Резка металла газовым резаком: как пользоваться, резать, работать, технлогия


Основы работы с газовым резаком

Процесс резки газовым резаком происходит за счет сжигания металла в струе кислорода, подаваемого под давлением. Предварительно сплав должен быть разогрет до нужной рабочей температуры с помощью горящей смеси ацетилена с кислородом. Единственные металлы, которые можно резать этим способом – различные марки углеродистой и нелегированной стали. Нержавейку, цветные металлы и сплавы разрезать кислородно-ацетиленовым резаком нельзя.
Для выполнения данного вида работ помимо соответствующего комплекта газового оборудования потребуется следующее:

  • Огнетушитель.
  • Защитная экипировка: специальные очки; перчатки из толстой кожи; крепкая рабочая обувь с кожаной подошвой.
  • Соответствующая одежда – рекомендуется надевать огнестойкую, однако если ее нет, то подойдет хорошо облегающая хлопчатобумажная. Нельзя надевать вещи из синтетических и легковоспламеняющихся тканей, свободного кроя, с рваными или поношенными краями.
  • Инструменты для измерений и разметки: линейка, угольник и карандаш, изготовленный из мыльного камня.
  • Зажигалка для газового резака – предназначена для правильного зажигания пламени резака. Обычными спичками, зажигалками пользоваться очень опасно.

Технология кислородной резки стали

Резка стали в кислороде заключается в разогреве металла до температуры воспламенения, в горении металла в струе кислорода и в удалении (выдувании кислородной струей) из образовавшегося разреза продуктов горения в виде жидкой окалины. Условия, которые необходимы для кислородной резки стали:

а) для температуры воспламенения металла необходимо быть ниже температуры его плавления. Для чистого железа температура воспламенения равна 1050°, в металле с увеличением содержания углерода t°воспламенения повышается и уже при С=0,7% достигает t=1300°, т. е. близка к температуре начала плавления этой стали. При содержании углерода С=2,2% температура воспламенения (1400°) близка к температуре конца плавления этого сплава. Для Сu и Аl температура воспламенения выше температуры плавления;

б) t° плавления окислов должна быть ниже t° плавления самого металла. Это дает возможность легко выдувать жидкие окислы из места разреза.

Этим основным условиям удовлетворяют только железо и стали, содержащие С<0,7%.

Обычные способы кислородной резки позволяют хорошо резать стали, содержащие С<0,4%; стали, содержащие С=0,4—0,7%, чтобы не образовались трещины, нужно заранее подогревать до t=200°, а после резки отжигать при t=650°.

Стали при С>0,7% режутся плохо; чугун, медь , алюминий и их сплавы практически кислородом не режутся.

Низколегированные стали — хромистые, хромо-никелевые, никелевые, хромо-молибденовые — режутся хорошо.

Рис.1. Схема кислородной резки. 1- режущий кислород, 2- подогревательное пламя, 3- окалина.

Для резания стали чаще всего используют резак типа УР, который дает возможность разрезать металлическую конструкцию толщиной от 5 до 300 мм. А для резки металла толщиной до 600 мм применяется резак УР-600.

При массовых работах по кислородной резке стальных конструкций имеющих толщину около 200 мм употребляют полуавтоматы и автоматы, механизирующие процесс резки и обеспечивающие точное соблюдение формы и заданных размеров выреза.

При такой обработке получают гладкую кромку разреза, покрытую только тонким слоем окалины и зачастую не требующую дополнительной механической обработки.

Подготовка места и условий безопасной и удобной работы

Для обеспечения безопасного проведения работ с использованием газового резака требуется следовать следующим правилам и рекомендациям:

  • Для выполнения работы выбирают только место в идеально проветриваемом помещении либо на открытом воздухе.
  • Резать можно вдали от легковоспламеняющихся веществ и материалов.
  • Пол в помещении должен быть бетонным или земляным.
  • Поверхность земли или бетона должна быть очищена от любых посторонних предметов и материалов в радиусе не менее 5 м, так как искры от разрезаемого металла разлетаются на несколько метров и могут поджечь сухие ветошь, стружку, бумагу, высохшие растения или листья.
  • Разрезаемый металл кладут на подходящую опору, чтобы пользоваться резаком на удобной рабочей высоте. Для этих целей лучше всего использовать стальной стол.
  • Нельзя допускать касаний пламенем бетона (особенно если он свежий) – это вызовет его расширение и последующее интенсивное растрескивание с вылетанием из него мелких осколков бетона.
  • Категорически запрещено в качестве рабочих использовать легковоспламеняющиеся поверхности, или на которых разлиты огне-, взрывоопасные материалы.
  • Место разреза металла размечают как показано на видео.

Подготовка и настройка газового оборудования для резки

Чтобы работать с газовым резаком было безопасно, важно не только грамотно подобрать соответствующий комплект оборудования, но и правильно его подключить и настроить. Сначала к баллонам с кислородом и ацетиленом подсоединяют соответствующие трубки. Кислородные шланги и емкости обычно зеленого цвета, ацетиленовые – красные.

На обоих концах шлангов следует установить предохранительные затворы (приспособление, задерживающее обратные удары пламени).

Следующий шаг – проверка исправной работы подачи ацетилена. Сначала закрывают клапан регулирования подачи – Т-образную ручку вращают несколько раз назад. На баллоне, в верхней его части, открывают вентиль – поворачивают на 1 поворот кисти. Делают это в целях безопасности. Нельзя допускать, чтобы давление ацетилена в баллоне превышало 1 атм – в случае высокого давления этот газ становится нестабильным и даже может самопроизвольно взорваться или воспламениться. Чтобы проверить, что давление ацетилена отрегулировано правильно, выполняют следующие действия:

  1. Главный клапан емкости отпирают, затем открывают регулирующий клапан, поворачивая ручку в направлении часовой стрелки. Делать это нужно очень медленно, следя за показаниями манометра, установленного на выходе низкого давления. Регулирующий клапан открывают, пока давление не станет 0,34–0,54 атм.
  2. Затем продувают воздух из шланга – открывают ацетиленовый клапан резака до появления звука выходящего газа. После этого смотрят на показания манометра низкого давления. При продувке величина давления должна быть стабильной (если нет, то убеждаются в правильности установки регулятора).
  3. Клапан на резаке закрывают.

Проверяют и настраивают подачу кислорода – отключают регулятор его подачи (скручивают вниз), а после этого настраивают давление. Для снижения подачи кислорода закручивают ручку манометра на несколько оборотов назад. Затем выполняют последовательность следующих шагов:

  1. На баллоне для кислорода полностью отпирают главный клапан. Он двухседельный и в случае его частичного открытия из-за высокого давления в баллоне (150 атм) кислород выходит вокруг кольца уплотнения соединения штока клапана.
  2. Медленно открывают регулятор подачи, следя за показаниями манометра, установленного на выходе низкого давления, до настройки давления кислорода в пределах 1,7–2,7 атм.
  3. Продувают из шланга атмосферу – на резаке открывают кислородный вентиль. У резака 2 вентиля для кислорода: один ближе к шлангу, контролирует подачу в камеру, где кислород смешивается с ацетиленом для подогрева стали (горения смеси), а также для подачи в кислородную дюзу для резки; другой расположен дальше и подает кислород в отдельную дюзу резки (пока не открыт этот вентиль или не отпущен специальный рычажок резки кислород не должен выходить из мундштука резака). Сначала открывают первый вентиль – его несколько раз поворачивают, обеспечивая достаточный приток кислорода для осуществления обеих функций. После этого немного открывают второй (передний) вентиль – на время пока не очистится шланг (3–5 с для трубки длиной 7,5 м).
  4. Передний вентиль закрывают.

Горючие газы

Основными горючими газами, применяемыми при резке, являются ацетилен, природный газ, пропан-бутан, пары жидких горючих (керосина), которые, сгорая в кислороде, дают достаточную для резки температуру. В судостроении наиболее широко применяется кислородно-ацетиленовая резка. Рассмотрим основные свойства кислорода и ацетилена.

Кислород — химический элемент, при нормальных условиях представляющий собой бесцветный газ без запаха и вкуса. Сжатый кислород при соприкосновении с маслом и жирами мгновенно их окисляет с выделением большого количества тепла, что может привести к быстрому воспламенению масла или к взрыву. Особенно активно соединяются с кислородом металлы, поэтому он и применяется при резке.

Рис. 7.1. Кислородный баллон. 1 — днище; 2 — цилиндрический корпус; 3 — горловина; 4 — кольцо; 5 — предохранительный колпак; 6 — вентиль; 7 — опорный башмак.

Кислород поступает к месту потребления по трубопроводу или в баллонах. Баллон (рис. 7.1) представляет собой цилиндрический корпус, имеющий внизу выпуклое днище, а сверху — сферическую часть с горловиной. Горловина имеет коническое отверстие с резьбой, в которое ввертывается вентиль. Для устойчивости баллона на нижнюю часть его корпуса насажен опорный башмак. Максимальное давление кислорода в баллоне равно 14,7 МПа, Расходовать кислород из баллона можно до давления 0,29 МПа. Кислородные баллоны окрашивают в голубой цвет. Поперек баллона черной краской делают надпись «Кислород». Верхнюю сферическую часть баллона не окрашивают, а выбивают на ней паспортные данные баллона. Наполненный кислородом баллон имеет массу около 70 кг.

Ацетилен — химическое соединение углерода с водородом. Химически чистый ацетилен является бесцветным газом со слабым эфирным запахом. Технический ацетилен, применяемый для газовой резки, из-за примесей (сероводорода, аммиака и др.) имеет резкий неприятный запах. С кислородом и воздухом ацетилен образует взрывоопасные смеси, которые взрываются от огня или искры.

Ацетилен получают при взаимодействии карбида кальция с водой в специальных аппаратах, называемых ацетиленовыми генераторами.

К газорезательным постам ацетилен подается по трубопроводам или в баллонах.

При давлении более 0,19 МПа газообразный ацетилен в больших объемах становится взрывоопасным. Помещенный же в очень узкие (капиллярные) каналы, он не взрывается даже при давлении 2,45 МПа. Поэтому ацетиленовые баллоны заполняют специальной высокопористой массой (древесным активированным углем, пемзой, инфузорной землей).

Ацетилен растворяется в некоторых жидкостях, особенно в ацетоне. Учитывая это свойство, баллоны на 30—40 % по объему заполняют ацетоном. При открытом вентиле баллона ацетилен выделяется из ацетона в виде газа, а ацетон остается в баллоне.

Баллоны накачивают ацетиленом до давления 1,47— 1,86 МПа. Расходовать ацетилен из баллонов можно до давления в баллоне 0,1 МПа. При меньшем давлении происходит значительный унос паров ацетона с ацетиленом.

Ацетиленовые баллоны отличаются от кислородных по устройству вентиля и окраске. Их окрашивают в белый цвет и надписывают красной краской «Ацетилен». Масса наполненного ацетиленом баллона около 80 кг.

Пропан-бутановая смесь получается при добыче и переработке природных нефтяных газов, а также при переработке нефти. Пропан-бутан в сжиженном состоянии хранится в баллонах.

Целесообразность применения пропан-бутана в качестве заменителя ацетилена обусловливается главным образом дороговизной и дефицитностью ацетилена, однако при резке на пропан-бутане возрастает расход кислорода от 40 до 70 % в зависимости от толщины разрезаемого материала, а скорость резки снижается от 15 до 30%. Применение пропан-бутана, как и других заменителей ацетилена, допускается только по специальному разрешению администрации и по согласованию с санитарной и пожарной инспекциями.

Природный газ состоит в основном из метана (до 99 %) с небольшими примесями других газов. При нормальных температуре и давлении метан представляет собой газ без запаха и цвета, поэтому для обнаружения его утечки добавляют одорант, придающий ему резкий запах. Целесообразность использования природного газа для кислородной резки обусловлена возможностью бесперебойного централизованного снабжения им предприятий по газопроводу без существенных затрат на транспортировку; значительным снижением стоимости газорезательных работ по сравнению с ацетилено-кислородной резкой; незначительным снижением скорости резки (5—25%) по сравнению с ацетилено-кислородной резкой; возможностью использования аппаратуры (резаков), применяемой для ацетилено-кислородной резки, с незначительной переделкой отдельных деталей.

Керосин для резки используется в виде паров. Поэтому резаки имеют специальные испарители, подогреваемые вспомогательным пламенем, или форсунки. Целесообразность применения керосиново-кислородной резки обусловлена возможностью замены керосином ацетилена; сокращением расхода кислорода от 5 до 10 % при его пониженном давлении; сокращением стоимости резки стали до 10 %. Резка с применением керосина разрешается только в цеховых условиях и на открытых площадках, так как она особенно пожароопасна.

Поджигание резака и нагревание металла

Перед зажиганием резака требуется:

  • убедиться в герметичности всех соединений (клапанов, манометров, шлангов, другой арматуры) – любая протечка газа может моментально вызвать пожар;
  • проверить еще раз место работы на предмет отсутствия легковоспламеняющихся материалов, посторонних людей (особенно детей), животных;
  • убедиться в готовности к работе;
  • надеть защитные очки и перчатки.

Затем открывают на резаке клапан ацетилена, позволяя выйти кислороду, который находится в камере-смесителе. На это достаточно нескольких секунд. Потом закручивают вентиль, пока не станет слышно, что ацетилен еле выходит. Перед резаком располагают специальную зажигалку для него как показано на видео, чтобы ее внутренняя часть касалась мундштука. Затем надавливают на рычаг зажигалки. Когда производимые искры подожгут ацетилен, перед мундштуком должно образоваться маленькое пламя желтого цвета.

Подкручивая клапан подачи газа, увеличивают длину пламени примерно до 25 см. Факел должен начинаться у самого мундштука резака. Пламя будет отрываться от него или прыгать, когда ацетилена подается чересчур много.

Медленно открывают передний кислородный вентиль. При этом пламя должно поменять цвет с желтого на голубой – в этот момент будет обеспечена подача такого количества кислорода, которого достаточно для полного сжигания ацетилена. Подачу кислорода следует увеличивать, пока внутренний язычок голубого пламени не уменьшится и сожмется в направлении мундштука.

Кислородный клапан открывают еще больше – увеличивают размер факела, пока у внутреннего пламени длина не станет едва больше толщины разрезаемой стали (для листовой холоднокатаной толщиной 9,5 мм достаточно превышения длины пламени на 1,3 мм). Когда слышно «сопение» или кажется, что голубое пламя перистое и неустойчивое, то это означает слишком большую подачу кислорода. Ее снижают, пока все пламя не стабилизируется, а внутреннее – не примет форму четкого конуса.

Внутреннее пламя самым кончиком подносят к поверхности обрабатываемой стали. Ее греют до образования в месте соприкосновения лужицы расплавленного светящегося металла. Кончик пламени надо держать неподвижно на расстоянии примерно 10 мм от поверхности стали как показано на видео, чтобы все тепло концентрировалось на одном участке.

Резка стали газовым резаком

Ручку клапана газовой резки медленно отпускают вниз – подают струю кислорода, поджигающую расплавленный металл. Если сразу начинает происходить бурная реакция, то сталь загорелась и можно продолжать постепенно увеличивать давление кислорода, пока его струя не прорежет материал насквозь. Когда реакция не идет – металл разогрет недостаточно, чтобы возгореться в струе кислорода. Необходимо в нагревающее пламя добавить кислорода и дать ему возможность разогреть сталь.

Когда струя кислорода начнет резать, мундштук резака начинают медленно передвигать вдоль линии реза. При этом почти все продукты обработки (расплавленный шлак, искры) сдуваются струей к задней стороне зоны разрезания как показано на видео. Если этот поток возвращается обратно или замедляется, то надо уменьшить скорость перемещения резака или остановить его и прогреть материал еще больше (работать лучше очень медленно, нежели пытаться резать слишком быстро). Резку продолжают до завершения намеченного отреза или разделения металла.

Кислородно-ацетиленовая резка

Кислородно-ацетиленовую (газовую) резку применяют главным образом для резки стальных отливок. Эта резка металлов является высокопроизводительным и вместе с тем простым и дешевым техно­логическим процессом, поэтому ее широко применяют почти во всех литейных цехах, вместо механической резки. Процесс кислородной резки хорошо поддается механизации, что позволило создать большое число специальных машин и приспособлений, обеспечиваю­щих высокую производительность. При газовой резке, в отличие от механической резки, почти не проис­ходит поломок или износа инструмента.

Процесс газовой резки основан на интенсивном окислении ме­талла в струе кислорода при высокой температуре. Для нормального протекания процесса резки металла кислородом необходимы выполнение следую­щих условий:

а) температура воспламенения металла должна быть ниже тем­пературы его плавления;

б) образующиеся при резке окислы металла должны плавиться при температуре более низкой, чем температура его воспламенения и плавления.

Если металл не удовлетворяет первому усло­вию, то он будет плавиться и переходить в жидкое состояние еще до того, как начнется его горение в кислороде. Если металл не удовлетворяет второму требованию, то кислородная резка его без применения специальных флюсов не­возможна, так как образующиеся окислы не будут находиться в жид­ком состоянии при температуре горения металла и не смогут быть удалены из места разреза.

Способность сталей подвергаться резанию кислородом зависит от содержания в них углерода и легирующих примесей. При содержа­нии углерода в сталях до 0,3% они еще достаточно хорошо поддается резке. При содержании углерода свыше 0,3% сталь склонна к за­калке и образованию трещин при резке, поэтому требуется пред­варительный общий подогрев разрезаемого материала.

Скорость резания зависит от нескольких параметров:

— от толщины материала, его свойств, состава и температуры;

— от температуры и мощности пламени;

— от формы режущей струи и скорости ее истечения из сопла;

— от давления сжатого кислорода, и его чистоты.

Примеси в режущем кислороде уменьшают скорость резания, примерно с 225 мм/мин при чистоте кислорода 99% до 65 мм/мин при чистоте кислорода 81%. Предварительный подогрев отливки повы­шает скорость резания. При подогреве стали до 200¸370 °C – ско­рость резания повышается на 50¸100%.

При оптимальных режимах резки колебание давления кислорода в пределах ±0,1 МПа изменяет скорость резания на 25¸50%. Чрезмерное повышение и понижение давления кислорода отражается на качестве резки. На скорость резания влияет также марка стали и род горючего. Скорость ручной резки углеродистых сталей в значительной степени зависит от рода горючего: ацетилен, пиролизный газ, бензин или керосин.

Время ацетилено-кислородной резки в минутах на погонный метр определяется по формуле

,(156)

а скорость ацетилено-кислородной резки и

(в м/с) может быть определена следующим образом

,(157)

где d – толщина разрезаемого металла, мм;

t –

продолжительность резки в мин на 1 погонный метр;

Кислородная резка элементов литниковых систем, а также резка стальных отливок отличается от резки прокатного материала. Про­цесс резки отливок затруднен недостаточной чистотой их поверх­ности, наличием приливов, пригара и песка. Внутренние дефекты отливок также затрудняют процесс резки. Специфика литейного производства создает особые условия труда резчика и предъявляет повышенные требования к эксплуатации оборудования и инстру­мента.

Загромождение рабочих мест отливками, прибылями, литни­ками, формовочной смесью, сильно насыщенная пылью атмосфера цеха резко снижают культуру производства, понижают производи­тельность труда резчика.

Для правильной обрезки прибылей необходимо руководство­ваться чертежом детали, на котором указываются допуски на обрезку прибылей и необходимые шаблоны и приспособления. В тех случаях, когда отрезаемые места подвергаются в дальнейшем меха­нической обработке, необходимо оставить некоторый дополнитель­ный припуск сверх чертежного размера, который снимается при последующей механической обработке. Этот припуск должен дать возможность обработать деталь до заданной чистоты поверхности, чем и определяется его наименьшая величина. Неравномерность реза и скосы по тол­щине металла должны быть в пределах разности наибольшего и наименьшего допусков. По сравнению с припусками по листовому и сортовому материалу размеры припусков при обрезке отливок несколько больше. Это вызывается тем, что металл отливок менее чист и плотен, чем металл проката.

Некоторое время считали, что кислородной резке поддается только сталь, но в настоящее время разработаны методы резки и чугуна. Режим кислородной резки чугуна предусматривает приме­нение горелки с ручным регулированием. Состояние поверхности чугуна после резки значительно хуже, а ширина реза больше, чем при резке низкоуглеродистой стали. Эти недостатки присущи большинству литейных чугунов. Исключение составляют высокопрочный чугун с шаровидным графитом. Этот чугун, так же как и низкоуглеро­дистая сталь, легко поддается кислородной резке. Чугун с шаровид­ным графитом разрезают при помощи обычного устройства для кис­лородной резки.

Некоторая сложность возникает при резке элементов круглого сечения из-за того, что при перемещении резака мундштук все время должен находиться на равном расстоянии от поверхности разрезаемого металла.

Скорость резки определяется размером сечения разрезаемого ме­талла. Стремясь к максимальной скорости резки, необходимо учи­тывать, что вдоль линии реза металл имеет переменную толщину. Ускорение процесса резки при работе на переменной толщине металла может быть достигнуто за счет переменной скорости переме­щения резака. В начале и конце резки скорость должна быть наи­большей, в середине – наименьшей.

Для кислородной резки может быть применен также керосинорез. В керосинорезе в качестве горючего при кислородной резке исполь­зуют пары керосина или бензина.

Кислородно-ацетиленовую (газовую) резку применяют главным образом для резки стальных отливок. Эта резка металлов является высокопроизводительным и вместе с тем простым и дешевым техно­логическим процессом, поэтому ее широко применяют почти во всех литейных цехах, вместо механической резки. Процесс кислородной резки хорошо поддается механизации, что позволило создать большое число специальных машин и приспособлений, обеспечиваю­щих высокую производительность. При газовой резке, в отличие от механической резки, почти не проис­ходит поломок или износа инструмента.

Процесс газовой резки основан на интенсивном окислении ме­талла в струе кислорода при высокой температуре. Для нормального протекания процесса резки металла кислородом необходимы выполнение следую­щих условий:

а) температура воспламенения металла должна быть ниже тем­пературы его плавления;

б) образующиеся при резке окислы металла должны плавиться при температуре более низкой, чем температура его воспламенения и плавления.

Если металл не удовлетворяет первому усло­вию, то он будет плавиться и переходить в жидкое состояние еще до того, как начнется его горение в кислороде. Если металл не удовлетворяет второму требованию, то кислородная резка его без применения специальных флюсов не­возможна, так как образующиеся окислы не будут находиться в жид­ком состоянии при температуре горения металла и не смогут быть удалены из места разреза.

Способность сталей подвергаться резанию кислородом зависит от содержания в них углерода и легирующих примесей. При содержа­нии углерода в сталях до 0,3% они еще достаточно хорошо поддается резке. При содержании углерода свыше 0,3% сталь склонна к за­калке и образованию трещин при резке, поэтому требуется пред­варительный общий подогрев разрезаемого материала.

Скорость резания зависит от нескольких параметров:

— от толщины материала, его свойств, состава и температуры;

— от температуры и мощности пламени;

— от формы режущей струи и скорости ее истечения из сопла;

— от давления сжатого кислорода, и его чистоты.

Примеси в режущем кислороде уменьшают скорость резания, примерно с 225 мм/мин при чистоте кислорода 99% до 65 мм/мин при чистоте кислорода 81%. Предварительный подогрев отливки повы­шает скорость резания. При подогреве стали до 200¸370 °C – ско­рость резания повышается на 50¸100%.

При оптимальных режимах резки колебание давления кислорода в пределах ±0,1 МПа изменяет скорость резания на 25¸50%. Чрезмерное повышение и понижение давления кислорода отражается на качестве резки. На скорость резания влияет также марка стали и род горючего. Скорость ручной резки углеродистых сталей в значительной степени зависит от рода горючего: ацетилен, пиролизный газ, бензин или керосин.

Время ацетилено-кислородной резки в минутах на погонный метр определяется по формуле

,(156)

а скорость ацетилено-кислородной резки и

(в м/с) может быть определена следующим образом

,(157)

где d – толщина разрезаемого металла, мм;

t –

продолжительность резки в мин на 1 погонный метр;

Кислородная резка элементов литниковых систем, а также резка стальных отливок отличается от резки прокатного материала. Про­цесс резки отливок затруднен недостаточной чистотой их поверх­ности, наличием приливов, пригара и песка. Внутренние дефекты отливок также затрудняют процесс резки. Специфика литейного производства создает особые условия труда резчика и предъявляет повышенные требования к эксплуатации оборудования и инстру­мента.

Загромождение рабочих мест отливками, прибылями, литни­ками, формовочной смесью, сильно насыщенная пылью атмосфера цеха резко снижают культуру производства, понижают производи­тельность труда резчика.

Для правильной обрезки прибылей необходимо руководство­ваться чертежом детали, на котором указываются допуски на обрезку прибылей и необходимые шаблоны и приспособления. В тех случаях, когда отрезаемые места подвергаются в дальнейшем меха­нической обработке, необходимо оставить некоторый дополнитель­ный припуск сверх чертежного размера, который снимается при последующей механической обработке. Этот припуск должен дать возможность обработать деталь до заданной чистоты поверхности, чем и определяется его наименьшая величина. Неравномерность реза и скосы по тол­щине металла должны быть в пределах разности наибольшего и наименьшего допусков. По сравнению с припусками по листовому и сортовому материалу размеры припусков при обрезке отливок несколько больше. Это вызывается тем, что металл отливок менее чист и плотен, чем металл проката.

Некоторое время считали, что кислородной резке поддается только сталь, но в настоящее время разработаны методы резки и чугуна. Режим кислородной резки чугуна предусматривает приме­нение горелки с ручным регулированием. Состояние поверхности чугуна после резки значительно хуже, а ширина реза больше, чем при резке низкоуглеродистой стали. Эти недостатки присущи большинству литейных чугунов. Исключение составляют высокопрочный чугун с шаровидным графитом. Этот чугун, так же как и низкоуглеро­дистая сталь, легко поддается кислородной резке. Чугун с шаровид­ным графитом разрезают при помощи обычного устройства для кис­лородной резки.

Некоторая сложность возникает при резке элементов круглого сечения из-за того, что при перемещении резака мундштук все время должен находиться на равном расстоянии от поверхности разрезаемого металла.

Скорость резки определяется размером сечения разрезаемого ме­талла. Стремясь к максимальной скорости резки, необходимо учи­тывать, что вдоль линии реза металл имеет переменную толщину. Ускорение процесса резки при работе на переменной толщине металла может быть достигнуто за счет переменной скорости переме­щения резака. В начале и конце резки скорость должна быть наи­большей, в середине – наименьшей.

Для кислородной резки может быть применен также керосинорез. В керосинорезе в качестве горючего при кислородной резке исполь­зуют пары керосина или бензина.

Преимущества и недостатки

Резка металла пропаном обладает рядом достоинств, среди которых можно выделить следующие:

  1. Газовая резка востребована в ситуации, когда возникает необходимость в разрезании металла значительной толщины или создании изделий по шаблонам, предусматривающим изготовление криволинейного реза, который нельзя выполнить при помощи болгарки. Также не обойтись без газового резака и тогда, как стоит задача по вырезанию диска из толстого металла или выполнению глухого отверстия на 20-50 мм.
  2. Газовый резак является очень удобным в работе инструментом и отличается малым весом. Всем домашним мастерам, которые имели опыт обращения с бензиновыми моделями, известны неудобства, связанные с большим весом, размерами и шумом. Помимо того, что значительные неудобства создает вибрация, оператор вынужден обеспечить серьезное давление во время работы. Газовые же модели представляются более привлекательной альтернативой за счет отсутствия у них всех вышеобозначенных минусов.
  3. Использование резки металла газом позволяет в 2 раза ускорить работы, что невозможно сделать при помощи аппарата, оснащенного двигателем на бензине.
  4. Среди большинства газов, включая и бензин, пропан выделяется более низкой ценой. По этой причине он лучше подходит для выполнения значительного объема работ, например, если возникла задача по резке стали на металлолом.
  5. При использовании пропановой резки удается создать более узкую кромку среза, нежели при работе с ацетиленовыми резаками. При этом рассматриваемый метод позволяет создать более чистый срез, чем тот, который можно выполнить при помощи бензиновых горелок или болгарки.

Среди недостатков, которыми обладают пропановые резаки, следует выделить лишь единственный: их можно использовать лишь для ограниченного круга видов металлов. Они подходят для резки исключительно низко- и среднеуглеродистых сталей, а помимо этого, и ковкого чугуна.

Особенности использования

Подобные инструменты не подходят для резки высокоуглеродистых сталей по той причине, что они имеют достаточно высокую температуру плавления, которая почти не отличается от температуры пламени. Это приводит к тому, что вместо выброса окалины, имеющей вид столпа искр, с обратной стороны листа, происходит ее смешивание с расплавленным металлом по краям разреза. В результате кислород не может достичь толщи металла, из-за чего ему не удается прожечь материал.
Трудности во время резки чугуна создает форма зерен, а также графит между ними. Правда, это не относится к ковкому чугуну. Не получается решить поставленную задачу, если приходится иметь дело с алюминием, медью и их сплавами.

Важно остановиться на следующем моменте: категорию низкоуглеродистых сталей представляют марки от 08 да 20Г, среднеуглеродистых — марки от 30 до 50Г2. Характерной особенностью марок углеродистых сталей является наличие в их названии спереди буквы У.

Преимущества резки стали газом

Термическая газовая резка стали имеет перед механическими способами резки целый рад преимуществ, в том числе:

Газовая резка позволяет резать сталь со скоростью, в 2 раза превышающей скорость использования резака с двигателем внутреннего сгорания даже в руках опытного и физически сильного оператора.

Особенно при резке больших листов или при частой резке на одном месте, особое значение принимает малый вес и удобство использования переносного газового резака — с другой стороны, переносной бензиновый резак очень тяжел, неповоротлив, сильно вибрирует и не менее сильно шумит при работе и требует от оператора значительных усилий для контроля работы.

Переносная ацетилен-кислородная горелка может легко прорезать листы стали толщиной 2 дюйма, а со специальными насадками — до и более дюймов. Стационарные же газовые установки резки могут резать листы металла вообще неопределенной толщины. Для переносных бензиновых резаков предельная толщина разрезаемого металла и близко не приближается к 8 дюймам.

С помощью стационарных установок резки газом, оснащенных системой позиционирования сопел на основе сервоприводов и программным управлением, можно вырезать из стального листа формы практически неограниченной сложности — при этом, подобные установки могут оснащаться и соплами, делающими особо чистый и четкий разрез. Ничего подобного механические способы резки обеспечить не могут.

В тех случаях, когда не нужна чистота разреза, вместо ацетилена можно, в качестве топливного компонента газовой смеси, использовать пропан: разрез металла при резке пропаном/кислородом получается далеко не таким аккуратным, как у ацетилена, но пропан значительно дешевле. Пропан-кислородные смеси используют, например, при резке стали на металлолом.

У резки газом есть и недостатки. Пожалуй, основной из них — это ограниченный спектр металлов, которые можно резать. Газ можно использовать только для резки низко- и среднеуглеродистых сталей и ковкого чугуна; высокоуглеродистые стали резать газом нельзя, так как температура их плавления очень близка к температуре пламени — поэтому, окалина при резке не выбрасывается с обратной стороны листа в виде искр, а, скорее, смешивается с чистым расплавленным металлом около разреза. Это, в свою очередь, не дает кислороду добраться до металла и прожечь его. В случае с чугуном, кроме ковкого, мешают процессу резки как графит между зернами, так и сама форма зерен.

Особенности резки

Резак надо вести плавно вдоль линии разреза и следить за углом наклона, который отклоняется на 5—6 градусов против движения инструмента. При толщине металла более 0,95 м отклонение увеличивают, прорезав металл на глубину около 20 мм, угол отклонения опять уменьшается. Как резать резаком, чтобы срез был ровным, мы уже подробно объясняли в предыдущем разделе.

Сколько расходуется газа

Расход газов при резке металла пропаново-кислородным резаком, зависит от толщины конструкции и конфигурации разреза. Для наглядности приводим расположенную ниже таблицу:

Размер заготовки (толщина), ммВремя на отверстие, секРазмер разреза (ширина), ммРасход, на м 3 реза
пропанакислорода
4,05—82,50,0350,289
10,08—133,00,0410,415
20,013—184,00,0510,623
40,022—284,50,0711,037
60,025—305,00,0871,461

Расход газов существенно снижается, когда выполняется наплавка или пайка.

Нюансы

Главная задача исполнителя — правильно выдерживать скорость:

  • нормальный режим — искры летят под прямым углом относительно поверхности заготовки;
  • малая скорость — разлет от исполнителя и угол менее 85 градусов.

После окончания процесса вначале перекрывается подача кислорода, а пропан — отключают в последнюю очередь.

Негативная деформация

Начинающих сварщиков волнует вопрос, как надо правильно пользоваться резаком пропан кислород, чтобы не произошло коробления поверхности детали. Вначале нужно разобраться — какие же факторы способствуют возникновению этих дефектов:

  • при неравномерном нагреве поверхности;
  • была выбрана высокая скорость движения резака;
  • произошло резкое охлаждение места нагревания.

Чтобы исключить возникновение перечисленных факторов на заготовки, их предварительно надежно закрепляют и прогревают, а скорость наращивают постепенно. Если же коробление всё-таки произошло, то вернуть первоначальную форму можно при помощи обжига или отпуска, а листы править на вальцах.

Опасность обратного удара

При неправильном режиме горения струи происходит хлопок и пламя втягивается вовнутрь изделия, что приводит к взрыву, т. к. огонь распространяется по шлангам и доходит до емкостей с газами. Чтобы предотвратить опасную ситуацию, резак оборудуется обратным клапаном, который отсекает пламя и не допускает его распространения.

Правила использования

Они аналогичны технике безопасности при проведении сварки, но имеют специфические дополнения:

  1. Средствами защиты пренебрегать не рекомендуется, т. к. это приводит к получению травм в виде ожога кожи или повреждения роговицы глаз разлетающимися искрами, поэтому обязательны очки и перчатки с длинными раструбами до локтя.
  2. Одежда и обувь исполнителя изготавливается из негорючего материала.
  3. Баллоны с газами располагаются не ближе пяти метров от места проведения резки.
  4. Пламя резака направляется только в противоположную от шлангов сторону.
  5. Резка производится в помещениях, оборудованных сильной вентиляцией или на открытых площадках.

При длительном простое оборудования нужно провести профилактические работы, прежде чем использовать резак по назначению.

Принципиальная конструкция газового резака

Особенности конструкции резака.

Инжекторный или двухтрубный резак

Это самая популярная модель по своей конструкции. Название «двухтрубный» происходит из-за разделения технического кислорода на два потока. Это делается для функционального разделения работы кислорода.

Верхний поток кислорода с высокой скоростью идет сквозь сопло внутреннего мундштука. Это чрезвычайно важная часть аппарата – она отвечает за непосредственно фазу резки металла. Регулируется этот поток специальным вентилем, который обычно выносится на наружную панель.

Второй поток кислорода идет прямиком в инжектор. Порядок работы в камере инжектора следующий: кислород поступает в камере под большим давлением и с высокой скоростью, в результате чего в этом пространстве образуется зона разреженного давления. Кислород является в данном случае инжектируемым.


Номинальный расход газов.

Через специальные боковые отверстия в стенках камеры в нее втягивается горючий газ – он является в данном случае эжектируемым. Происходит смешение газов, скорости выравниваются, в итоге на выходе из камеры формируется поток из смеси газов, у которого скорость ниже, чем у инжектируемого кислорода, но выше, чем у эжектируемого горючего газа.

На следующем этапе сформированная смесь газов поступает в наконечник – сначала в его головку, а затем через сопло между мундштуками выходит и образует то самое пламя в виде факела, которое разогревает металл до температуры его горения. Все потоки газов регулируются собственными вентилями на внешней стороне корпуса – для подачи кислорода и отдельно для подачи горючего газа в инжектор.

Безинжекторный или трехтрубный газовый резак

В данном случае устройство газового резака сложнее. Кислород в него попадает по двум трубкам, третью трубку по праву занимает горючий газ. В этом сварочном резаке газы смешиваются внутри головки, никакой камеры здесь нет. Такая система является более безопасной, чем двухкамерная модель.

Дело в том, что здесь нет риска для так называемого «обратного удара», который заключается в весьма неприятном и опасном явлении: проникновении горящих газов в каналах и трубках аппарата в обратном направлении.

У этой модели стоимость значительно выше. Кроме этого недостатка у трехтрубного резака имеется еще один нюанс: в работе с ним необходимо очень высокое давление горючего газа – выше, чем с инжекторным аппаратом.

Принцип действия ацетиленового резака

Как и любой другой газокислородный нож, ацетиленовый резак обрабатывает металлические изделия одновременным воздействием высокой температурой и направленной кислородной струей. После присоединения газовых рукавов к ниппелям кислород направляется в двух направлениях. Одна часть газа, через специальное ответвление, попадает в трубку режущего кислорода, а другая – в инжектор.

Выходя из инжектора, кислород развивает высокую скорость и создает зону разряжения в смесительной камере. Из-за разницы давления в камеру начинает «подсасываться» ацетилен, который равномерно смешивается с О2. Полученная смесь газов на высокой скорости движется дальше и вырывается через зазор между внутренним и внешним мундштуками, одновременно воспламеняясь.

Так образуется подогревающее пламя, которое доводит материал до аморфного (полужидкого/полутвердого) состояния. Через установленный на ацетиленовый резак наконечник вырывается также струя режущего кислорода, которая своей высокой скоростью «сдувает» расплавленный металл.

Стандарты и габариты

Сварка при помощи сварочной горелки с газом.
Все стандартные измерения, касающиеся газовых резаков, оговорены в ГОСТе 5191-79. Естественно, что вес и размеры аппаратов напрямую связаны с их мощностью. Вес, например, бывает только в двух значения: резаки моделей Р1 и Р2 весят 1,0 кг, а модель высокой мощности Р3 весит 1,3 кг и ни граммом больше или меньше.

Кстати, с мощностью и размерами связан и вид горючего газа. Если мощные резаки Р3 работают только на смеси кислорода с пропаном, то аппарата поменьше типа Р1 и Р2 вполне могут функционировать с любым видом газа.

Вставные газовые резаки:

Кроме классических моделей с разной мощностью существует отдельная категория – так называемые вставные газовые резаки с особой маркировкой РВ. По ГОСТу они называются очень странно: наконечники к газовой горелке для резки металла. В общем-то они отличаются от традиционных резаков: смешивание горючей смеси и кислорода проводится в самом наконечнике.

По весу эти устройства значительно легче резаков. РВ1 весит 0,6 кг, а РВ2 и РВ3 – всего по 0,7 кг. Но пусть эта кажущаяся изящность не вводит вас в заблуждение. Не будем забывать, что это наконечники к горелке, в комплекте с которой они будут весить ничуть не меньше, чем обычные резаки. В чем тогда преимущество?

В том, что их можно докупить к уже имеющейся горелка и, таким образом, сэкономить кое-какие деньги. И компактность всего комплекта, упакованного в специальный кейс. И еще одна немаловажная деталь, которая касается природы горючего газа. Дело в том, что ацетилен значительно дороже пропана.

Но для сварки металла намного желательнее именно ацетилен: горелка с ним дает пламя с температурой выше на 400°С, чем такая же со смесью кислорода с пропаном.

Портативные модели: малому кораблю – малое плавание


Устройство резака.
На рынке сейчас предлагается множество портативных вариантов автогенов – именно так они позиционируются. Они продаются в виде насадки к компактному цанговому газовому баллону. Но по своей сути и принципу работы это горелки. Большинство из них обеспечивают температуру факела не выше 1300°С.

Встречаются, конечно, и портативные модели «профессионального» ряда – цанговые резаки, дающие температуру факела выше – до 2000 – 2500°С, что в общем-то близко по показателям к классическому кислородно-пропановому резаку. Но физика есть физика: даже в этих моделях нет главного компонента, который режет металл – кислородной струи, которая окисляет этот самый металл.

Где хорош портативный газовый резак? При резке легко плавких металлов или сплавов типа олова, латуни, бронзы, меди. Но даже эти «детские» варианты не режутся, а плавятся. Поэтому компактные насадки – резаки используются больше для пайки или сварки маленьких заготовок из цветных металлов. Это могут быть детали бытовых устройств типа холодильника или кондиционера. Сварка, а не резак, одним словом.

В любом случае будьте внимательны при выборе таких моделей далеко не всегда их предлагаемая «портативность» в итоге оправдана.

Применение азота

Азот применяется при лазерной резке в качестве инертного газа, когда не желательно окисление кромок металла. Он используется, например, при резке нержавеющей стали, титана, алюминиевых сплавов. Эффективность резки в инертном газе ниже, чем при лазерно-кислородной резке, за счет отсутствия дополнительного источника нагрева.

Азот также применяется и при плазменной резке металла в качестве плазмообразующего газа. Широкое применение азота в этой отрасли ограничивается тем, что даже чистый азот взаимодействует с вольфрамом при высоких температурах, образуя нитриды. Еще более сложно использование азота с содержанием кислорода свыше 0,01% из-за быстрого сгорания вольфрамового электрода. Для предотвращения этого явления компания Провита предлагает генераторы, вырабатывающие азот с содержанием кислорода 0,005% и ниже.

Оборудование

Основным оборудованием для газовой резки является резак. В комплект к нему входят: насадка для сварки и плавки.

Благодаря резаку можно контролировать дозировку газовой смеси и кислорода. Также с помощью этого оборудования осуществляется воспламенение горючей смеси, подача пламени к месту обработки.

Резак состоит из двух блоков: режущего и подогревающего. Первый представлен трубкой выхода струи кислорода, вентилем и мундштуком внутреннего типа.

Подогревающий блок включает вентили, которые предназначены для регулировки давления газовой смеси и кислорода. Также есть трубка подачи, мундштук наружного вида, камера смешивания и инжекторная ячейка.

Резаки бывают ручными и машинными. Последние являются стационарными, поэтому для ремонтных работ предпочтительнее использовать ручные.

Дополнительно используется следующее газорезательное оборудование:

  • редуктор – предназначен для снижения давления;
  • прибор для изменения давления;
  • стальной баллон с газом и кислородом;
  • соединительные шланги.

Перед использованием оборудования важно проверить его исправность во избежание взрыва баллона или редуктора. Резак предварительно продувается кислородом.

Устройство ацетиленовых резаков

Любой газокислородный резак состоит их трех основных частей – газовых баллонов, ствола и наконечника. Ствол представляет собой рукоятку с ниппелями, которые служат для присоединения газовых рукавов с кислородом и ацетиленом. На корпусе также имеется три клапана, с помощью которых регулируют подачу режущего и подогревающего кислорода, а также рабочего газа (ацетилена).

Одним из основных элементов, входящих в ацетиленовый резак, является инжектор – ускоритель заряженных частиц. Сразу к нему присоединена камера смешения, в которой образуется горючая смесь из ацетилена и химически чистого кислорода. Камера смешения плавно переходит в трубку подачи подогревающего кислорода.

Перед самым инжектором на стволе имеется ответвление – трубка режущего кислорода. На ней расположен вентиль, регулирующий подачу химически чистого кислорода. Торцы трубок подачи подогревающей смеси и режущего кислорода присоединены к наконечнику. Он состоит из внутреннего и наружного мундштуков, которые помещены в специальную головку резака.

Требования безопасности

Газовое оборудование, которое используется в процессе резки металлов, а именно кислородно-ацетиленовый резак, относится к категории взрыво- и огнеопасных. Поэтому перед тем, как пользоваться газовым резаком, следует выполнить все обязательные рекомендации по соблюдению техники безопасности.

Для этого рабочее место следует снабдить:

  • огнетушителем. Использование газового резака сопровождается открытым пламенем и высокими температурами, поэтому средства пожаротушения должны присутствовать на посту;
  • защитной спецодеждой, состоящей из: х/б костюма, по возможности, пропитанного огнезащитным составом;
  • перчаток или краг из брезента или достаточно толстой кожи;
  • ботинок с кожаной подошвой;
  • защитных очков с встроенными светофильтрами.

При работе с резаком ни в коем случае не следует надевать предметы одежды из синтетики или других с легкостью воспламеняющихся тканей, а также неприлегающие плотно к телу или имеющие сильно изношенные края. Все это может привести к возгоранию и, соответственно, опасности для здоровья и жизни.

Резать газом можно только различные марки и виды нелегированной углеродистой стали. Нержавеющая сталь, цветные металлы и разнообразные сплавы разрезать пропановым резаком не получится.

Недостатки обработки

Для газовой резки наиболее подходит низкоуглеродистая сталь, а вот средне- и высокоуглеродистая сталь – не совсем подходящий материал для резки. Из-за высокого содержания углерода повышается температура воспламенения и снижается температура плавления. А это условие затрудняет процесс резки.

Разрезать металл при помощи газовой смеси тяжело, если у него низкая теплопроводность. Поэтому такие виды материала не подходят для обработки.


Правила безопасности во время газовой резки металла

Газовая резка металла должна выполняться только квалифицированным и опытным специалистом. Важно соблюдать все ключевые факторы правильной обработки: давление кислорода и скорость процедуры. Необходимо учитывать толщину изделия и диаметр сопла резака. Если скорость окисления и резки металла не соответствуют друг другу, то получится некачественная обработка.

Кислородная резка предполагает использование взрывоопасных веществ. При несоблюдении правил безопасности высока вероятность взрыва газовоздушной смеси, необходимо следить за состоянием газового оборудования. Для защиты от ожогов нужно пользоваться средствами индивидуальной защиты.

Существенным недостатком является возможность деформации металла и низкая точность резания.

Видео по теме: Резка металла резаком

Полезные статьи


Плазменная резка металла – особенности и преимущества работы


Список компаний Ростова-на-Дону по резке металла


Самостоятельное изготовление лазера для резки металла – инструкция и рекомендации

Как выбрать резак получше?


Принцип действия газового резака.
Предлагаем блок полезной информации, которая поможет вам лучше ориентироваться в спецификациях и технических характеристиках резаков заранее:

  • Ниппели бывают латунными алюминиевыми. Латунные варианты долговечнее.
  • Если есть возможность, выбирайте модели с алюминиевыми, а не пластиковыми ручками, Какой бы не был пластик теплоустойчивым, он «поплывет» в любом случае быстрее, чем алюминий.
  • Рукоятка должна быть достаточно массивной: диаметр не меньше 40 мм.
  • Вентили должны хорошо работать. Это значит – проворачиваться без особых усилий.
  • Аппараты с рычажным управлением более удобны и экономны в использовании, они экономят газ.
  • Вентильные шпиндели должны быть обязательно из нержавеющей стали, а не из латуни, которые слишком недолговечные. Бывают «комбинированные» варианты, они по своей долговечности занимают серединную позицию.
  • Лучшим материалом для корпуса резака являются металлы: латунь, медь, нержавеющая сталь.
  • Мы помним, что ацетиленовые резаки стоят дороже. Следим за материалом, из которого выполнены детали имеющие прямой контакт с горючим газом перед смешением в камере. Внимание! Они не должны быть сделаны из меди или ее сплавов, где содержание меди не меньше 65%.
  • Если конструкция устройства разборная, это лучше: его легче чистить и ремонтировать.
  • Только медь! Только медный наружный мундштук!
  • Правильный внутренний мундштук на газовый резак ацетиленового типа тоже должен быть из меди. А вот в кислородном резаке по металлу – из латуни. Вот такие нюансики.
  • Обязательно проверяйте у продавца состояние дел с запасными частями и расходным материалом.

Советы бывалых: как пользоваться

Инструкции, как пользоваться газовым резаком, можно разделить на общие положения и профессиональные «мелкие» замечания, которые на самом деле являются ценнейшими практическими помощниками.


Таблица резки металлов газовым резаком.

Сначала общие положения:

  • Только в маске! Только в маске сварщика или специальных очках проводим любые работы с любым газовым резаком. Работа с автогеном – занятие с морем рисков, технику безопасности выполнять по-настоящему и не по-детски.
  • Одежду и перчатки выбираем с огнеупорными свойствами. Если таковых нет, что же: по крайней мере, минимальное требование – не одевать одежду из синтетики.
  • На рабочем месте обязательно должен быть огнетушитель со всеми правильными сроками годности и т.п. Средства пожаротушения также нужно разместить неподалеку по правилам пожарной безопасности.
  • Перед работой нужно запастись:
  • линейкой, специальным карандашом, угольником и рулеткой;
  • специальной зажигалкой, которая обычно есть в комплекте с оборудованием.
  • Во время работы важно выбрать правильно расположение. Пламя факела должно быть расположено фронтально по отношению к подводящим шлангам. Шланги, в свою очередь, расположить так, чтобы они не мешали вам по ходу процесса.
  • Еще одно правило из техники безопасности: газовые баллоны не должны быть ближе 5-ти метров к вам во время работы.
  • Проветривание должно быть отличным в течение всей резки, лучше всего работать на открытом воздухе.
  • Пол в мастерской должен быть или бетонным, или земляным.
  • Если вы давно не работали со своим резаком, либо начинаете использовать новый аппарат, проверьте каналы: они должны быть чистыми. Кроме того, всегда проверяйте уровень разреженности в камере, которая формируется кислородом. Сначала снимите шланг с пропаном – делать это нужно при закрученных вентилях и на резаке, и на баллоне. Затем на баллоне открываете вентиль кислорода и газа при рабочем давлении. Инжектор проверяется просто: прикладываете палец к ниппелю газа, если все правильно, вы почувствуете подсасывание воздуха в этом ниппеле. Закрываете кислород, все вентили и затем шланг с горючим газом подключаете к резаку: работать можно.


Схема резки металла резаком.
Этапы действий во время резки, пропановые резаки:

  1. Сначала баллон с кислородом: выставляем рабочее давление.
  2. Потом баллон с горючим газом: также выставляем рабочее давление. Ориентир – давление кислорода. Давление пропана должно быть меньше примерно в десять раз. Если аппарат трехтрубный, то разница будет составлять пять раз.
  3. Медленно открываем вентиль кислорода и газа, поджигаем газ и формируем с помощью вентилей напор факела разогревающего пламени.
  4. Ручной газовый резак готов к работе, теперь собственно резка металла резаком.
  5. К месту горения начинает поступать струя поджигающего кислорода. Если металл нагрет в достаточной степени, нужная реакция начнется немедленно. В этом случае давление подачи кислорода можно еще увеличивать до тех пор, пока металл не будет прорезан в полной степени.
  6. Теперь автоген можно двигать в нужном направлении – по линии запланированного разреза. Скорость движения нужно определять по ходу дела, она будет зависеть от того, как искры и шлак стекали или сдувались вниз от горелки.
  7. После выполнения резки осмотрите внимательно рабочий участок на предмет оставшихся кусков расплавленного металла. Не дай бог наступить на такие – прожгут даже толстую подошву ботинок.
  8. Охлаждение деталей проводится или с помощью воды, или естественным образом.
  9. После окончания резки нужно закончить рабочий процесс, что не менее важно, чем начать работу.
  10. Сначала закручиваем вентиль кислорода.
  11. Следующими перекрываются вентили пламени – первым вентиль пропана, следующим – вентиль кислорода.
  12. Закручиваем вентили на баллонах.
  13. Освобождаем шланги от газа: открываем и затем поочередно закрываем вентили разогревающей смеси на аппарате.

Источники

  • https://tutmet.ru/polzovatsja-rezat-rabotat-gazovym-rezakom-nastrojka.html
  • https://stanok.guru/oborudovanie/raznoe/rezka-metalla-kislorodno-propanovym-rezakom.html
  • https://printeka.ru/metally/kak-pravilno-rezat-gazovym-rezakom-metall.html
  • https://tutsvarka.ru/oborudovanie/gazovyj-rezak
  • https://msmetall.ru/instrument/kak-rezat-relsy-rezakom.html
  • https://WikiMetall.ru/oborudovanie/kak-polzovatsya-rezakom.html

Как резать газовым резаком (технология)

Плавно увеличиваем струю кислорода, которая поджигает расплавленный металл. Если начался бурный процесс, и сталь загорелась, то можно постепенно увеличивать давление кислорода (до момента, пока огонь не прорежет материал насквозь). Если реакция не началась (металл не разогрет), то следует добавить кислорода и разогреть его.

Начали резать металл и медленно передвигаемся вдоль линии реза. Все продукты обработки сдуваются струей к задней стороне зоны разрезания. Если этот поток замедляется или возвращается, то следует уменьшить скорость резки или остановиться и прогреть материал.

Полезное видео, как работать

Посмотрите видеоуроки по резке пропаном и резаком:

https://youtu.be/As_aeFgXRbA

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]