Основные разновидности
При коррозии в электролитах происходит преобразование химической энергии в электрическую. В связи с этим ее называют электрохимической. Принято различать следующие виды электрохимической коррозии.
Межкристаллитная
Под межкристаллитной коррозией подразумевается такое опасное явление, при котором происходит разрушение границ зерна никеля, алюминия и других металлов избирательным образом. Как следствие, прочностные и пластичные свойства материала утрачиваются. Главная опасность этой разновидности коррозии в том, что далеко не всегда она заметна визуально.
Питтинговая
Питтинговая электрохимическая коррозия представляет собой точечное поражение отдельных участков поверхности меди и других металлов. В зависимости от характера поражения, различают закрытый, открытый, а также поверхностный питтинг. Размеры пораженных участков могут варьироваться от 0,1 мм до 1,5 мм.
Щелевая
Щелевой электрохимической коррозией принято называть усиленный процесс разрушения металлических конструкций в местах расположения щелей, зазоров и трещин. Протекание щелевой коррозии может происходить в воздушной атмосфере, газовых смесях, а также морской воде. Данный вид разрушения характерен для газопроводов, днищ морских судов и многих других объектов.
Распространено протекание коррозии в условиях небольшого количества окислителя из-за затрудненного подхода к стенкам щели. Это приводит к накоплению коррозийных продуктов внутри зазоров. Электролит, содержащийся во внутреннем пространстве зазора, может изменяться под воздействием гидролиза продуктов коррозии.
С целью защиты металлов от щелевой коррозии принято применять несколько методов:
- уплотнение зазоров и щелей;
- электрохимическая защита;
- процесс ингибирования.
В качестве профилактических методов следует использовать только те материалы, которые в наименьшей степени подвержены возникновению ржавчины, а также изначально грамотно и рационально конструировать газопроводы и другие важные объекты.
Грамотная профилактика во многих случаях представляет собой более простой процесс, чем последующая очистка металлоконструкций от въевшейся ржавчины.
Как проявляется коррозия разных видов
В качестве примера протекания коррозийного процесса можно привести разрушение различных приборов, компонентов автомобилей, а также любых конструкций, произведенных из металла и расположенных:
- в атмосферном воздухе;
- в водах – моря, реки, содержащиеся в почве и под слоями грунта;
- в технических средах и т.д.
В процессе ржавления металл становится многоэлектронным гальваническим элементом. Так, например, если в электролитической среде происходит контакт меди и железа, медь является катодом, а железо – анодом. Отдавая электроны меди, железо в виде ионов попадает в раствор. Ионы водорода начинают двигаться по направлению к меди и там разряжаются. Становясь все более и более отрицательным, катод вскоре приравнивается к потенциалу анода, в результате чего коррозийный процесс начинает замедляться.
Разные виды коррозии проявляются по-разному. Более интенсивно электрохимическая коррозия проявляется в тех случаях, когда в катоде присутствуют вкрапления металла с меньшей активностью по сравнению с корродирующим – на них ржавчина появляется быстрее и является довольно выразительной.
Протекание атмосферной коррозии происходит в условиях влажного воздуха и обычной температуры. В данном случае на поверхности металла образуется пленочка из влаги с растворенным кислородом. Процесс разрушения металла становится интенсивнее по мере увеличения влажности воздуха и содержания газообразных оксидов углерода и серы при условии наличия:
- трещин;
- шероховатостей;
- других факторов, провоцирующих облегчения процесса конденсации.
Почвенная коррозия в наибольшей степени поражает разнообразные подземные сооружения, газопроводы, кабели и другие конструкции. Разрушение меди и других металлов происходит по причине их тесного соприкосновения с почвенной влагой, в составе которой также присутствует растворенный кислород. Разрушение трубопроводов может произойти уже спустя полгода с момента их строительства в том случае, если для почвы, в которой они установлены, характерна повышенная кислотность.
Под воздействием блуждающих токов, исходящих от посторонних объектов, возникает электрическая коррозия. Ее главными источниками являются электрические железные дороги, линии электропередач, а также специальные установки, функционирующие на постоянном электротоке. В большей степени данный вид коррозии провоцирует разрушение:
- газопроводов;
- всевозможных сооружений (мосты, ангары);
- электрокабелей;
- нефтепроводов.
Действие тока провоцирует возникновение участков входа и выхода электронов – то есть, катодов и анодов. Наиболее интенсивным разрушительный процесс является именно на участках с анодами, поэтому на них ржавчина более заметна.
Коррозия отдельных компонентов газопроводов и водяных трубопроводов может быть вызвана тем, что процесс их инсталляции является смешанным, то есть, происходит с использованием различных материалов. Наиболее частыми примерами является точечная коррозия, возникающая в элементах из меди, а также коррозия биметаллов.
При смешанной установке железных элементов со сплавами меди и цинка, процесс коррозии отличается меньшей степенью критичности, чем при медном литье, то есть со сплавами меди, цинка и олова. Предотвратить коррозию трубопроводов можно, используя специальные методы.
Причины появления коррозии
Для защиты машины от ржавчины стоит понимать принцип данного процесса. Простыми словами коррозия — формирование ржавчины. Чтобы разобраться с причинами, стоит вспомнить физику со школьной скамьи.
Каждый проводник выступает в роли передатчика электронов. Если представить проводник визуально, то это какое-то металлическое тело, окруженное облаком многочисленных электронов, покидающих «убежище» под действием энергии тепла. При отсутствии помех эти же электроны приходят обратно к проводнику. Если металлические элемент окунуть в электролит, то атомы металла (со знаком «+») переходят в новый состав. Итог действия — приобретение металлом потенциала, доступного для измерения.
Особо активна коррозия в электролитической жидкости, если проводник имеет меньшую активность. Металлический элемент, обладающий большей активностью, выступает в роли анода, а меньшей — катода. В процессе взаимодействия корродирует анод. Появление ржавчины (коррозия) проходит посредством протекания следующих реакций — восстановления и окисления. При этом восстанавливается катод, а разрушается (покрывается ржавчиной) анод.
Если поместить металл в водную среду или обеспечить контакт с проводником, обладающим меньшей активностью, то происходит процесс коррозии. Ситуация усугубляется, если в воде присутствует соль. Последняя делает электролит проводимым, а это приводит к еще большей скорости окисления. Если сравнивать с автомобилем и дорожными условиями, то зимой транспорт сталкивается с описанными выше проблемами. Металл контактирует с водой и специальным составом, которым покрываются дороги. Опасны для металла и кислотные дожди, которые стали обычным явлением для многих регионов страны.
Главный показатель — скорость покрытия ржавчиной. Здесь есть специальный параметр, позволяющий определить стойкость того или иного металла к коррозии. Классическое железо характеризуется скоростью коррозии, равной — 0.03-0.05 мм в год. Это значит, что после пяти лет эксплуатации металл становится тоньше на 0.15-0.25 мм. Если никаких действий не предпринимать, то на кузове может образоваться дырка, на устранение которой пойдет немало средств.
Из рассмотренного выше напрашивается вывод, что для защиты металла от коррозии достаточно превратить его из анода в катод. Автолюбители часто используют простой вариант — они покрывают кузов специальной защитой. Но последняя эффективна только на неповрежденном кузове. Появление трещины или царапины на ЛКП приводит к контакту металла с менее активным проводником. Итог — появление коррозии. Катодная защита отличается большей эффективностью, ведь она меняет роль кузова автомобиля, превращая его из подверженного разрушению анода в стойкий катод.
Способы защиты от ржавления
Для борьбы с коварной ржавчиной применяются различные методы. Рассмотрим те из них, который являются наиболее эффективными.
Способ №1
Один из самых популярных методов – это электрохимическая защита чугуна, стали, титана, меди и других металлов. На чем же она основывается?
Электрохимическая обработка металлов представляет собой особый способ, направленный на изменение формы, размеров и шероховатости поверхности путем анодного растворения в электролите под воздействием электротока.
Чтобы обеспечить надежную защиту от ржавчины, необходимо еще перед началом эксплуатации металлических изделий обрабатывать их особым средствами, которые в своем составе содержат различные компоненты органического и неорганического происхождения. Данный метод позволяет предотвратить появление ржавчины на определенное время, однако позже придется обновлять покрытие.
Схема катодной защиты трубопроводов
Электрозащита представляет собой процесс, при котором металлическая конструкция подключается к внешнему источнику постоянного электрического тока. В результате этого на ее поверхности формируется поляризация электродов катодного типа, и все анодные области начинают преобразовываться в катодные.
Электрохимическая обработка металлов может происходить с участием анода или катода. В некоторых случаях происходит попеременная обработка металлического изделия обоими электродами.
Катодная защита от коррозии необходима в тех ситуациях, когда у металла, подлежащего защите, не наблюдается предрасположенность к пассивации. К металлическому изделию подключается источник внешнего тока – специальная станция катодной защиты. Данный метод подходит для защиты газопроводов, а также трубопроводов водоснабжения и отопления. Однако есть у этого метода определенные недостатки в виде растрескивания и разрушения защитных покрытий – это происходит в случаях значительного смещения потенциала объекта в отрицательную сторону.
Способ №2
Электроискровая обработка металлов может осуществляться при помощи установок различных типов – бесконтактной, контактной, а также анодно-механической.
Способ №3
Для надежной защиты газопроводов и других трубопроводов от ржавчины часто применяется такой метод, как электродуговое напыление. Преимущества данного способа очевидны:
- значительная толщина защитного слоя;
- высокий уровень производительности и надежности;
- применение относительно недорогого оборудования;
- несложный технологический процесс;
- возможность применения автоматизированных линий;
- невысокие энергетические затраты.
Среди недостатков данного метода – невысокая эффективность при обработке конструкций в коррозийных средах, а также недостаточная прочность сцепления со стальной основой в некоторых случаях. В любых других ситуациях такая электрозащита очень эффективна.
Способ №4
Для защиты разнообразных металлических конструкций – газопроводов, мостовых сооружений, всевозможных трубопроводов – требуется эффективная антикоррозийная обработка.
Данная процедура осуществляется в несколько этапов:
- тщательное удаление жировых отложений и масел с применением эффективных растворителей;
- очистка обрабатываемой поверхности от солей, растворимых в воде, – выполняется при помощи профессиональных аппаратов высокого давления;
- удаление имеющихся конструкционных погрешностей, выравнивание кромок – это необходимо для предотвращения сколов наносимого лакокрасочного покрытия;
- тщательная очистка поверхности при помощи пескоструйного аппарата – это делается не только для удаления ржавчины, но и для придания нужной степени шероховатости;
- нанесение противокоррозийного материала и дополнительного защитного слоя.
Правильная предварительная обработка газопроводов и всевозможных металлоконструкций обеспечит им надежную защиту от электрохимической коррозии в процессе эксплуатации.
Катодная (электрохимическая) защита: принцип функционирования
Защита кузова автомобиля от коррозии может осуществляться разными путями. Одним из интересных вариантов решения проблемы является катодная (электрохимическая) защита, носящая название «нержавейка».
Это активный способ защиты, он препятствует возникновению причин для развития коррозии. Он использует особенности окислительно-восстановительных химических реакций. Мы при помощи отрицательного электрического заряда воздействуем на тот участок, которому требуется защита от ржавчины.
Потенциал на аноде
Принцип этого метода заключается в том, что между металлом кузова и средой вокруг машины проходит электрический ток, вызванный разницей потенциалов. При этом более активный материал окисляется, а менее активный — восстанавливается.
Поэтому пластины из негативно заряженных металлов принято называть жертвенными анодами. Однако здесь нужно соблюдать определённую осторожность: если сдвиг потенциала слишком велик, может выделяться водород, меняться структура при электродного слоя, наблюдаться «деградация» материала, а не его защита. Катодом в данной схеме выступает поверхность кузова, а положительным зарядом назначаются любые объекты из окружающей среды. Это могут быть части автомобиля, влажная поверхность дороги и т.п. Следует помнить, что для анода нужен активный материал: магний, алюминий, цинк или хром. Эффективность работы такой схемы напрямую зависит от размера анода.
Катодная защита кузова от коррозии – цинковый анод