 646). Вайт спирит считается распространённым растворителем. Производится он из бензина. Не стоит пользоваться сольвентом, потому что считается данная жидкость вредной для здоровья.

Если вам необходимо развести качественно масляную или алкидную краску самым лучшим растворителем выступит керосин и не стоит на этом экономить. В предложенной компании вы можете заказать как одну бутылку керосина, так и при необходимости цистерну жидкости. Можно конечно сэкономить и купить растворитель 646. Они относится к универсальному типу и разбавляет практически всё. Его добавляют в лаки и эмали, справляется с грунтовкой и шпатлёвкой.

Выбирают чаще всего растворитель 646, так как он выгодно отличается от керосина по цене. Но для масляной или алкидной краски мы бы вам посоветовали всё-таки заказать последний. Продаётся ещё один тип керосина — осветительный. Он идеально подходит для работы керосиновой ламп, и в этом нет ничего удивительного.

Осветительный керосин используется во многих бытовых приборах, которые требуют нагрева, им хорошо пропитывать изделия из натуральной кожи, входит в состав многих плёнок. Электроремонтные мастерские закупают его в большом количестве, чтобы промывать детали при техническом обслуживании транспортных средств.

Керосин — продукт перегонки нефти, который представляет собой прозрачную жидкость (может также иметь слегка желтоватый оттенок) с достаточно характерным запахом и слегка маслянистой консистенцией. Состав керосина включает в себя смесь летучих углеводородов, которые имеют различные температурные пределы кипения. К уникальным характеристикам керосина можно отнести низкую летучесть, что определяет достаточно широкую область применения этого вида растворителя.

Вязкость растворителей

Растворители представляют собой химические соединения, способные преобразовывать различные вещества в раствор (гомогенную однородную систему, состоящую из 2 и более компонентов). Обычно они используются в роли среды для проведения химических реакций, для технологических целей. В связи с этим растворители востребованы в различных сферах производства (лакокрасочном, электротехническом, фармацевтике, парфюмерии, создании взрывчатых веществ), сельском хозяйстве.

Растворители классифицируются на органические и неорганические (важнейший из них — это вода). По степени вязкости они подразделяются на маловязкие (до 0,002 Па•с), средневязкие (0,002–0,01 Па•с), высоковязкие (свыше 0,01 Па•с).

Растворители в промышленности перекачивают разными типами насосов, например мембранными, вихревыми, плунжерными аппаратами.

Вязкость ацетона

К группе маловязких растворителей относится ацетон. Это бесцветная летучая жидкость органического происхождения, отличающаяся характерным резким запахом. Вязкость продукта составляет 0,000 33 Па•с.

Вязкость керосина

Растворитель керосин также имеет небольшую вязкость (0,001 49 Па•с при комнатной температуре). Это прозрачное вещество масляной структуры, прозрачное либо желтоватого оттенка. Получают керосин при прямой перегонке нефти.

Данная субстанция применяется и в других целях: как реактивное топливо в ракетах, самолетах, как горючее для бытовых осветительных приборов, при обжиге стекла и фарфора, в оборудовании для резки металлов.

Химические свойства керосина

Керосин – химические свойства топлива, такие как испаряемость и воспламеняемость, зависят от состава сырья и типа его переработки. Концентрация ароматических углеводородов разная, что обусловило такие группы керосина:

  • Авиационная. В свою очередь делится на реактивное (РТ) и самолетное (ТС-1) горючее. Используется для смазки топливных систем в двигателях разной авиатехники. Также играет роль хладагент. Имеет повышенную термическую окисляемость и отметку сгорания. Характеризуется стабильностью и устойчивостью к низким температурам.
  • Техническая. Все допуски регламентируются ГОСТом «Керосин для технических целей» 18499-73. Сорта КТ-1 и КТ-2 заменяют растворители или очистители для промывки узлов и запчастей автотранспорта, оборудования и механизмов.
  • Осветительная. Типы КО-25, 25 или 30 используются для заправки керосиновых ламп. Применяют некоторые типы топлива для пропитки выделанных кож. Среди преимуществ – отсутствие нагара и копоти при горении.

К важным техническим характеристикам керосина можно отнести повышенную испаряемость. Содержание паров в воздухе до 300 мг/м 3 является не опасным для человека. При работе с топливом также необходимо учитывать его высокий уровень воспламеняемости – возгорание при t° 57°С, самовоспламенение при t° 216°С.

Керосин часто используют для промывки механизмов и их очистки от ржавчины

Если вам необходим керосин, характеристики различных видов узнать можно у специалистов ТК АМОКС. Оптимальный вариант будет подобран исходя из целей применения

Обратите внимание на каталог топлива, где представлены распространенные типы керосинов, солярки, бензинов и ГСМ. Звоните, мы ответим на все вопросы!

Вязкость керосина в зависимости от температуры

Дана таблица значений динамической μ и кинематической ν вязкости керосина при положительных и отрицательных температурах в диапазоне от -50 до 300°С. Вязкость керосина определяется количеством и размерами ассоциатов молекул углеводородов в его составе. Масштаб таких молекулярных связей напрямую зависит от температуры этого топлива. При низких температурах они достаточно многочисленны и имеют крупные размеры, что делает керосин в этих условиях ощутимо вязким.

При комнатной температуре динамическая вязкость керосина имеет значение 0,00149 Па·с. Кинематическая вязкость керосина при температуре 20°С равна 1,819·10-6 м2/с. С повышением температуры этого топлива его вязкость уменьшается. Коэффициент кинематической вязкости имеет меньшую скорость такого снижения, чем динамический, поскольку плотность керосина также изменяется с температурой. Например, при нагревании керосина с 20 до 200 градусов его динамическая вязкость уменьшается в 5,7 раза, а кинематическая — в 4,8.
Таблица значений динамической и кинематической вязкости керосина

t, °Сμ·103, Па·сν·106, м2/сt, °Сμ·103, Па·сν·106, м2/с
-5011,514,14401,081,337
-459,04600,8321,047
-407,268,59800,6640,85
-355,961000,5450,711
-304,985,751200,4570,61
-254,221400,390,53
-203,624,1311600,3380,469
-153,141800,2960,421
-102,753,122000,2620,382
-52,422200,2340,35
2,152,612400,2110,325
51,922600,1910,304
101,732800,174
201,491,8193000,159

Примечание: значения кинематической вязкости керосина в таблице получены расчетным путем через величину динамической вязкости и плотности.

  1. ГОСТ 4753-49 Керосин осветительный. Технические условия.
  2. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей.
  3. Физико-химические и эксплуатационные свойства реактивных топлив. Справочник. Дубовкин Н.Ф. и др. — М.: Химия, 1985. — 240 с.
Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]