Транзистор «от шефа»: особенности IGBT компании STMicroelectronics


MOSFET или IGBT?

Сначала рассмотрим различия в целом. В настоящий момент все производители инверторов (ММА) выпускаются по двум полупроводниковым технологиям IGBT и MOSFET. Не буду вдаваться в подробности, скажу только то, что в схемотехнике этих аппаратов используются разные полупроводниковые транзисторы IGBT и MOSFET. Основое различие между этими транзисторами — различный ток коммутации. Большим током обладают транзисторы IGBT.

Для изготовления стандартного инвертора понадобится 2–4 IGBT транзистора (в зависимости от рабочего цикла), a MOSFET — 10–12, т. к. они не могут пропускать через себя большие токи, поэтому их приходится делить на такое большое количество транзисторов. Вот собственно в чем и отличие.

Тонкость в том, что транзисторы очень сильно греются и их необходимо установить на мощные алюминиевые радиаторы. Чем больше радиатор, тем больше съем тепла с него, а, следовательно, его охлаждающая способность. Чем больше транзисторов, тем больше радиаторов охлаждения необходимо установить, следовательно, увеличиваются габариты, вес и т. д. MOSFET здесь однозначно проигрывает.

На практике схемотехника MOSFET не позволяет создать аппарат на одной плате: т.е аппараты, которые сейчас есть в продаже, собраны в основном на трех платах. IGBT аппараты всегда идут на одной плате.

Технические характеристики

Серия IRGx40xx

Эта серия в семействе IGBT Gen6 была разработана первой и стала базовой. В ее состав входят приборы, обеспечивающие рабочий ток от 16 до 240 А. Приборы этой серии имеют встроенный антипараллельный диод. Транзисторы IRGx40xx выпускаются во всем наборе корпусов, описанных выше. Самый мощный представитель серии — IRGPS4067D — обеспечивает ток до 160 А при температуре корпуса +100 °C.

В таблице 1 приведены основные характеристики транзисторов этой серии.
Таблица 1.Основные параметры IGBT-транзисторов серии IRGx40xx

Наименование* IC, A VCE(on), В Etotal, мДж Падение на диоде Vf, В SCSOA tsc, мкс Корпус
при +25 °C при +100 °C
IRGB4060D 16 8 1,55 0,22 1,8 5 TO-220
IRG(S,B)4064D 20 10 1,6 0,23 2,5 5 D2-PAK

TO-220

IRGB4061D 36 18 1,65 0,45 2,3 5 TO-220
IRGP4062-E 48 24 1,6 0,72 5 TO-247AD
IRG(S,B,P)4062D 48 24 1,6 0,72 1,8 5 D2-PAK

TO-220

TO-247**

IRGP4063 96 48 1,65 1,9 5 TO-247**
IRGP4063D 96 48 1,65 1,9 1,95 5 TO-247**
IRGP4068 96 48 1,65 0,96 5 TO-247**
IRGP4063D1 96 48 1,65 1,9 2 5 TO-247**
IRGP4069 76 50 1,6 1,02 5 TO-247
IRGP4069D 76 50 1,6 1,02 2,2 5 TO-247**
IRGP4066 140 90 1,7 4,62 5 TO-247**
IRGP4066D 140 90 1,7 4,62 2,23 5 TO-247**
IRGPS4067D 240 160 1,7 9,18 2,4 5 TO-274

Примечания к таблицам.

* Все IGBT имеют постфикс “PBF” (бессвинцовое исполнение).

** IGBT выпускаются также в корпусе TO‑247 с удлиненными выводами — TO‑247AD (постфикс “-E” в наименовании).

Серия IRGx46xx

При разработке и производстве этой серии IGBT была использована усовершенствованная технология изготовления кристаллов, что позволило уменьшить размеры кристалла без заметного ухудшения его рабочих характеристик. Так как площадь кристалла уменьшилась по сравнению с «классическим» решением, то транзистор стал дешевле в производстве, в связи с тем, что в едином технологическом цикле изготавливается больше кристаллов. Разница в цене по сравнению с аналогичными по параметрам представителями семейства IRGx40хх может достигать от 5 до 20% в зависимости от конкретного компонента.

Основные характеристики транзисторов серии IRGx46xxD приведены в таблице 2.
Таблица 2.Основные параметры IGBT-транзисторов серии IRGx46xxD

Наименование* IC, A VCE(on), В Etotal, мДж Падение на диоде Vf, В SCSOA tsc, мкс Корпус
при +25 °C при +100 °C
IRG(R,S,B)4607D 11 7 1,75 0,11 1,7 5 D-PAK

D2-PAK

TO-220

IRG(R,S,B)4610D 16 10 1,7 0,18 1,6 5 D-PAK

D2-PAK

TO-220

IRG(S,B)4615D 23 15 1,55 0,22 1,8 5 D2-PAK

TO-220

IRG(S,B,P)4620D 32 20 1,55 0,3 2,1 5 D2-PAK

TO-220

TO-247**

IRG(S,B,P)4630D 47 30 1,65 0,45 2,1 5 D2-PAK

TO-220

TO-247**

IRGP4640D 65 40 1,6 0,72 1,8 5 TO-247**
IRGP4650D 76 50 1,6 1,02 2,2 5 TO-247**
IRGP4660D 96 60 1,65 1,90 1,95 5 TO-247**

Для приборов этой серии используется другая система обозначений, отличная от классической системы обозначений IGBT Gen6, описанной выше. Первые две цифры (46) обозначают номер серии, а две или три последующие цифры — значение рабочего тока транзистора при температуре корпуса +100 °C. Например, для транзистора IRGх4660 коллекторный ток составляет 60 А. Эта система обозначений более удобна для выбора транзистора.

Серия IRGP426x

Транзисторы этой серии имеют повышенное рабочее напряжение 650 В, что дает дополнительный запас прочности для систем, работающих в условиях питающего напряжения с высоким уровнем пульсаций. IGBT обеспечивают работу на частоте от 8 до 30 кГц (спецификация ultrafast) при гарантированной длительности безопасной работы в режиме КЗ (SCSOA) не менее 5 мкс.

Транзисторы предназначены для применения в инверторных схемах систем бесперебойного питания, в системах электропривода и сварочных аппаратах. Эти модели выпускаются со встроенным обратным диодом (Co-Pack), а также в дискретном исполнении. Для обеспечения высокого рабочего тока (до 90 А при температуре корпуса +100 °C) и низкого температурного сопротивления кристалл-корпус транзисторы выпускаются в корпусах TO‑247 со стандартными или удлиненными выводами.

В таблице 3 приведены основные параметры моделей этой серии.
Таблица 3.Основные параметры IGBT-транзисторов семейства IRGP426x

Наименование* IC, A VCE(on), В Etotal, мДж Падение на диоде Vf, В SCSOA tsc, мкс Корпус
при +25 °C при +100 °C
IRGP4262D 65 40 1,7 0,72 1,6 5 TO-247**
IRGP4263 96 60 1,7 1,90 5 TO-247**
IRGP4263D 96 60 1,7 1,90 1,9 5 TO-247**
IRGP4266 140 90 1,7 4,62 5 TO-247**
IRGP4266D 140 90 1,7 4,62 2,1 5 TO-247**

Что лучше MOSFET или IGBT?

Некоторые компании идут в ногу со временем и при производстве сварочных инверторов используют IGBT транзисторы американской , частота переключения которых составляет 50 кГц, т. е. 50000 раз в секунду. IGBT технологию выбрали неспроста, ведь рабочий диапазон температур у них с сохранением параметров гораздо больше, чем у MOSFET, т. е. при нагреве у MOSFETa падают качественные характеристики.

В конструкции САИ (Ресанта) используется одна маленькая плата, которая устанавливается вертикально, а также 4 IGBT транзистора (работают обособленно друг от друга, т. е. не выгорают все, если выгорел один как у MOSFET) и 6 диодов-выпрямителей (а не 12 как у MOSFET), соответственно отказоустойчивость ниже. Это ещё один «плюс» IGBT.

Можно напомнить покупателю о том, что в современных сварочных инверторов используется только 4 обособленных транзистора, а не 12 каскаднозависимых как у MOSFET. Всякое в жизни бывает, но, чтобы не произошло в случае выхода из строя одного транзистора (если не гарантийный случай), замена покупателю обойдется где-то в районе 400 р., а не 12×110 р. = 1320 р. Думаю, что разница приличная.

Как отличить: Визуально аппараты IGBT в большинстве своём отличаются от MOSFET вертикальным расположением силовых разъёмов, т. к. плата одна и обычно устанавливается вертикально. У MOSFET аппаратов выходы обычно расположены горизонтально, т. к. платы в конструкции горизонтально закреплены. Нельзя точно утверждать, что это верно на 100%. Точнее можно сказать, сняв кожух с аппарата.

Многие на транзисторах. Так, например, в настоящий момент выпустила на рынок аппараты (по технологии MOSFET) с наклейками на боковых панелях «Используются транзисторы TOSHIBA» а также «Используются транзисторы Mitsubishi». Пытаются выползти на громких и знакомых брендах. На практике это не подтвердилось. Так на крупнейшей Международной инструментальной выставке России Moscow International Tool Expo (MITEX-2011), которая проходила в ноябре 2011г. в «Экспоцентре» (г. Москва), я попросил представителей стенда данной компании разобрать их САИ с наклейкой «Используются транзисторы Mitsubishi» и продемонстрировать данные транзисторы. В итоге сварочные инверторы разобрали, но данных транзисторов не обнаружили. Сами сотрудники были в шоке, обнаружив безымянные транзисторы.

Источник

Не нужно на 100% разбираться в премудростях электротехники, чтобы высказать мнение по теме. Заголовок «MOSFET или IGBT?» напоминает старое соревнование форматов: VHS или DVD? Кто же победит? И пусть скажут, сравнение не корректное. Но, DVD формат великолепный, качество звука и изображения замечательные, а мы все так привыкли к старому доброму VHS…

Для тех, кто не понимает о чем идет речь, поясним. На сегодняшний день существует две технологии изготовления сварочных инверторов,

Возникает закономерный вопрос: что же выбрать старое, проверенное временем, или относительно новое, но более технологичное?

Попробуем привести пару доводов и, как говорится, ближе к «телу»…

Что не говори, а IGBT занимают меньший объем и при этом позволяют получить более высокую силу тока на выходе, они меньше нагреваются. Разве это не аргумент в пользу IGBT? Возражения же заключаются в том, что схемы IGBT покамест не идеально продуманы и т.д., разработчикам не было времени на это и они звучат «натянуто».

Конечно, если покупать инвертор для бытовой сварки, то не так уж важно, какие у него транзисторы внутри. Вообще не важно, что внутри. Главное, чтобы электрод поджигался нормально, дуга не прыгала туда-сюда, чтобы электрод не залипал. Так же, желательно, чтобы инвертор работал при пониженном напряжении в сети, не боялся забросов напряжения, чтобы желтая лампа перегрева редко зажигалась.

Если речь идет о небольших объемах бытовых работ, то практически любой инвертор в этом станет вашим надежным другом и товарищем, та же Ресанта или Сварог, или Фубаг, или отечественный Форсаж и т.д. и т.п.

Но что, если нужен профессиональный аппарат, когда варить придется целый день. Наше мнение, здесь лучше IGBT. Почему? Возьмем для примера сварочный аппарат РICO 180— это же прелесть, а не сварочник! Приведем в качестве примера его систему охлаждения. Она интеллектуальная и включается только тогда, когда транзисторы нагреваются. А в РICO даже после 15 и более минут сварки на небольших токах вентилятор не шелохнется. Это значит, что схемы холодные, корпус аппарата холодный. И все это IGBT, они греются менее интенсивно, чем MOSFET и на более высоких токах. Ну и что мне с этого, скажете Вы? Очень просто. Чем меньше работает вентилятор, тем лучше! Особенно если Вы работаете в запыленных помещениях. Основной враг инвертора — это пыль. Она является основной причиной досрочного выхода инверторов из строя. Соответственно, чем меньше пыли затягивается в сварочный аппарат, тем лучше! А это значит, чем дольше не включаются кулеры, тем лучше! Получить это можно только с IGBT.

Несомненный плюс так же состоит в том, что достигается высокая мощность при еще более малом весе. Каждый грамм играет роль, если приходится целый день носить инвертор на плече.

Минус в свое время был в дороговизне ремонта IGBT и невозможности подчас найти запчасти. Но время идет, техника совершенствуется, а то, что было раньше дорогим и недоступным, становится обыденным и легкозаменяемым! Так что наше мнение, будущее за новыми технологиями. А Вы как думаете? Стоит с этим согласиться?

Сегодня уже ни для кого не секрет кто выиграл в битве «VHS или DVD».

Источник

Транзисторы для сварочных инверторов

Время чтения: 6 минут

За последние 100 лет технология сварки претерпела значительные изменения. Классические сварочные аппараты были усовершенствованы, а в продаже появились совершенно новые устройства. Наибольший вклад в развитие домашней и любительской сварки внесло изобретение инверторного сварочного аппарата. Его электронная «начинка» позволяет внедрить функции, которые недоступны классическому трансформатору или выпрямителю.

А если в сварочном аппарате применяется электроника, значит, используются и транзисторы. В этой статье мы подробно расскажем, что такое транзистор, какие транзисторы используются в сварочных инверторах и чем отличаются транзисторы IGBT в сварочном аппарате от транзисторов MOSFET.

Общая информация

Транзисторы — что это такое? Наверняка каждый, кто хоть раз сталкивался с ремонтом или банальной разборкой радиоэлектроники, слышал этот термин. Говоря простыми словами, транзистор — это электронная деталь с выводами, изготовленная из полупроводникового материала. Основная функция транзистора — это усиление или генерирование электрических сигналов, поступающих извне. Также с помощью транзисторов выполняется коммутация.

На данный момент транзисторы есть в любом электронном приборе и являются один из важнейших компонентов. В середине прошлого века сразу несколько ученых получили Нобелевскую премию за изобретение транзистора. И с тех пор это небольшое приспособление кардинально изменило мир электроники.

Транзисторы очень маленькие и компактные. Они экономичны, их производство стоит недорого. Несмотря на свой скромный размер, транзистор устойчив к механическому воздействию и долговечен. Также транзисторы способны исправно работать при низком напряжении и при высоких значениях тока. Именно благодаря этим достоинствам к концу 20-го века транзисторы стали неотъемлемой частью каждого электронного прибора. В том числе, у инверторных сварочных аппаратов.

С помощью транзисторов удалось собрать компактную схему и внедрить ее в инвертор. Таким образом, существенно снизились размеры и вес сварочного аппарата. На данный момент производители предлагают инверторы весом до 5 кг, которые можно положить в рюкзак и взять с собой на выездные работы. Также такие аппараты незаменимы при сварке на высоте или в труднодоступных местах.

В сравнении с обычным трансформатором, который использовался раньше для сварки, инверторы намного проще в освоении. А наличие дополнительных функций (например, функции горячего старта или антизалипания) помогает новичкам как можно скорее приступить к работе. И все это заслуга транзисторов.

Зоны безопасной работы прибора (Safe Operating Area, SOA)

Эти характеристики задают поле допустимых значений токов и напряжений прибора и определяют надежность и безопасность работы транзистора во всех режимах. Они подразделяются на три области:

  • область безопасности во включенном состоянии FBSOA (Forward Biased SOA);
  • область безопасности в выключенном состоянии RBSOA (Reverse Biased SOA);
  • область безопасности при коротком замыкании SCSOA (Short Circuit SOA).

Для правильного выбора IGBT следует рассматривать два ключевых момента. Оба они касаются поддержания IGBT в пределах максимальных регламентированных значений параметров в течение работы. Первым критерием является то, что амплитудное значение тока коллектора на промежутке выключения, включая условия перегрузки, должно быть в пределах SOA — области безопасной работы при переключении (то есть менее удвоенного номинального тока IС). Вторым критерием является то, что рабочую температуру р-n-перехода IGBT необходимо всегда поддерживать ниже уровня Tj(max) во всех нормальных режимах работы, включая ожидаемую перегрузку.

Область FBSOA определяет допустимые значения тока и напряжения транзистора во включенном состоянии. У IGBT-транзисторов потери проводимости зависят от тока практически линейно:

Pcond = IC×VCE(on)@IC,

где IC — ток коллектора; VCE(on)@IC — напряжение насыщения транзистора (является функцией тока).

На рис. 2 показана типовая характеристика зоны FBSOA допустимых значений токов и напряжений для включенного состояния транзистора IRGP4640D.

Рис. 2. Типовая FBSOA характеристика транзистора IRGP4640D

Дополнительным преимуществом Trench-IGBT (в том числе и Gen6) является прямоугольная (square) область безопасной работы в режиме обратного смещения (RBSOA). На рис. 3 для сравнения приведены формы областей RBSOA для транзисторов 4‑го (IRG4PSC71UDPBF) и 6‑го (IRGP4063D1PBF) поколений, имеющих одинаковое значение максимального рабочего тока — 60 А при +100 °C.

Рис. 3. Сравнительные характеристики зон RBSOA для IGBT: а) 4 го поколения; б) 6 го поколения

Прямоугольная форма зоны RBSOA обеспечивает бóльшую надежность прибора при работе с критическими токами и напряжениями. Новые транзисторы 6‑го поколения имеют квадратную форму RBSOA вплоть до температуры кристалла +175 °C.

Параметр TSC характеризует способность IGBT-транзистора кратковременно выдерживать режим короткого замыкания без возникновения необратимого лавинного пробоя полупроводниковой структуры. Для всех приборов 6‑го поколения это время составляет 5 мкс. За это регламентированное время должна сработать внешняя схема токовой защиты, в задачи которой входит отключить нагрузку и уберечь ключевой транзистор и остальную часть устройства от протекания сверхтоков.

Транзисторы в инверторах

Транзистор — это один из главных компонентов современного сварочного инвертора. Без него инвертор в принципе не будет так называться. И, поскольку сварочные инверторы уже прочно вошли в нашу жизнь, то нелишним будет узнать немного больше об их электронной «начинке». Эта информация будет полезна не столько мастерам по ремонту сварочных аппаратов, сколько самим сварщикам. Для лучшего понимая сути используемого вами оборудования.

Итак, на данный момент чаще всего в сварочных инверторах применяются транзисторы двух типов: IGBT и MOSFET. Именно благодаря им удается добиться достойного качества работ, внедрения новых функций и уменьшению габаритов аппарата.

Подробнее про IGBT

Мы решили заострить ваше внимание на IGBT транзисторах, поскольку они считаются самыми технологичными. IGBT представляет собой стандартный биполярный транзистор с изолированным затвором. Усиливает и генерирует электрические колебания. Часто применяется в инверторе. От полевого транзистора отличается тем, что генерирует силовой канал, а не управляет им. Представляет собой 2 транзистора на подложке.

Именно благодаря IGBT транзисторам удалось развить производство современных сварочных инверторов. Поскольку именно данный тип транзисторов способен работать при высоком напряжении. Очень скоро производителям стало ясно, что применение IGBT транзисторов способно вывести производство инверторов на новый уровень. Удалось значительно уменьшить размеры аппаратов и увеличить их производительность. Порой стандартный IGBT транзистор способен заменить даже тиристор.

Иногда в IGBT инверторы внедряют специальные микросхемы, которые усиливают управляющий электрический сигнал и ускоряют зарядку затворов. Это необходимо для исправного функционирования мощных переключателей.

IGBT или MOSFET?

Выше мы уже упомянули, что помимо транзисторов типа IGBT существуют еще и транзисторы MOSFET. И многие сварщики любят спорить на форумах, какие транзисторы лучше, а какие хуже. Что мы думаем по этому поводу? Сейчас узнаете.

IGBT — это биполярные транзисторы. А MOSFET — полевые. И отличий у них больше, чем многим кажется на первый взгляд. Основное отличие — максимальная мощность, которую способен выдержать транзистор. У IGBT этот показатель выше, поэтому стоят они дороже, чем MOSFET. А это значит, что управляющая схема тоже стоит дороже.

На практике, сварщик практически не заметит разницы при работе с инверторам на IGBT или MOSFET. В характеристиках разница есть, но на практике она ощущается слабо. К тому же, на IGBt инверторы сложнее найти запчасти и вообще грамотного мастера по ремонту. И расходники стоят дороже.

Если вы используете недорогой инвертор для домашней сварки, то разницу между IGBT и MOSFET вы точно не заметите. Все преимущества IGBT раскрываются только в профессиональном оборудовании, предназначенном для высоковольтного подключения. В таком случае больший диапазон мощностей действительно играет важную роль и стоит предпочесть IGBT инвертор. В остальных же случаях не важно, какие транзисторы установлены. Вы, как любитель, разницу не почувствуете.

Словом, если вы новичок, то приобретайте инвертор на любых транзисторах. Инвертор на MOSFET будет стоить дешевле, вы сможете проще и быстрее его отремонтировать. А если вы выбираете инвертор для профессиональной сварки, то лучше выбрать аппарат на IGBT транзисторах. Они позволят использовать больше мощности. Но и их обслуживание обойдется дороже.

Что лучше igbt или mosfet в сварочном инверторе

Не нужно на 100% разбираться в премудростях электротехники, чтобы высказать мнение по теме. Заголовок «MOSFET или IGBT?» напоминает старое соревнование форматов: VHS или DVD? Кто же победит? И пусть скажут, сравнение не корректное. Но, DVD формат великолепный, качество звука и изображения замечательные, а мы все так привыкли к старому доброму VHS…

Для тех, кто не понимает о чем идет речь, поясним. На сегодняшний день существует две технологии изготовления сварочных инверторов,

Возникает закономерный вопрос: что же выбрать старое, проверенное временем, или относительно новое, но более технологичное?

Попробуем привести пару доводов и, как говорится, ближе к «телу»…

Что не говори, а IGBT занимают меньший объем и при этом позволяют получить более высокую силу тока на выходе, они меньше нагреваются. Разве это не аргумент в пользу IGBT? Возражения же заключаются в том, что схемы IGBT покамест не идеально продуманы и т.д., разработчикам не было времени на это и они звучат «натянуто».

Конечно, если покупать инвертор для бытовой сварки, то не так уж важно, какие у него транзисторы внутри. Вообще не важно, что внутри. Главное, чтобы электрод поджигался нормально, дуга не прыгала туда-сюда, чтобы электрод не залипал. Так же, желательно, чтобы инвертор работал при пониженном напряжении в сети, не боялся забросов напряжения, чтобы желтая лампа перегрева редко зажигалась.

Если речь идет о небольших объемах бытовых работ, то практически любой инвертор в этом станет вашим надежным другом и товарищем, та же Ресанта или Сварог, или Фубаг, или отечественный Форсаж и т.д. и т.п.

Модули IGBT

Поскольку IGBT, как правило, крайне редко применяются в одиночном варианте, конструкторы стали думать о модульных вариантах их компоновки. Модуль конструктивно гораздо проще и компактнее использовать в изделиях. Но не только это.

Очень важной функцией IGBT-модулей является возможность наращивать мощность частотных преобразователей, инверторов без больших материальных затрат!

Маломощный частотный преобразователь с развитыми функциями управления стоит гораздо дешевле мощного. Мощный IGBT-модуль недешев сам по себе, но мощный IGBT-модуль и недорогой но “умный” частотник по цене могут оказаться в несколько раз дешевле. Потребителям, (да и производителям) есть о чем подумать.

Потребуется, правда, вмешательство достаточно квалифицированных инженеров, так как речь идет о переделке схемы частотников, так как далеко не все модели допускают такое расширение: там нет ни выходов для таких подключений, и ни слова в инструкциях, кроме, разве что, запрета вмешательства в схему преобразователя со стороны потребителей и отказа об ответственности для таких случаев. Кроме технической стороны дела, есть еще и возможная юридическая: возможное нарушение патентов, лицензий и т.д. Это тоже надо иметь в виду.

MOSFET или IGBT?

Сначала рассмотрим различия в целом. В настоящий момент все производители инверторов (ММА) выпускаются по двум полупроводниковым технологиям IGBT и MOSFET. Не буду вдаваться в подробности, скажу только то, что в схемотехнике этих аппаратов используются разные полупроводниковые транзисторы IGBT и MOSFET. Основое различие между этими транзисторами — различный ток коммутации. Большим током обладают транзисторы IGBT.

Для изготовления стандартного инвертора понадобится 2-4 IGBT транзистора (в зависимости от рабочего цикла), a MOSFET — 10-12, т. к. они не могут пропускать через себя большие токи, поэтому их приходится делить на такое большое количество транзисторов. Вот собственно в чем и отличие.

Тонкость в том, что транзисторы очень сильно греются и их необходимо установить на мощные алюминиевые радиаторы. Чем больше радиатор, тем больше съем тепла с него, а, следовательно, его охлаждающая способность. Чем больше транзисторов, тем больше радиаторов охлаждения необходимо установить, следовательно, увеличиваются габариты, вес и т. д. MOSFET здесь однозначно проигрывает.

На практике схемотехника MOSFET не позволяет создать аппарат на одной плате: т.е аппараты, которые сейчас есть в продаже, собраны в основном на трех платах. IGBT аппараты всегда идут на одной плате.

Перегрев IGBT-модулей рабочим током

Основным признаком перегрева IGBT-модуля рабочим током в результате, например плохого охлаждения, является расплавление припоя под кристаллами транзистора или диода. Иногда перегрев сопровождается растрескиванием кристалла и смещением последнего от первоначального положения. Но во всех случаях в модулях сохраняется неповрежденной верхняя часть кристаллов с приваренной алюминиевой проволокой (рис. 4). Подобная картина обусловлена тем, что процесс перегрева развивается медленно (от нескольких секунд до десятков минут в зависимости от условий охлаждения и режима работы). Мощность, выделяющаяся в кристаллах, значительно меньше по сравнению с мощностью, выделяемой в режиме тока короткого замыкания и не приводит к столь разрушительным последствиям.

Рис. 4. Повреждение кристаллов IGBT в результате перегрева

Пробой в результате перегрева наблюдается как правило на всех параллельно соединенных кристаллах поврежденных транзисторов и диодов, так как температура на поверхности медного основания распределена достаточно равномерно.

Основные причины перегрева модулей:

  • ошибки в расчете полной мощности потерь в модулях;
  • неправильный выбор охладителя или условий охлаждения;
  • неправильное расположение термодатчика или ошибки при согласовании показаний термодатчика с температурой кристаллов;
  • неправильное взаимное расположение модулей на охладителе;
  • некачественная теплопроводящая паста (высокая вязкость, ухудшение свойств со временем, низкая теплопроводность);
  • некачественная обработка поверхности охладителя;
  • недостаточное усилие затяжки или ослабление винтов крепления модуля к охладителю.

Что лучше MOSFET или IGBT?

Некоторые компании идут в ногу со временем и при производстве сварочных инверторов используют IGBT транзисторы американской , частота переключения которых составляет 50 кГц, т. е. 50000 раз в секунду. IGBT технологию выбрали неспроста, ведь рабочий диапазон температур у них с сохранением параметров гораздо больше, чем у MOSFET, т. е. при нагреве у MOSFETa падают качественные характеристики.

В конструкции САИ (Ресанта) используется одна маленькая плата, которая устанавливается вертикально, а также 4 IGBT транзистора (работают обособленно друг от друга, т. е. не выгорают все, если выгорел один как у MOSFET) и 6 диодов-выпрямителей (а не 12 как у MOSFET), соответственно отказоустойчивость ниже. Это ещё один «плюс» IGBT.

Можно напомнить покупателю о том, что в современных сварочных инверторов используется только 4 обособленных транзистора, а не 12 каскаднозависимых как у MOSFET. Всякое в жизни бывает, но, чтобы не произошло в случае выхода из строя одного транзистора (если не гарантийный случай), замена покупателю обойдется где-то в районе 400 р., а не 12×110 р. = 1320 р. Думаю, что разница приличная.

Как отличить: Визуально аппараты IGBT в большинстве своём отличаются от MOSFET вертикальным расположением силовых разъёмов, т. к. плата одна и обычно устанавливается вертикально. У MOSFET аппаратов выходы обычно расположены горизонтально, т. к. платы в конструкции горизонтально закреплены. Нельзя точно утверждать, что это верно на 100%. Точнее можно сказать, сняв кожух с аппарата.

Многие на транзисторах. Так, например, в настоящий момент выпустила на рынок аппараты (по технологии MOSFET) с наклейками на боковых панелях «Используются транзисторы TOSHIBA» а также «Используются транзисторы Mitsubishi». Пытаются выползти на громких и знакомых брендах. На практике это не подтвердилось. Так на крупнейшей Международной инструментальной выставке России Moscow International Expo (MITEX-2011), которая проходила в ноябре 2011г. в «Экспоцентре» (г. Москва), я попросил представителей стенда данной компании разобрать их САИ с наклейкой «Используются транзисторы Mitsubishi» и продемонстрировать данные транзисторы. В итоге сварочные инверторы разобрали, но данных транзисторов не обнаружили. Сами сотрудники были в шоке, обнаружив безымянные транзисторы.

MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT

Когда дело доходит до импульсных преобразователей, оба типа транзисторов имеют свои преимущества и недостатки. Но какой из них лучше для данного устройства? В этой статье сравним MOSFET с модулями IGBT чтобы понять, что и где лучше ставить.

Предполагается что в схемах с низким напряжением, низким током, но высокой частотой переключения, предпочтительно использовать полевые транзисторы (MOSFET), а в схемах с высоким напряжением, высоким током, но с низкой частотой — лучше IGBT. Но достаточно ли такой общей классификации? У каждого есть свои дополнительные предпочтения в этом отношении и правда в том, что не существует общего, жесткого стандарта, который позволял бы оценивать параметры данного элемента с точки зрения его использования в импульсных преобразователях. Все зависит от конкретного применения и широкого спектра факторов, таких как частота переключения, размер, стоимость и т. д. Поэтому, вместо того чтобы пытаться решить какой элемент лучше, нужно внимательно изучить различия между этими деталями.

Кратко о MOSFET

MOSFET — это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком.

Для правильной работы МОП-транзисторы должны поддерживать положительный температурный коэффициент. Потери во включенном состоянии малы и теоретически сопротивление транзистора в этом состоянии не ограничено — может быть близко к нулю. Кроме того, поскольку МОП-транзисторы могут работать на высоких частотах, они могут работать в устройствах с быстрым переключением и с низкими потерями на переключение.

Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества — более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).

Технологии PT и NPT изготовления IGBT-транзисторов

IGBT называется PT (punch-through) или асимметричным, если имеется N+ буферный слой между P+ подложкой и N- областью дрейфа. В противном случае, он называется NPT (non-punchthrough) или асимметричным IGBT. N+ буферный слой увеличивает скорость выключения транзистора путем уменьшения инжекции неосновных носителей заряда и увеличения скорости рекомбинации при переключении транзистора. Кроме того, вероятность «защелкивания» также уменьшается за счет уменьшения коэффициента усиления по току PNP-транзистора. Основная проблема состоит в том, что увеличивается падение напряжения на открытом транзисторе. Однако толщину дрейфовой области N- можно уменьшить путем подачи напряжения прямого смещения. В результате уменьшится падение напряжения на открытом транзисторе. Следовательно, PT-IGBT имеют более удачные характеристики по сравнению с NPT-IGBT в отношении скорости переключения и прямого падения напряжения. В настоящее время большинство серийных IGBT выпускается по PT-IGBT технологии. Возможности прямого и обратного запирания IGBT приблизительно равны, поскольку определяются толщиной и удельным сопротивлением одного и того же дрейфового слоя N-. Обратное напряжение для PT-IGBT транзистора, который содержит буферный слой N+ между подложкой P+ и областью дрейфа N-, уменьшается до десятков вольт из-за наличия высоколегированных областей с обеих сторон зоны J1.

Ряд IGBT, изготавливающихся без буферного слоя N+, называются NPT (non-punch through) IGBT, в то время как транзисторы, у которых присутствует данный слой, называются PT (punch-through) IGBT. При правильном выборе степени легирования и толщины буферного слоя, его присутствие может значительно увеличить производительность транзисторов. Несмотря на физическое сходство, работа IGBT больше напоминает работу мощного биполярного транзистора, чем мощного MOSFET. Это происходит из-за того, что слой подложки P+ (инжекционный слой) отвечает за инжекцию неосновных носителей заряда в область дрейфа N-, что приводит к модуляции удельного сопротивления.

Технологически транзистор IGBT получают из транзистора MOSFET путем добавления еще одного биполярного транзистора структуры PNP. Эквивалентная крутизна IGBT значительно превышает крутизну MOSFET, и ее значением можно управлять на этапе изготовления IGBT. Еще одним достоинством IGBT является значительное снижение (по сравнению с MOSFET) последовательного сопротивления силовой цепи в открытом состоянии. Благодаря этому снижаются тепловые потери на открытом транзисторе.

По результатам исследований было выяснено, что у IGBT отсутствует участок вторичного пробоя, характерный для обычных биполярных транзисторов. Быстродействие IGBT ниже, чем у MOSFET, но выше, чем у биполярных транзисторов, поэтому их используют на частотах порядка 100 кГц. Ограничение скорости переключения IGBT кроется в конечном времени жизни неосновных носителей в базе PNP-транзистора. Накопленный в базе PNP-транзистора заряд вызывает характерный «хвост» тока при закрывании IGBT. Причина этого заключается в том, что как только имеющийся в составе IGBT-транзистора MOSFET закрывается, в силовой цепи начинается рекомбинация неосновных носителей заряда, которая предшествует возникновению «хвоста». Этот «хвост» служит причиной основных тепловых потерь и требует введения так называемого «мертвого времени» в схемах управления мостовыми и полумостовыми инверторами. Поскольку база PNP-транзистора сделана недоступной извне, то меры по уменьшению «хвоста» можно принять только на этапе изготовления транзистора. На рисунке 2 показана упрощенная схема полумостового инвертора.

Рис. 2. Упрощенная схема полумостового инвертора

Кратко о IGBT

Модуль IGBT также является полностью управляемым коммутатором с тремя контактами (затвор, коллектор и эмиттер). Его управляющий сигнал подается между затвором и эмиттером и нагрузкой между коллектором и эмиттером.

IGBT сочетает в себе простые характеристики управления затвором, как в транзисторе MOSFET, с сильноточным характером биполярного транзистора с низким напряжением насыщения. Это достигается с помощью изолированного полевого транзистора для управляющего входа и биполярного силового транзистора в качестве сильноточного ключа.

Модуль IGBT специально разработан для быстрого включения и выключения. Фактически частота повторения импульсов достигает УЗ диапазона. Эта уникальная способность делает IGBT часто используемыми в усилителях класса D для синтеза сложных сигналов с широтно-импульсной модуляцией и фильтрами нижних частот. Они также используются для генерации импульсов большой мощности в таких областях, как физика элементарных частиц и плазма, а также играют важную роль в современных устройствах — электромобили, электровелосипеды, поезда, холодильники с регулируемой скоростью вращения компрессора, кондиционеры и многое другое.

Сравнение IGBT с MOSFET

Структуры обоих транзисторов очень похожи друг на друга. Что касается протекания тока, важным отличием является добавление слоя подложки P-типа под слой подложки N-типа в структуре модуля IGBT. В этом дополнительном слое дырки вводятся в слой с высоким сопротивлением N-типа, создавая избыток носителей. Это увеличение проводимости в N-слое помогает уменьшить общее напряжение во включенном состоянии в IGBT-модуле. К сожалению, это также блокирует поток электроэнергии в обратном направлении. Поэтому в схему добавлен специальный диод, который расположен параллельно с IGBT чтобы проводить ток в противоположном направлении.

MOSFET может переключаться на более высоких частотах, однако есть два ограничения: время переноса электронов в области дрейфа и время, необходимое для зарядки / разрядки входного затвора и его емкости. Тем не менее эти транзисторы, как правило, достигают более высокой частоты переключения, чем модули IGBT.

Введение

Энергосберегающие технологии на основе регулируемого электропривода все шире внедряются в различные отрасли промышленности и в транспортных средствах. В последнее время наиболее популярными и используемыми силовыми ключами для преобразователей частоты асинхронных двигателей стали IGBT-модули.

Общеизвестно, что использование в схемах преобразователей быстродействующих полностью управляемых мощных ключей на основе IGBT позволяет преобразовывать электроэнергию на высоких частотах, снизить общие потери в преобразователях, применить современные системы управления, снизить массу и габариты устройств.

Конструкция и параметры IGBT-модулей постоянно совершенствуются, повышается устойчивость и «живучесть» модулей при жестких условиях эксплуатации и в аварийных режимах. Однако как показывает опыт работы с потребителями, многие разработчики и изготовители аппаратуры не учитывают некоторые особенности этих приборов, что зачастую приводит к неправильной эксплуатации IGBT-модулей и выходу их из строя.

В статье приведены результаты исследований причин выхода их из строя, выявленные при испытаниях или при эксплуатации потребителями. Мы постарались не только перечислить наиболее частые случаи, но и описать характерные признаки повреждения модулей. Одним из главных моментов публикации является также описание мер безопасности при применении IGBT-модулей.

Во всех случаях, когда речь идет не о механическом или электростатическом повреждении IGBT, все выходы модулей из строя происходят из-за теплового воздействия, разными являются только причины такого воздействия.

Рис. 1. Схема трехфазного инвертора

Чаще IGBT-модули используются в инверторах, где транзисторы соединены по схеме полумоста (рис. 1), и импульсных источниках питания, где используются IGBT-модули, собранные по схеме чоппера (рис. 2).

Рис. 2. Схема импульсного источника питания

Рассмотрим наиболее распространенные случаи выхода IGBT-модулей из строя в этих схемах.

Подведем итог

Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы.

В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.

Источник

Статические параметры IGBT

Статические и переходные характеристики IGBT-транзистора, работающего с антипараллельным диодом и без него, показаны на рис. 18. Рассматриваются следующие стационарные состояния IGBT.

Рис. 18. a) Выходные характеристики n-канального IGBT; б) передаточная характеристика IC = f(VGE)

Выключение и лавинный пробой

Если сигнал включения затвора меньше порогового уровня VGE(th)

, то при приложенном напряжении «коллектор–эмиттер»
VCE
через IGBT протекает пренебрежимо малый ток утечки. При увеличении
VCE
обратный ток плавно растет, однако когда напряжение на коллекторе достигает предельной величины
VCES
, начинается лавинный пробой PIN-перехода:
p
+-карман/
n
-дрейфовая зона/
n
+-эпитаксиальный слой. Уровень
V(BR)VES
в первом приближении соответствует напряжению пробоя
VCER
биполярного PNP-транзистора, входящего в IGBT-структуру. Последующее лавинообразное нарастание тока в коллектор-базовом диоде приводит к разрушению IGBT. При этом области базы и эмиттера практически закорочены металлизацией эмиттера — между ними нет ничего, кроме бокового резистора
p
+-кармана.

Включение (1 квадрант)

Прямая характеристика IGBT (при положительном напряжении и токе коллектора VCE

и
IC
) имеет две характерные зоны (рис. 18):

  • Активная область.

Если сигнал управления затвором VGE

незначительно превышает пороговое значение
VGE(th)
, то большая часть его компенсируется за счет токового насыщения (горизонтальный участок характеристики), ток коллектора
IC
зависит от величины
VGE
. Как показано на рис. 17, крутизна прямой характеристики IGBT определяется следующим образом:

Крутизна нарастает пропорционально IC

и
VGE
и спадает с увеличением температуры кристалла. При коммутации силовых модулей, содержащих несколько параллельных чипов, активное состояние имеет место только в процессе переключения. Постоянная работа силовых ключей в активном режиме недопустима, поскольку порог
VGE(th)
падает при нагреве, и даже небольшой разброс характеристик индивидуальных кристаллов приведет к значительному тепловому и токовому небалансу.

  • Область насыщения.

Состояние насыщения, соответствующее включенному состоянию IGBT в процессе коммутации (крутая часть выходной характеристики), достигается в том случае, когда величина тока коллектора зависит только от внешних цепей (нагрузки). Поведение транзистора при этом определяется напряжением насыщения «коллектор–эмиттер» VCE(sat)

. Протекание тока по
n
—-дрейфовой зоне за счет неосновных носителей приводит к насыщению ключа. Отметим, что величина
VCE(sat)
для IGBT намного ниже, чем прямое падение напряжения MOSFET аналогичного класса напряжения. У большинства современных ключей напряжение насыщения имеет положительный температурный коэффициент, и только PT-IGBT-структура является исключением.

Инверсный режим (3 квадрант)

В инверсном режиме работы меняется полярность p


n
-перехода в области коллектора IGBT, его предельное обратное напряжение, как правило, не превышает 20 В. Перспективные RB IGBT с симметричной блокирующей способностью имеют встроенный быстрый последовательный диод (в отличие от обычных транзисторов, снабженных антипараллельным диодом).

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]