Получение изделий методами литья металлических сплавов является одним из древнейших способов металлообработки. В исторической литературе до настоящего времени продолжаются дискуссии по вопросу о том, какими методами изготовления металлических предметов человек овладел раньше — литьем или ковкой, т.е. кто раньше появился — литейщик или кузнец. Следует, однако, отметить, что в чистом виде металлы в земной коре даже в те далекие времена встречались чрезвычайно редко. Их производство связано с переработкой руд, в результате которой металлы получали в жидком, расплавленном виде. Их заливали в специальные формы, и после затвердевания получали отливку или слиток. Отливка представляет собой готовое изделие, а слиток необходимо еще подвергнуть пластической обработке, например ковке. Таким образом, литейные процессы, как правило, предшествуют любому методу металлообработки.
Литейные сплавы: об основных технологических свойствах
Первой среди них стоит жидкотекучесть. Это значит, что расплавленный материал растекается по каналам литейной формы, заполняет контуры. Последние благодаря такому свойству воспроизводятся с максимальной чёткостью.
С помощью специальных проб определяют, имеется ли свойство жидкотекучести или нет. Замеры принимают длину заполненной спирали Архимеда.
Минимальная толщина стенок у отливки как раз выбирается в зависимости от жидкотекучести:
- 3,4 мм для мелких отливок из СЧ в песчаных формах.
- 8-10 мм в случае со средними габаритами.
- 12-15 – для крупных.
Остальные отливки выпускаются с толщиной в 5-7, 10-12 или 12-20 мм.
Не стоит забывать об усадке. Такое название дали процессу, при котором отливка уменьшается в объёмах во время охлаждения. Начинается всё в литейной форме, с металла в жидкой форме. И до тех пор, пока не наберётся температура окружающей среды.
Разные материалы отличаются друг от друга разным уровнем усадки. Для её определения важными становятся следующие факторы:
- Химический состав.
- Температура заливки.
- Конфигурация заготовки.
Стандартное значение –в пределах от 1,9% до 2,1%.
Чтобы не образовались большие напряжения и трещины, важно предусматривать сохранение следующих свойств:
- Равномерная толщина у стенок.
- Плавные переходы.
- Нормальные радиусы у сопрягающихся поверхностей.
- Устранение элементов, усложняющих усадку.
Стержни и материалы должны обладать повышенной податливостью для достижения лучшего результата.
Газопоглощением называют способность растворять разные газы, которой могут обладать литейные сплавы в расплавленном состоянии. Растворимость газов уменьшается, когда они находятся в затвердевшем состоянии, а потом охлаждаются. Из-за этого в отливках появляются браки в виде газовых раковин и пор.
Есть понятие ликвации – его применяют для неоднородности состава в различных частях отливки. Бывает дендритной, зональной.
Дендритная происходит в пределах одного ядра.
Зональной называют неоднородность, проявляющую себя по всему объёму отливки.
Отливки изготавливаются с использованием следующих нескольких способов:
- Центробежное литьё.
- Литьё под давлением.
- В кокиль.
- В формы со специальными оболочками.
- По выплавляемым моделям.
- В песчаные формы.
Есть так называемые специальные способы литья:
- Композиционное.
- С использованием магнитных полей.
- Суспензионное.
- Электрошлаковое центробежное.
О литье в песчаных формах
Литейное производство и направлено на получение отливок. Это литые металлические изделия, которые производят путём заливки металлов в расплавленной форме внутрь специальных литейных форм. Потом идёт застывание, приобретение конкретных очертаний.
Технологическая оснастка при литье
Литейная оснастка – это специальные приспособления, которые применяют для получения необходимых изделий с требуемыми характеристиками. Пример – опоки, стержневые ящики, подмодельные плиты, модели и так далее.
Начнём с моделей. Это наименование приспособлений, с помощью которых получаются отпечатки полости, соответствующие наружным конфигурациям отливки. В форме при сборке устанавливают стержни, которые способствуют образованию отверстий и полостей внутри отливок, иных контуров со сложными габаритами.
Изначально модели делают больше по сравнению с отливкой, чтобы учесть величину линейной усадки, характерной для сплава. Размер припусков учитывают при механической обработке отливок. Припуском называют слой металла, который удаляется при такой работе. Он определяется размерами отливок, видами сплава. По сравнению с боковыми и верхними частями конструкции, припуск для верхних должен быть чуть больше. Это связано с появлением наверху скоплений в виде газовых включений, частичек формовочной смеси, шлаков. Возникают некоторые проблемы при удалении стержневой смеси, спёкшейся внутри, с отверстий небольших размеров. При последующей обработке механическим путём это отрицательно сказывается на стойкости режущего инструмента. Литьём рекомендуют выполнять отверстия, чей диаметр находится в пределах 25-30 мм.
От высоты отливки зависят формовочные уклоны. Их добавляют в модели, чтобы было проще удалить их из формы. Обработке подвергаются поверхности Формы могут быть разрушены при извлечении, если не будет уклонов. А сама формовочная смесь с большой вероятностью просто осыпается.
Знаки – наименование выступающих частей у модели, при помощи которых получают отпечатки знаковых частей у стержней. Главное – отсутствие уклонов и острых углов в местах, где стенки отливок сопрягаются.
Термин галтель применяют по отношению к скругленным внутренним углам. Наружные предполагают применение название «закругления».
Для моделей применяют следующие разновидности материалов:
- Пластмасса.
- Металлические сплавы.
- Древесина.
В случае с деревом используют хорошо просушенную основу, из бука или ясени, сосны. Изделие склеивают из отдельных брусочков, а не из цельного куса, это предотвращает коробление. При этом придерживаются различного направления у волокон, составляющих изделие. Но такие конструкции не могут похвастаться долговечностью.
Чистая рабочая поверхность и высокая точность – главные преимущества металлических аналогов, помимо увеличенного срока службы. В производстве применяют сплавы алюминия, отличающиеся уменьшенной плотностью. Этот материал не окисляется, допускает обработку резанием.
Небольшая масса, защита от коробления, устойчивость к воздействию влаги – главные преимущества моделей из пластмасс. Одно из перспективных направлений – применение вспененного полистирола. Его не требуется вытаскивать из формы перед заливкой, материал газифицируется при выполнении работы.
Для изготовления стержней применяют специальные стержневые ящики. Они обеспечивают увеличенную скорость при извлечении стержня и делают уплотнение смеси равномерным. Отличаются наличием уклонов, что делает их похожими на модели. По конструкции бывают неразъёмными и разъёмными, а материалы в производстве – те же, что и у моделей.
Опоками именуют рамы различной формы, изготовленные из металла. Их главное назначение – использование формовочных смесей для изготовления литейных полуформ. Материалы в производстве применяют следующих разновидностей:
- Сталь.
- Чугун.
- Алюминиевые сплавы.
Собираются из отдельных частей, бывают литыми или сварными. Для уменьшения массы стенки часто делают с дополнительными отверстиями. Это упрощает удаление газов, способствует лучшему скреплению между элементами конструкции. Скобы и другие подобные приспособления служат для скрепления.
О формовочных, стержневых смесях
Литейное производство предполагает широкое применение глинистых и других смесей для получения отливок с разными формами. Есть разовые формы, в которых можно получить только одно изделие за раз. Форма разрушается, когда готовую деталь изымают, выбивают.
Для формовочных и стержневых смесей важно наличие определённых характеристик. Стоит подробнее остановиться на некоторых из них.
Газопроницаемость.
Из-за пористости многие смеси пропускают газы через стенки формы. Расплавленные формы металлов всегда содержат растворённую форму газов, которые выделяются при охлаждении и затвердении. Из самих формовочных материалов при нагревании газы тоже выделяются в большом количестве. Газовые пузыри или раковины как раз появляются в теле изделия, если газопроницаемости недостаточно.
Непригораемость.
При наличии такого свойства смесь способна долгое время выдерживать высокие температуры, не вступая с ними в химические реакции, не оплавляясь. Качество поверхности ухудшается из-за плёнок пригара, в этом случае и дальнейшая обработка поверхности затруднена. Газопроницаемость резко начинает уменьшаться, если материал оплавляется.
Податливость.
Название для способности смеси сокращать свой объём при воздействии усадки металла. Отливка выпускается с напряжениями, если этой характеристики недостаточно. Результат – образование трещин в дальнейшем.
Пластичность.
Сохранение смесью полученной формы, воспринимать очертания модели или стержневого ящика.
Поверхностная прочность или осыпаемость.
То, как смесь сопротивляется истирающему воздействию металлической струи. При недостаточном уровне частицы формовочной смеси отделяются друг от друга, попадают в отливку.
Прочность.
Сохранение формы без разрушения, пока её готовят и обрабатывают. Даже сильные толчки при сборке и транспортировке не должны приводить к быстрому появлению дефектов. Давление заливаемого металла тоже должно сохраняться.
Стержневые и формовочные материалы в равной степени изготавливаются из искусственных, либо натуральных исходников. Основой для большинства смесей служит песок. В большинстве случаев выбирают кварцевую его разновидность, состоящую из кремнезёма. Это огнеупорный, твёрдый и прочный материал. Для мелкого литья используют разновидности мелкозернистых составов. Благодаря этому формовочная смесь может похвастаться газопроницаемостью.
Цирконовый песок, хромит и некоторые другие материалы применяют в изготовлении деталей редко. Это дорогие аналоги, хотя они лучше кварцевого песка в смысле теплопроводности, термохимической устойчивости. Пример назначения таких основ – крупные стальные отливки с чистой поверхностью, когда сохранение определённых характеристик становится особенно важным.
Вторым исходным материалом для формовочных смесей можно назвать глину. Это связующее вещество, способствующее сохранению прочности и пластичности. Широко распространены бентонитовые, каолинитовые разновидности состава. Гидридные оболочки из водных молекул образуются на поверхности глиняных частиц в присутствии влаги. После такой обработки сцепление материала улучшается, обеспечивается лёгкое скольжение. Связующая способность глины становится лучше, если она удерживает больше воды на поверхности, пластичность формовочной смеси в этом случае тоже лучше. Прочность смеси возрастает по мере того, как воду удаляют с поверхности.
В качестве связующих веществ для формовочных смесей может выступать не только глина, но и другие компоненты:
- Сульфитно-спиртовая барда.
- Декстрин.
- Смолы синтетического происхождения.
- Жидкое мыло, и так далее.
Такие вещества включают в состав в количестве 1,5-2%. После отвердение занимает гораздо меньше времени.
В песчано-глинистые смеси вводят и другие добавки, чтобы улучшить первоначальные качества. Пример противопригарных материалов для стального литья:
- Хромистый железняк.
- Пылевидный кварц.
Каменноугольная пыль и мазут применяются в случае с чугунным и цветным литьём. Древесные опилки добавляют для увеличения газопроницаемости, податливости.
Формовочные смеси можно разделить на несколько групп по характеру использования:
- Единые.
- Наполнительные.
- Облицовочные.
Сырыми или сухими они могут быть в зависимости от состояния литейной формы при её изготовлении.
В зависимости от литейного сплава выбирают, какой будет состав у формовочной смеси. Учитывают факторы вроде температуры плавления и усадки, массу и размеры, конфигурацию отливки.
Тонкий слой противопригарных материалов используют для предотвращения пригара, улучшения чистоты поверхности. Припыли применяют в случае с сырыми формами.
Формы для чугунных отливок предполагают применение:
Порошкообразную смесь магниевого оксида.
Древесный уголь.
Бетонит.
Порошкообразный графит.
В случае со стальными отливками основная смесь состоит из других компонентов:
- Циркон.
- Пылевидный кварц.
- Огнеупорная глина.
- Оксид магния, другие подобные материалы.
Противопригарные краски актуальны, когда речь идёт о сухих формах. Допустимо добавление водных суспензий материалов, вместе со связующими.
Литниковые системы
При заливке металлов используют так называемую литниковую систему. Это совокупность каналов и резервуаров, по которым сплав попадает в полость формы из ковша. Литниковая система работает, чтобы металл попадал в форму, и процесс был непрерывным. Обеспечиваются и другие этапы работы:
- Питание отливки, чтобы компенсировать усадку.
- Защита от дальнейших разрушений в форме.
- Защита от попаданий внутрь шлака, воздушных струй.
Любая литниковая система состоит из следующих компонентов:
- Питатели.
- Шлакоулавитель.
- Стояк.
- Литниковая чаша.
Размывающее действие струи расплава уменьшается благодаря использованию чаши. Эта же часть способствует задержанию всплывающего шлака. Иногда устанавливают фильтры, чтобы повысить эффективность задержания шлаковых включений не только в чашу, но и в другие элементы. Это керамические сетки, либо применяют специальную стеклоткань.
Стояк – это канал с круглым сечением, бывает коническим, либо сужающимся к низу. По нему металл попадает в шлакоулавитель.
Сам шлакоулавитель нужен для задержания шлака и других частиц. Это горизонтальный канал, расположенный в верхней полуформе, обычно трапециевидного сечения.
Суть питателей в том, что это каналы с сечением в виде прямоугольника или трапеции. Они примыкают к шлакоуловителю в нижней части. Назначение деталей – подвод металла непосредственно в полость формы.
Обычное место крепления для шлакоуловителей – нижняя полуформа, они должны при этом сохранять некоторое расстояние до стояка и концов шлакоуловителя. Иначе шлак и другие частицы с большой вероятностью задерживаются внутри. Самое большое сечение у стояка, далее идёт шлакоуловитель, затем питатели.
Каналы для выхода из формы воздуха и газов по-другому называются опорами. Их монтируют над самым высоким местом полости формы, чаще это сторона, противоположная месту, где металл заводят внутрь. Благодаря такой конструкции усадка застывающего материала происходит мгновенно. Полноту заполнения формы металлической частью проще контролировать.
Есть ещё специальные полости, наполненные металлом в жидкой форме. При изготовлении отливок их делают из стали у наиболее массивных частей. Благодаря этой части отливки защищены от рыхлот и усадочных раковин. Сами такие «прибыли» застывают последними, они способствуют бесперебойному процессу заполнения формы жидким металлом.
Ярусная, верхняя и нижняя литниковые системы применяются в зависимости от размеры и форм отливок, состава и свойств литейного сплава. Для мелких деталей с небольшой высотой актуальна верхняя система, она самая простая и доступная. Чем больше высота – тем больше металл размывается струёй, увеличивая процесс разбрызгивания и окисления. Количество неметаллических включений в телах отливок после этого увеличивается.
В случае со средними и толстостенными отливками актуальна нижняя система. Она делает так, что заполнение металлом проходит спокойно. Но конструкция и эксплуатация в этом случае усложняются.
При ярусной системе питания отливок идёт последовательно снизу вверх. Применяется для самых крупных разновидностей отливок. Она сложна в изготовлении, предполагает дополнительный расход металла.
Электронная библиотека
Прочее / Системы технологий отраслей / 3.2. Технологические процессы получения заготовок методами литья
Литье является одним из важнейших и распространенных способов изготовления заготовок и деталей машин. Литьем получают заготовки различной конфигурации, размеров и массы из различных металлов и сплавов — чугуна, стали, алюминиевых, медных, магниевых и других сплавов. Литье — это наиболее простой и дешевый, а иногда и единственный способ получения изделий.
Процесс литья заключается в том, что расплавленный металл заливается в заранее приготовленную литейную форму, полость которой по своим размерам и конфигурации соответствует форме и размерам будущей заготовки. После охлаждения и затвердевания заготовка (или деталь) извлекается из формы. Продукция литейного производства называется отливкой.
Литейные формы могут быть разовыми (для изготовления одной отливки) и постоянными (многократного применения).
В зависимости от того, в какую форму (постоянную или разовую) заливается металл и каким способом происходит заливка, существует тот или иной метод литья. В настоящее время до 60 % чугунных и стальных отливок получают методом литья в песчано-глинистые формы. Для получения отливок высокой точности размеров, хорошего качества поверхности и лучшей структуры металла применяют специальные методы литья (в кокиль, под давлением, центробежным способом, по выплавляемым моделям и др.).
Технологический процесс получения отливок в разовых песчано-глинистых формах
(рис. 3.5) включает ряд продолжительных операций, связанных с приготовлением формовочных и стержневых смесей, изготовлением модельной оснастки, стержней, сушки их, формовки и т.д. Несмотря на то, что в настоящее время трудоемкие операции этого метода механизированы и автоматизированы, он все же остается сравнительно низкопроизводительным и трудоемким методом литья. Поэтому литье в песчано-глинистые формы применяют в основном, в единичном и опытном производстве, а также в тех случаях, когда изделие другими способами получить невозможно или трудно. На предприятиях, производящих отливки в массовом количестве, созданы автоматические и полуавтоматические поточные линии. Недостатками литья в песчано-глинистые формы являются также низкая точность размеров и плохое качество поверхности отливок, что вызывает необходимость обязательной последующей механической обработки, а это ведет к потерям металла в стружку и удлиняет технологический цикл изготовления изделия.
Рис. 3.5. Схема изготовления литейной формы:
1 – опока; 2 – стояк; 3 – выпоры; 4 – стержень; 5 – жеребейки
Литье в кокиль
— один из распространенных способов получения отливок в металлических постоянных формах. Кокили изготавливают из чугуна, стали, алюминия. По конструкции кокили бывают неразъемные и разъемные. Наибольшее распространение получили разъёмные кокили, состоящие из двух частей с горизонтальной или вертикальной плоскостью разъема. Для повышения производительности труда при литье в кокиль применяют многопозиционные машины карусельного типа, на определенной позиции которых последовательно выполняется одна из операций.
Преимуществами литья в кокиль, по сравнению с литьем в песчано-глинистые формы, являются: более высокая точность размеров и качество поверхности отливок; лучшие механические свойства, что связано с повышенной скоростью охлаждения отливки и получением более тонкой структуры; более высокая производительность.
Литье под давлением
— высокопроизводительный метод получения отливок высокой точности размеров из сплавов цветных металлов (алюминиевых, цинковых, медных, магниевых). Суть метода состоит в заполнении металлической пресс-формы расплавленным металлом под давлением поршня. Отливки получают на машинах литья под давлением – полуавтоматах.
Применяют поршневые машины с горячей и холодной (горизонтальной или вертикальной) камерой прессования. Поршневые машины с горячей камерой прессования применяют для изготовления небольших отливок из магниевых и цинковых сплавов. Машины с холодной камерой прессования используют в основном для отливки корпусных деталей из алюминиевых и медных сплавов.
Центробежное литье
— производительный метод изготовления отливок, имеющих поверхности тел вращения, с центральным отверстием — труб, втулок и др., а также деталей фасонного литья. Сущность метода заключается в заполнении расплавленным металлом вращающейся формы. Под действием центробежных сил жидкий металл отбрасывается к стенкам формы и затвердевает. В результате получается плотная структура отливки без усадочных раковин. Неметаллические включения собираются на внутренней стороне отливки и удаляются при дальнейшей механической обработке.
Отливки из чугуна, стали и цветных металлов и сплавов изготавливают центробежным способом на машинах центробежного литья с горизонтальной и вертикальной осью вращения. Фасонное литье малой высоты получают на машинах с вертикальной осью вращения. На машинах с горизонтальной осью вращения изготавливают чугунные и стальные трубы, втулки и другие детали с отверстием. Достоинствами центробежного литья являются: высокие производительность, экономичность (не требуется затрат на приготовление формовочной смеси, изготовление стержней и др.) и качество получаемых отливок.
Литье по выплавляемым моделям
применяется для получения отливок высокой точности размеров и качества поверхности из любых литейных сплавов. С его помощью можно получать изделия сложной конфигурации с тонкими сечениями. Однако технологический процесс данного метода литья отличается высокой трудоемкостью и высокой стоимостью применяемых материалов. Технологический процесс литья по выплавляемым моделям включает следующие операции: изготовление модели — эталона отливки из легкообрабатываемого сплава (алюминиевого); изготовление пресс-формы по металли-ческому эталону, в которой прессуют модель из легкоплавких материалов (парафина, стеарина, полистирола, воска и др.); изготовление оболочки путем многократного нанесения на модель огнеупорного состава — керамической суспензии с кварцевым песком с последующим просушиванием (обработкой горячим воздухом) при температуре 150…200 °С для удаления легкоплавкой модели; прокаливание полученной литейной формы в печи при 800…850 °С; заливка формы. Очистку отливки от остатков керамического покрытия производят выщелачиванием с последующей ее промывкой в горячей воде. Высокая стоимость отливок, полученных этим методом, позволяет применять этот способ лишь для изготовления изделий особо сложной конфигурации из труднообрабатываемых и тугоплавких материалов в массовом или крупносерийном производстве.
Оболочковое литье
применяют в массовом и крупносерийном производстве для изготовления фасонных отливок из стали, чугуна, алюминиевых и медных сплавов. Сущность метода состоит в том, что на поверхность предварительно нагретой до 200 °С металлической модели, прикрепленной к подмодельной плите, насыпают формовочную смесь (кварцевый песок и 6…7 % бакелитовой синтетической смолы), затем все вместе прокаливают при t = 300 °С в течение 1…2 мин. Смола расплавляется и необратимо затвердевает, образуя песчано-смоляную оболочку толщиной 5…8 мм. Оболочковые полуформы собирают, скрепляют и заливают жидким металлом. Изготавливают эти полуформы на одно-, двух- и четырехпозиционных машинах с полуавтоматическим или автоматическим управлением. Литье в оболочковые формы обеспечивает высокую точность размеров отливки, малую шероховатость поверхности, высококачественную структуру металла. Для выбора метода литья при получении заготовок необходимо учитывать все факторы, влияющие на технико-экономические показатели процесса.
Изготовление литейных форм
Ручное изготовление форм предполагает выполнение действий в следующей последовательности.
Начинают с изготовления нижней полуформы.
На подмодельную доску устанавливают нижнюю половину модели, у которой нет центрирующих шипов. После этого ставят опоку. Разделительным составом покрывают поверхность модели и доски, чтобы смесь и оснастка не прилипали друг к другу. Обычно для этого применяют графит или тальковый порошок, кварцевый песок. 20-30 миллиметровый слой облицовочной смеси тоже наносят на модель, руками вокруг самой модели уплотняют эту же часть. Остальной объём опоки заполняется наполнительной смесью. Трамбовка сначала идёт у стенок опоки, потом переходит к средней части. Линейку применяют для срезания излишков. Отверстия для выхода газов накладывают на расстоянии 10-15 миллиметров от модели, и 40-50 мм друг от друга. Вторая подмодельная доска закрывает заформованную опоку, потом всё переворачивают на 180 градусов.
Изготовление верхней полуформы.
Верхнюю половину модели устанавливают на нижнюю половину, по центрирующим шипам. Следом устанавливают модели шлакоуловителей вместе со стояком и выпорами. Тонким слоем сухого кварцевого песка посыпают поверхность разъёма формы, чтобы защититься от прилипания смеси в нижней опоке к формовочному аналогу. По центрирующим штырям на нижнюю опоку устанавливают верхнюю. Наполнение формовочными смесями идёт так же, как и в случае с верхней частью. Литниковую чашу прорезают гладилкой, когда уплотнение смеси завершено.
Извлечение моделей.
Требуется раскачать модели стояка и выпоров, удалить их из верхней полуформы. Опоку внизу тоже снимают, потом поворачивают на 180 градусов, чтобы разъём находился вверху. Питатели прорезают гладилкой, в плоскости разъёма нижней полуформы. Половину обычных моделей и модель шлакоулавителей тоже удаляют из полуформ, слегка раскачав конструкции. Важно удалить любые дефекты, которые появились в процессе работы. Для удаления возможных засоров всё обдувают сухим влажным воздухом. Молодой древесный уголь или графит применяют для припыливания поверхности.
Сборка литейной формы.
Стержень устанавливают в нижнюю полуформу, когда подобное действие необходимо. Потом сверху идёт верхняя полуформа. Скобами или штырями конструкцию фиксируют, потом на верхнюю полуформу устанавливают груз. Это необходимо, чтобы предотвратить уход металла жидкой формы через разъём во время отливки. Металл заливают в форму, пока не будет заполнен весь объём.
Литьё на основе выплавляемых моделей
Такой способ использовался для литья скульптур ещё много лет назад. В 40-ых годах двадцатого века нашёл применение в сфере машиностроения.
Отличается трудоёмкостью процесса и высокими ценами. Но во многих ситуациях оправдано и применение такой технологии, например:
- При отсутствии последующей обработки механического характера.
- Если механическая обработка сама слишком сложная и трудоёмкая.
- Используются труднообрабатываемые сплавы.
Изготовление отливок по выплавляемым моделям существует большое количество, как и рецептур по модельным и формовочным смесям.
Широкое распространение получила смесь, в которой по 50% стеарина и парафина. Под небольшим давлением в пресс-форму из печи размещают легкоплавкий сплав в расплавленном состоянии. Результат – легкоплавкие модели, сохраняющие точные размеры.
Легкоплавкую модель достают из формы, когда изделие полностью затвердеет. Потом всё собирается в блоки с литниковой системой. Следующий этап – погружение в огнеупорную суспензию, состав которой включает 70% кварцевой муки и 30% гидролизованного раствора этилсиликата с повышенной клейкостью. Блок с моделями посыпают кварцевым песком, потом подвергают сушке. Эти операции повторяют по несколько раз, чтобы в итоге получить конструкцию с толщиной 5-8 миллиметров.
Плавление идёт с помощью горячего воздуха, температура которого составит 120-150 градусов, допустимо применение и холодной воды. В металлический жакет помещают облицованную и просушенную форму, когда речь идёт о крупных разновидностях отливок. Потом всё засыпают песком и уплотняют, либо засыпают металлическими смесями.
Потом идёт прокаливание готовой формы, пока не наберётся температура в 850-900 градусов. При таких условиях выгорают все остатки легкоплавкого металла. Сама форма становится прочной керамической оболочкой.
Расплавленный сплав помещают в форму. Используют центробежные силы, когда возникает необходимость.
Блоки отливок выбивают из опок после того, как металл затвердел. Отдельно отбивают корку из керамики. Для этого отливки выщелачивают в ванне с раствором при 120 градусах. Потом остаётся всё промыть в горячей воде. Многие заводы автоматизируют и механизируют процессы обработки.
Для получения точных отливок в промышленности начали применять следующие технологии:
- По газифицирующим моделям.
- По выжигаемым моделям.
- По размораживаемым.
- На основе растворяемых.
- Газофицируемые модели или использование пеномоделей – один из самых перспективных методов.
В этом случае предполагается применение неразъёмных форм. Из них модель не извлекают. Теплота расплавляемого металла и обеспечивает газификацию. Масса итоговых отливок – от 0,2 килограмм до нескольких тонн.
Малой плотностью отличается сам пенополистирол, который применяют в изготовлении деталей. Его разложение происходит при 300-350 градусах. В результате выделяются только пары стирола, обработка идёт даже обычной проволокой и ножами.
Для единичного производства берут пенопластовые модели, проходящие ручную обработку. Пилы, рубанки и станки становятся незаменимыми помощниками в этом процессе. Модели можно изготавливать по частям, чтобы потом соединять их в единое целое.
Вспенивание внутри форм из пластмасса или металла – метод, который применяют в случае с крупносерийным производством. Полистироловые гранулы загружают внутрь формы с полостью, которая напоминает модель по конфигурациям и размерам. Гранулы начинают вспениваться и расширяться при нагревании, спекаются друг с другом. Полость формы заполняется полностью. Модель извлекают из формы после окончания охлаждения.
Для формовки пенопластовых моделях в опоках используют обычные методы. Встряхивающие и вибрационные станки применяют для формовочных смесей.
Форму заливают сплавом, когда производство почти закончено. Модель проходит газификацию. Газы удаляются в выпоры. Отливка образуется на том месте, где раньше была модель.
Изготовление отливок на пенопластовой основе предполагает и другие методы. На завершающих этапах удаление модели предполагает применение таких технологий:
- Растворение.
- Прокаливание формы.
- Электроплавка.
- Продувка формы.
Пенопластовые модели легко заменят выплавляемые аналоги.
Виды термической обработки
Технология | Процесс | Результат |
Отжиг | Нагрев до предела пластичности, выдержка и постепенное охлаждение вместе с печью. | Улучшенная ковкость, вязкость и пластичность, уменьшенная прочность и твердость, устранение внутренних напряжений, получение равновесной структуры. |
Закалка | Нагрев и выдержка при высокой температуре, затем стремительное охлаждение в воде или масле. | Повышенная прочность, твердость из-за неравновесной структуры, устойчивость к сжатиям и растяжениям. |
Отпуск | Вторичный нагрев, выдержка и охлаждение после закалки. Применяется для прочных сталей и закаленных сплавов. | Компенсация нежелательных эффектов. |
Старение | Медленная и длительная смена температуры. Применяется для сплавов, закаленных без полиморфного превращения. | Усиление прочности и твердости сталей с содержанием Mg, Al, Ni, Cu. |
Нормализация | Аналог отжига с остыванием на открытом воздухе. | Изменение зернистости, улучшение ковкости. |
Химико-термическая обработка | Изменение химического состава, структуры деталей и свойств их поверхности. Насыщение другими элементами. Сильный нагрев и длительная выдержка. | Придание сплаву однородной структуры. Повышение износостойкости, твердости, устойчивости к коррозии, контактной выносливости и сопротивления усталости. |
Термомеханическая обработка | Пластическая деформация, применяемая для сплавов магния и алюминия. | Повышение плотности дислокации кристаллического строения, улучшение механических характеристик. |
Применение оболочковых форм
Расплавленный металл свободно заливается в оболочковые формы на основе из термореактивных смесей.
Разновидность способа литья с разовыми песчаными формами. В итоге появляются поверхности с высоким качеством изготовления. В основе смеси – кварцевый песок и смола синтетического происхождения. При 70 градусах фенолформальдегидные смолы начинают растворяться, их температура плавления достигает 120 градусов. Спустя несколько секунд материал переходит к отвердению. При 450 градусах у смолы идёт выгорание. Способы получения оболочковых форм основаны на способностях смол переходит из жидкого состояния к твёрдому необратимому. После заливки модель легко разрушается, освобождая необходимое место.
Литьё в металлические формы или кокиль
Кокилями называют модели, изготовленные из металла. Расплавленные составы свободно растекаются по ним для получения результата.
Чугун, сталь и другие сплавы применяют при изготовлении кокиля чаще всего. Способы такого литья отличаются своими преимуществами:
- Большое число заливок, от нескольких десяток до сотен тысяч.
- Чем ниже температура заливаемого сплава, тем больше стойкость.
- Применение формовочной смеси в этом способе исключено.
- Технико-экономические показатели производства улучшаются.
- Лучше санитарно-гигиенические условия труда.
Процесс катализации сплава ускоряется благодаря высокой теплопроводности кокиля. Тогда отливки обладают повышенной герметичностью, механические свойства у них тоже повышены.
Допустимо многократно получать отливки разных размеров, ведь металлические формы прочные. Качество поверхности повышается при минимальном физико-химическом взаимодействии между металлом формы и отливки.
Есть и недостатки:
- Необходимость точного соблюдения технологических требований, иначе возникнет напряжение.
- Высокая стоимость производства кокилей.
- Малая стойкость форм.
До 6% от общего числа стальных отливок получают в кокилях. Для серийного и массового производства этот метод отливки будет целесообразным с экономической точки зрения. Изготовление чаще идёт из двух половин, которые в обычном литье соответствуют полуформам. Внешней конфигурации отливки соответствует рабочая полость кокиля. В эту форму устанавливают песчаные стержни, образующие полость с конфигурациями отливки. Каналы литниковой системы выполняют, чтобы заливать кокиль жидким металлом в плоскости разъёма или в стержне. Между полостью кокиля и стержнем пространство полностью заполняют сплавом, в результате чего получаются отливки. Кокиль раскрывают после затвердевания, изнутри выталкивается готовая отливка.
После процессы повторяют.
Кокиль выпускают с одним или нескольким разъёмами, в зависимости от конфигурации отливки. Сами плоскости у разъёма тоже бывают нескольких видов:
- Горизонтальные.
- Вертикальные.
- Комбинированные.
На рабочую поверхность наносят теплоизоляционные покрытия, способствующие достижению следующего результата:
- Повышение стойкости кокиля.
- Защита от образования закалённого слоя возле поверхности.
- Уменьшение скорости охлаждения отливок.
- Для изготовления теплоизоляции применяют один материал, либо сразу несколько. Патока или жидкое стекло выступают связующими материалами.
Кокиль отличается почти полной газонепроницаемостью. Через выпор и специальные каналы газ удаляется из конструкции. Стандартная глубина каналов составит 0,2-0,5 мм. Жидкий сплав через них не вытекает, зато для удаления именно газов конструкция подходит хорошо.
По сравнению с песчаными формами, такой процесс гораздо легче механизировать и автоматизировать. Однопозиционные и карусельные кокильные машины облегчают механизацию. Машины помогают автоматизировать такие процессы:
- Открывание и закрывание кокилей.
- Постановка, удаление металлических стержней.
- Выталкивание отливок из кокиля.
Технологии металлообработки
Для придания материалам заданных размеров, форм и свойств используются разные виды металлообработки:
- Механическая обработка давлением или резанием – воздействие при помощи пресса или режущего инструмента.
- Литье – отлив деталей заданной формы из расплавленного материала.
- Сварка – соединение нескольких металлических элементов при помощи сварочной технологии.
- Термическая обработка – нагрев цветных металлов или стали, их выдержка при определенной температуре и охлаждение с целью изменения характеристик.
- Художественная обработка – ковка, художественное литье или чеканка. Создание металлоизделий с высокими декоративными качествами.
- Электрообработка, пример – прокалка. Подразумевает прохождение через металл электрического разряда. Различают электроискровую и электрохимическую обработку, которая делает поверхность блестящей.
- Резка – разделение заготовок на составляющие определенных размеров и формы. К категории металлорежущего оборудования относятся лазерная резка, газокислородные и плазменные установки, буровые прессы и гильотины, сверлильные и гидроабразивные, расточные и отрезные, токарные и фрезеровочные станки. На современных производствах доминирует бесконтактная тепловая резка.
В зависимости от поставленных задач разные способы обработки металлов применяются самостоятельно или сочетаются друг с другом.
Технология литья под давлением
Под давлением в этом случае осуществляются такие этапы, как заполнение сплавом и формирование отливок. В массовом производстве тонкостенных изделий технология стала незаменимой. Плюсы:
- Большая точность размеров у отливок.
- Высокое качество поверхности.
- Отсутствие требований по механической обработке.
В час этим методом легко выполнить 200-400 циклов. Формы изготавливаются стальными при литье под давлением. Характерно применение неразъемных стержней, изготовленных из металла. По сравнению с кокилями, формы и конструкция здесь более сложные, поэтому возрастает и стоимость. Песчаные стержни слишком легко разрушаются под воздействием струи металла. Образуется газовая пористость, поскольку газы не успевают удалиться из формы.
Предполагается использование пресс-форм – это сложные приспособления из 30-=100 деталей. С рабочей частью, выполненной из специальных вкладышей. Для образования отверстий в отливке автоматически вставляются и вынимаются металлические стержни.
Камера прессования заполняется сплавом. Полость пресс-формы заполняется металлом во время этого процесса. Отливку выталкивают толкателями, когда конструкция раскрывается.
Машины для литья под давлением – разновидность сложных технических установок. Вот лишь основные детали:
- Корпус.
- Направляющие.
- Гидравлические цилиндры. Последние приводят в движение половины пресс-формы, отвечают за металлические стержни.
- Те же цилиндры создают давление для прессования металла.
Низкое давление – промежуточный вариант между обработкой под давлением и с использованием кокилей. Электронагреватели применяют для расплавления металла в герметически закрытом тигле. По стальному металлопроводу основные материалы попадают в форму. Давление газа внутри тигля снимают после отвердения, потом идёт удаление отливки.
Типы резки металла
Технология | Особенности | Преимущества |
Лазерная резка | Сфокусированный лазерный луч расплавляет лист четко по линии реза. | Экономичность, универсальность, высокое качество кромок, точная и тонкая линия реза, экономия материала, автоматическое выполнение раскроя любой сложности. |
Плазменная резка | Сжатая режущая дуга эффективно режет токопроводные материалы: высоко- и низкоуглеродистые, высоколегированные и конструкционные стали, нержавейку, чугун, титан, биметаллы, цветметы. | Быстрота и качество резки, широкие возможности применения, экономичность. |
Газокислородная резка | Направленная струя технически чистого кислорода с температурой выше 1000 °С прожигает материал по линии реза и выдувает продукты сгорания. | Эффективная резка металла толщиной от 5 до 200 см, включая углеродистые средне- и низколегированные стали толщиной 1–200 мм. |
Гидроабразивная резка | Водная струя с примесью абразивных частиц подается на материал под давлением до 5000 атм. и режет его на молекулярном уровне. | Создание деталей сложной формы с точным соблюдением размеров. Сохранение физико-механических характеристик материала. Исключение риска деформации. Возможность резки всевозможных металлов и сплавов в пределах толщины 300 мм. |