Волновой метод
В процессе серийного производства электронных приборов, крепление компонентов на печатных платах осуществляется на конвейерных линиях заводов. При этом применяется пайка волной припоя.
Суть этой технологии, появившейся в 50–х годах прошлого века, заключается в следующем.
Печатные платы с установленными на них электронными компонентами движутся по специальному конвейеру. В процессе движения, места пайки покрываются флюсом, плата предварительно прогревается, после чего проходит над ванной с расплавленным припоем.
Ванна оборудована специальными соплами, создающими волну, возвышающуюся над поверхностью припоя в ванне.
Плата расположена таким образом, что места пайки контактируют с поверхностью волны при перемещении платы вдоль ванны. В этот момент происходит смачивание припоем контактных площадок на плате и выводов припаиваемых деталей.
Сила поверхностного натяжения жидкого припоя не даёт ему стечь полностью с поверхности платы, что обеспечивает спаивание деталей с контактными площадками.
Как узнать, что спаяно правильно?
А теперь необходимо внимательно рассмотреть место пайки со всех сторон. На монтажной плате с обратной стороны должны быть видны круглые, слегка выпуклые точки, образованные припоем. Пайка удалась правильно. Но это получается только у опытного мастера. Первая пайка может иметь несколько изъянов, связанных с неправильным количеством паяльной пасты на контакте.
Обратите внимание: округлая впадина или сквозное отверстие возле контактной ножки свидетельствует о том, что вы пожадничали – пасты было мало.
Схема подготовки деталей к распайке.
Предстоит пайку повторить. Излишек пасты обязательно приводит к замыканию. Но не отчаивайтесь: убрать ее не так уж сложно. Для этого вам будут нужны дополнительно к основному набору инструментов два элемента: пинцет и кусок металлической оплетки подходящего диаметра (чтобы ее можно было поместить между контактными ножками). Оплетку можно заменить и многожильным проводом из тугоплавкого материала.
Сначала готовится оплетка: ее конец зачищаем от изоляции или оксидной пленки, подвергаем лужению и даем остыть. Оплетку помещаем в место излишнего количества припоя и подаем туда поток теплого воздуха (около 200°). Произойдет вторичное плавление пасты, металл за счет сил поверхностного натяжения канифоли, которая находится на обмотке, мгновенно разойдется по поверхности проводов. Обмотка выступит в роли губки для расплавленного металла: она его мгновенно удалит. Если пайка произведена на слишком мелких деталях, тогда можно излишки припоя снимать и с помощью обыкновенной иглы (вместо обмотки), но процедуру придется повторить несколько раз. Делать это нежелательно, так как на расплавленном металле очень быстро образуется налет оксидов, снижающих качество пайки.
Настройка технологических параметров
Для получения качественных паяных соединений, необходима настройка технологических параметров паяльной линии. Во-первых, формой и ориентацией сопла формируется гребень волны оптимального профиля, во-вторых, движущаяся над ванной плата располагается под некоторым углом к поверхности расплава.
Правильно выбранные параметры процесса позволяют избежать брака в виде перемычек между токоведущими дорожками и наплывов (сосулек) на выводах деталей.
Для этой же цели может использоваться технология пайки двойной волной. В этом случае, первая волна припоя имеет турбулентный характер, что позволяет лучше смачивать паяемую поверхность и проникать припою в монтажные отверстия платы.
Вторая волна, имеющая более плавное ламинарное течение, смывает огрехи в виде лишних капель и наплывов припоя, формируя при этом окончательную геометрию гантелей.
Пайка волной не всегда автоматизирована. Например, на многих сборочных конвейерах Китая и других стран Азии, установка деталей на плату, последующая обработка флюсом и обмакивание платы в ванну с припоем выполняют люди.
При этом плата берётся руками посредством специального захвата и обмакивается в ванну жидкого припоя.
Как выпаять светодиод из LED-лампочки
Вместо лампочек накаливания или энергосберегающих ламп в патрон светодиод не вставишь, нужен как бы посредник. Им является корпус лампы, в котором на плате расположены сразу несколько кристаллов.
Для удобства рекомендуется плотно намотать медную проволоку на жало, сечением не больше 4 мм.
Пинцетом или иголкой отодвигаем кристалл вниз, параллельно контактам.
Крепление smd компонентов
Способ пайки волной чаще применяется для плат, компоненты которых монтируются с одной стороны платы, а контактные площадки и токоведущие дорожки – с другой.
Штыревые выводы элементов вставляются при этом в сквозные отверстия платы и припаиваются с обратной её стороны. Однако большинство современных электронных схем конструируется под использование так называемых smd-компонентов, закрепляемых поверхностной пайкой. Такие детали припаиваются к плате с той же стороны, на которой они установлены.
Применение волновой технологии пайки для таких элементов имеет ряд особенностей:
- при пайке волной smd-компонентов плата должна быть ориентирована вниз предварительно приклеенными к ней деталями;
- волна расплавленного припоя омывает при этом корпуса деталей.
Таким образом, smd-компоненты перед пайкой должны быть приклеены к плате специальным клеем. При этом иногда имеют место случаи отклеивания деталей во время их контакта с волной расплава, что приводит к появлению брака.
Кроме этого, не все электронные компоненты способны выдержать температурный режим, возникающий в процессе «купания» в жидком припое. Эти обстоятельства ограничивают применение волновой технологии.
Следует добавить ещё одну отрицательную черту, присущую этой технологии пайки. Большое количество расплавленного припоя в ванне, постоянно контактирующее с открытым воздухом, приводит к активному образованию окисла.
Травление печатной платы
Для удаления медной фольги с незащищенных участков фольгированного стеклотекстолита при изготовлении печатных плат в домашних условиях радиолюбители обычно используют химический способ. Печатная плата помещается в травильный раствор и за счет химической реакции медь, незащищенная маской, растворяется.
Рецепты травильных растворов
В зависимости от доступности компонентов радиолюбители применяют один из растворов, приведенных в таблице ниже. Травильные растворы расположены в порядке популярности их применения радиолюбителями в домашних условиях.
Наименование раствора | Состав | Количество | Технология приготовления | Достоинства | Недостатки |
Перекись водорода плюс лимонная кислота | Перекись водорода (H2O2) | 100 мл | В 3% растворе перекиси водорода растворить лимонную кислоту и поваренную соль | Доступность компонентов, высокая скорость травления, безопасность | Не хранится |
Лимонная кислота (C6H8O7) | 30 г | ||||
Поваренная соль (NaCl) | 5 г | ||||
Водный раствор хлорного железа | Вода (H2O) | 300 мл | В теплой воде растворить хлорное железо | Достаточная скорость травления, повторное использование | Невысокая доступность хлорного железа |
Хлорное железо (FeCl3) | 100 г | ||||
Перекись водорода плюс соляная кислота | Перекись водорода (H2O2) | 200 мл | В 3% раствор перекиси водорода влить 10% соляную кислоту | Высокая скорость травления, повторное использование | Требуется высокая аккуратность |
Соляная кислота (HCl) | 200 мл | ||||
Водный раствор медного купороса | Вода (H2O) | 500 мл | В горячей воде (50-80°С) растворить поваренную соль, а затем медный купорос | Доступность компонентов | Ядовитость медного купороса и медленное травление, до 4 часов |
Медный купорос (CuSO4) | 50 г | ||||
Поваренная соль (NaCl) | 100 г |
Травить печатные платы в металлической посуде не допускается
. Для этого нужно использовать емкость из стекла, керамики или пластика. Утилизировать отработанный травильный раствор допускается в канализацию.
Травильный раствор из перекиси водорода и лимонной кислоты
Раствор на основе перекиси водорода с растворенной в ней лимонной кислотой является самым безопасным, доступным и быстро работающим. Из всех перечисленных растворов по всем критериям это лучший.
Перекись водорода можно приобрести в любой аптеке. Продается в виде жидкого 3% раствора или таблеток под названием гидроперит. Для получения жидкого 3% раствора перекиси водорода из гидроперита нужно в 100 мл воды растворить 6 таблеток весом 1,5 грамма.
Лимонная кислота в виде кристаллов продается в любом продуктовом магазине, расфасованная в пакетиках весом 30 или 50 грамм. Поваренная соль найдется в любом доме. 100 мл травильного раствора хватит на удаление медной фольги толщиной 35 мкм с печатной платы площадью 100 см2. Отработанный раствор не хранится и повторному использованию не подлежит. Кстати, лимонную кислоту можно заменить уксусной, но из-за ее едкого запаха травить печатную плату придется на открытом воздухе.
Травильный раствор на основе хлорного железа
Вторым по популярности травильным раствором является водный раствор хлорного железа. Ранее он был самым популярным, так как на любом промышленном предприятии хлорное железо было легко достать.
Травильный раствор не требователен к температуре, травит достаточно быстро, но скорость травления снижается по мере расходования хлорного железа в растворе.
Хлорное железо очень гигроскопично и поэтому из воздуха быстро впитывает воду. В результате на дне банки появляется желтая жидкость. Это не влияет на качество компонента и такое хлорное железо пригодно для приготовления травильного раствора.
Если использованный раствор хлорного железа хранить в герметичной таре, то его можно использовать многократно. Подлежит регенерации, достаточно в раствор насыпать железных гвоздей (они сразу покроются рыхлым слоем меди). При попадании на любые поверхности оставляет трудноудаляемые желтые пятна. В настоящее время раствор хлорного железа для изготовления печатных плат применяют реже в связи с его дороговизной.
Травильный раствор на основе перекиси водорода и соляной кислоты
Отличный травильный раствор, обеспечивает высокую скорость травления. Соляную кислоту при интенсивном помешивании вливают в 3% водный раствор перекиси водорода тоненькой струйкой. Вливать перекись водорода в кислоту недопустимо! Но из-за наличия в травильном растворе соляной кислоты при травлении платы нужно соблюдать большую осторожность, так как раствор разъедает кожу рук и портит все, на что попадает. По этой причине травильный раствор с соляной кислотой в домашних условиях использовать не рекомендуется.
Травильный раствор на основе медного купороса
Метод изготовления печатных плат с применение медного купороса обычно используют в случае невозможности изготовления травильного раствора на основе других компонентов из-за их недоступности. Медный купорос является ядохимикатом и широко применяется для борьбы с вредителями в сельском хозяйстве. В дополнение время травления печатной платы составляет до 4 часов, при этом необходимо поддерживать температуру раствора 50-80°С и обеспечить постоянную смену раствора у стравливаемой поверхности.
Технология травления печатных плат
Для травления платы в любом из вышеперечисленных травильных растворов подойдет стеклянная, керамическая или пластиковая посуда, например от молочных продуктов питания. Если под рукой подходящего размера емкости не оказалось, то можно взять любую коробку из плотной бумаги или картона подходящего размера и выстелить ее внутренность полиэтиленовой пленкой. В емкость наливается травильный раствор и на его поверхность аккуратно рисунком вниз кладется печатная плата. За счет сил поверхностного натяжения жидкости и небольшого веса плата будет плавать.
Для удобства к центру платы клеем момент можно приклеить пробку от пластиковой бутылки. Пробка одновременно будет служить ручкой и поплавком. Но тут есть опасность, что на плате образуются пузырьки воздуха и в этих местах медь не вытравится.
Чтобы обеспечить равномерное вытравливание меди можно положить печатную плату на дно емкости вверх рисунком и периодически покачивать ванночку рукой. Через некоторое время, в зависимости от травильного раствора, начнут появляться участки без меди, а затем медь растворится полностью на всей поверхности печатной платы.
После окончательного растворения меди в травильном растворе печатную плату извлекают из ванночки и тщательно промывают под струей проточной воды. Тонер удаляется с дорожек ветошью, смоченной в ацетоне, а краска хорошо удаляется ветошью, смоченной в растворителе, который добавлялся в краску для получения нужной ее консистенции.
Применение паяльной пасты
Для крепления smd-компонентов на плате обычно применяются другие технологии пайки. Как правило, все они основаны на использовании паяльной пасты. В этот состав входит порошкообразный припой, флюс и наполнитель.
Паяльная паста наносится на контактные площадки платы и выводы установленных на них деталей.
После этого плата направляется в специальную печь, где производится нагрев соединений одним из способов:
- парогазовой смесью;
- источниками инфракрасного излучения;
- способом конвекции.
В процессе нагрева происходит плавление паяльной пасты и спайка контактов.
Как выпаять светодиод из ленты
Другая сложность при пайке SMD типа – это замена старого элемента на новый в светодиодной ленте. Решается простым способом:
- Перед тем как отпаять диоды, закрепите ленту, чтобы не попасть паяльником на токопроводящие дорожки.
- Осторожно плавьте олово вокруг контактов и просовывайте под диод лезвие. Приподнимаем сначала с одной стороны, потом с другой, пока диод не будет свободен.
Автоматизированные технологии
В ситуациях, когда электронные компоненты имеют выводы с очень малым шагом, при пайке разъёмов, имеющих большое количество выводов, и в других случаях, требующих использования очень тонких технологий, обычно применяется паяльный робот.
Робот-манипулятор для пайки плат представляет собой прецизионное устройство, содержащее координатный стол, на который устанавливается плата с размещёнными на ней деталями и паяльной головки, перемещающейся по трём координатным осям.
Головка оборудована механизмом подачи припоя и устройством для вакуумного отсоса его излишков.
Роботизированная автоматическая пайка плат существенно уступает волновому способу по скорости, поэтому используется только в тех случаях, когда последний применить невозможно.
Кроме собственно пайки, роботы часто используются для установки деталей на плате непосредственно перед их спайкой. Отдельные элементы, установка которых в силу их сложной нестандартной формы (трансформаторы, дроссели, некоторые виды микросхем) плохо поддаются автоматизации, устанавливаются вручную.
Поэтому, даже на крупных сборочных конвейерах известных фирм, выпускающих электронное оборудование, присутствуют участки, на которых сборку осуществляют люди.
Кроме этого, контроль качества продукции также часто выполняется людьми. Платы с дефектами, которые могут быть устранены, направляются на доработку, выполняемую паяльником вручную.
Строение диодных элементов
Главное отличие от других ламп в том, что светодиоды имеют плюсовой и минусовой контакт (анод и катод). При пайке диода в цепи важно это учитывать.
Также нужно понимать, что бывают DIP и SMD светодиоды.
Плюсовой контакт в DIP определяется достаточно просто. Стоит внимательно взглянуть внутрь колбы. Плюсовой вывод – анод – меньше минусового. На рисунке плюс – слева.
Есть и второй способ – посмотрите на длину ножки. У положительного вывода она длиннее.
Третий способ – мультиметром. Черная клемма прибора – минусовая, красная – плюсовая. Ставим на прозвон:
Последний способ подходит для обоих типов.
Это, пожалуй, главное, что стоит знать о строении светодиода. Если интересна теория, рекомендуем посмотреть видео:
Работа в домашних условиях
При сборке самодельных электронных устройств, радиолюбители самостоятельно изготавливают печатные платы. При наличии желания и элементарной подготовки, этому не сложно научиться.
Изготовить печатную плату можно, используя имеющиеся рисунки дорожек на плате, более подготовленные могут самостоятельно сделать эскиз платы, имея принципиальную электрическую схему устройства. Для изготовления печатной платы берётся лист фольгированного изоляционного материала.
Это может быть гетинакс или стеклотекстолит, покрытый тонким слоем меди с одной или двух сторон, в зависимости от того, какая требуется плата – односторонняя или двухсторонняя.
На бумаге чертится эскиз рисунка токопроводящих дорожек, затем он переносится на поверхность медного слоя, в нужных местах просверливаются сквозные отверстия для установки деталей, а рисунок покрывается слоем краски или лака.
После высыхания покрытия выполняется травление платы, то есть, погружение её на некоторое время в один из составов, разъедающий слой меди, не покрытый краской. Обычно для этих целей используется либо хлорное железо, либо раствор кислоты, либо смесь медного купороса с поваренной солью.
После вытравливания меди, лак или краска смывается растворителем, полученный рисунок лудится обычным паяльником, после чего можно приступать к установке деталей и припаиванию их к плате.
Перед лужением, дорожки следует тщательно обезжирить и зачистить мелкой наждачной бумагой. Выводы деталей перед установкой также нужно зачистить, можно также залудить, это облегчит последующий процесс пайки.
Пайка производится хорошо разогретым паяльником, на жале которого должна оставаться капля припоя. Если расплавленный паяльником припой не удерживается на жале, скорее всего, паяльник перегрет.
Для контроля его температуры лучше пользоваться регулятором напряжения или паяльной станцией. Контакт паяльника с деталью должен быть коротким. После смачивания припоем вывода детали и площадки на плате, паяльник сразу убирается.
Читать также: Зверюшки из резинок на рогатке
Это исключит возможность выхода детали из строя в результате перегрева и обеспечит ровное и красивое растекание капли припоя.
Для пайки плат и электронных компонентов следует выбирать мягкие сорта припоев на основе олова. Требуемую прочность пайки в этом случае обеспечит самый мягкий припой, при этом, его применение облегчит работу и уменьшит тепловую нагрузку на детали.
Поскольку выводы электронных компонентов обычно уже залужены, а дорожки платы выполнены из меди, в качестве флюса можно использовать только канифоль, или её спиртовой раствор.
Умение паять платы может пригодиться также при выполнении самостоятельного ремонта вышедшей из строя электроники.
Записки мастера. Если с «ногами» оторвало «пятак»
Макс Любин
Давайте разбираться, что это за ноги, что за пятаки и что с ними делать. Пятаками часто называют контактные площадки на плате, на которые припаиваются ноги элементов. Сами «пятаки» – это чаще всего просто пластинка из медной или латунной фольги, которой оканчивается токопроводящая дорожка на плате.
Ноги — это ножки элементов, которыми элемент припаивается к пятакам.
При неаккуратном использовании, подразумевающем сильное механическое воздействие, элемент может оторваться от платы, вырвав при этом ту самую контактную площадку и сделав восстановление либо более проблематичным, либо нецелесообразным.
О того, как именно проходят дорожки на плате, зависит и сложность ремонта.
Для таких работ я использую бинокуляр. Но если бинокуляра нет, легко можно обойтись и лупой, так как элементы не настолько мелкие.
Сегодня у нас на ремонте простейший китайский планшет, который очень настойчиво хотели зарядить и, не рассчитав силы, вырвали разъем зарядки, что называется, «с мясом».
Удивителен не сам факт повреждения, а то, что при таком варварском обращении пострадало только две контактных площадки. Повезло.
Хозяин планшета сказал, что обратился в пару мастерских и ему либо отвечали, что не могут сделать, либо называли сумму в половину стоимости планшета. В итоге он отдал планшет мне на эксперименты за символические 500 руб. Если все пройдет удачно, этот планшет станет отличным автомобильным навигатором.
Ну что ж, будем реанимировать.
Ремонт
Для этого сначала оценим фронт работ.
Выглядит все не очень красиво.
Для начала зачищаем место предстоящей пайки, убирая все лишнее, и смотрим, реально ли восстановить контакт. Нам повезло, дорожка проходит по поверхности платы, и добраться до нее будет несложно.
Для начала счищаем лишний лак, обнажая дорожку, к которой будем подпаиваться.
После этого нам понадобится тонкий проводок, который затем и будет выполнять роль «пятака».
Я взял обычный многожильный провод и распустил его, выдернув одну жилу.
Фото полученного провода, с которым придется работать.
Провод в сравнении с тонкой швейной иглой.
Лудим зачищенный конец дорожки, а затем подпаиваем нашу жилу так, чтобы ее конец оказался на месте утраченного пятака. Лишнее не обрезаем, а сворачиваем в кольцо, создавая новую площадку. На самом деле, можно этого не делать, так как хватит и самого проводка.
После этого берем новый разъем, предварительно купленный в магазине запчастей за целых 23 рубля, и, закрепив, пропаиваем.
Вуаля! Всё готово.
Вот тут я вынужден извиняться и посыпать голову пеплом, так как за такое качество работ я сам себе с удовольствием вырву руки. Небольшим оправданием может служить только то, что перед финальной пайкой разъема у меня сгорел паяльник, обдав меня огромным снопом искр и брызнув остатками расплавленного корпуса на пол. До сдачи статьи в «печать» оставалось меньше часа, и мне пришлось мастерить паяльник из скрепки и зажигалки, и заканчивать начатое. Это безобразие и порнография будет переделана в самое ближайшее время (самому смотреть противно).
В связи с качеством проделанных работ, и для искупления вины, придется купить себе такие штаны
Еще один момент. который меня смущал — родная батарея на 2600 мАч. Думаю, этого будет маловато для роли навигатора. Сделаем апгрейд, поставив батарею емкостью 4000 мАч. Влезает она сюда прямо впритык.
В итоге имеем реанимированный планшет с увеличенной батареей, который теперь будет навигатором. Осталось только вспомнить, у кого из друзей нет в машине навигатора, чтобы осчастливить его таким незамысловатым подарком.
Пара слов вместо заключения
Многие предпочитают не заморачиваться подобным ремонтом, так как в данном случае стоимость потраченного времени оказывается слишком высокой по отношению к стоимости устройства. Но если делать такое для себя, то почему бы и нет. Главное, пользоваться качественными паяльниками, не пренебрегать защитой и всегда иметь под рукой запасной инструмент. Всем неломающейся техники!
Основы монтажа и пайки
Необходимые для работы инструменты и материалы рассмотрены в уроке №1. Кратко напомню о том, что потребуется для сборки конструктора: паяльник, припой с каналом канифоли, радиотехнические бокорезы, пинцет, держатель платы типа «третья рука», спирт, салфетки, старая зубная щётка, стол, настольная лампа, стул. Итак, приступим к сборке. Мы будем собирать набор Мастер Кит NS073 – «Живое сердце», хотя для целей обучения совершенно не важно, сборку какого набора рассматривать. Вот что должно получиться в итоге:
Светодиоды собранного устройства эффектно перемигиваются, создавая очень красивый эффект «бегущего огня». Но сначала нужно собрать набор. Для этого потребуется установить каждую деталь на своё место, а затем припаять все детали. Глаза боятся – руки делают. Приступим!
Общие требования к рабочему месту. Основы безопасности
Несмотря на то, что мы уже говорили об этом в уроке №1, о таких серьёзных вещах, касающихся безопасности, нелишне напомнить снова:
– рабочее место (стол) не должен быть захламлён. На свободном столе работать приятнее и эффективнее. Кроме того, радиодетали не смогут легко потеряться в окружающем хламе; – Так как радиодетали мелкие, во избежание излишнего перенапряжения глаз рабочее место должно быть хорошо освещено. Всегда включайте настольную лампу; – во время пайки предусмотрите хорошую вентиляцию рабочего места. Открывайте форточку, или включайте настольный вентилятор, отгоняющий дым от паяльника в сторону; – паяльник горячий! Держитесь только за его ручку. Не допускайте прикосновений пальцев к жалу; – после пайки, как и после любой другой работы, всегда мойте руки.
Печатная плата
Печатная плата является основной, шасси всей конструкцией. Все детали устанавливаются с лицевой стороны платы (с той, где есть надписи), а выводы деталей припаиваются с тыльной стороны (где имеются токопроводящие дорожки).
Монтаж резисторов
Допустим, мы хотим установить резистор R1. По таблице из инструкции определяем, что R1 должен иметь сопротивление 1 МОм. Находим в наборе резистор соответствующего номинала (как определить номинал резистора, рассказывается в уроке №2). Ищем на печатной плате установочное место R1. Чтобы резистор R1 удобно «улёгся» на предназначенное для него место на печатной плате, выводы резистора нужно отформовать, то есть изогнуть определённым образом. Изгибать выводы можно пальцами или с помощью пинцета. Если с первого раза не получилось изогнуть выводы правильно – ничего страшного, можно поправить формовку. Но надо помнить, что если изгибать вывод в одном месте более нескольких раз, то он может обломиться.
Вот так выглядит установленный резистор с разных ракурсов:
Резистор R1 установлен «вертикально», то есть его корпус находится над поверхностью платы. Угол между компонентом и корпусом может быть любым, это не влияет на качество работы схемы. Также вспомним из урока №2, что резистор не имеет полярности, то есть может быть установлен как коричневой полосой вверх (как на рисунке), так и коричневой полосой вниз.
Чтобы деталь не выпадала при поворотах платы, с обратной стороны платы выводы резистора загибаем в разные стороны:
Мы можем сразу же обрезать излишки вывода резистора и припаять его. Затем установить следующую деталь, опять обрезать его выводы и припаять… Но можно сначала установить все детали, затем обрезать их выводы, а затем все сразу припаять. Так получится быстрее, технологичнее, именно так поступают профессиональные монтажники на производстве. Мы тоже будем действовать таким образом.
Установим резистор R2. Обратите внимание, что этот резистор устанавливается «горизонтально», то есть его корпус вплотную прилегает к плоскости печатной платы. Соответственно, и формовка выводов этого резистора несколько другая.
Снова напомню, что резисторы не имеют полярности. В данном случае синяя полоса резистора находится справа. Но можно установить его и в обратную сторону – синей полосой влево. Таким же образом устанавливаем все остальные резисторы (в данном наборе их 9 штук).
Монтаж конденсаторов
В данном наборе всего один конденсатор – С1, поэтому перепутать его с каким-то другим невозможно. Но всё-таки проверим, что на конденсаторе в полном соответствии с перечнем компонентов указан код ёмкости 104. В данном случае выводы конденсатора можно не формовать, так как компонент прекрасно устанавливается на плату в заводском состоянии выводов. Также мы знаем из урока №2, что керамический конденсатор полярности не имеет и может устанавливаться на плату в любом положении. Если в каком-то другом наборе будет несколько керамических конденсаторов, необходимо по указанному на компоненту коду ёмкости определить, на какое посадочное место следует его установить – С1, С4 или С17, например. В наборе NS073 нет других конденсаторов, но в целях обучения на примере другого набора рассмотрим также монтаж электролитического конденсатора. Помним о том, что электролитический конденсатор должен устанавливаться с учётом его полярности.
Монтаж диода
Находим на печатной плате посадочное место диода VD1. Вспомним из урока №2, что диод имеет полярность. Обратите внимание, что на печатной плате имеется обозначение «ключа» диода – полоса вблизи одного из выводов. Такая же полоса имеется и на самом диоде. При установке диода необходимо строго придерживаться меток полярности. Если установить диод в неправильной полярности (в данном случае неправильная установка – полосой вверх), то схема не заработает. Более того, диод или другие элементы схемы в таком случае могут выйти из строя.
Формовка выводов диода аналогична резистору R2.
Монтаж транзистора
В наборе NS073 нет транзисторов, но для полноты изложения материала на примере другого набора рассмотрим монтаж транзистора. Помним о том, что транзистор имеет «ключ», который при установке необходимо совмещать с соответствующей меткой на печатной плате.
Кроме того, важно помнить, что разные транзисторы могут быть одинаковыми по внешнему виду. И если в набор входят два или более транзисторов, необходимо проверять маркировку на их корпусах и устанавливать компоненты строго на нужные позиции – VT1, VT2 и т.п.
Монтаж микросхем
В данный набор входят две микросхемы. При установке необходимо соблюдать их ключи, обозначенные выемками как на печатной плате, так и на самом компоненте. Загибаем выводы микросхемы – не обязательно все, достаточно двух противоположных. Микросхема зафиксирована и не выпадет. Кроме того, надо учитывать, что микросхемы DD1 и DD2 разные. Правда, в данном случае у микросхем разное количество выводов: у одной – 14, а у другой – 16, поэтому при установке вы сразу поймёте, если что-то делаете неправильно. Но бывает так, что разные микросхемы имеют одинаковые корпуса с одинаковым количеством выводов. Поэтому всегда обращайте внимание на маркировку на корпусах микросхем и информацию в табличке-перечне компонентов инструкции.
Читать также: Фаза и ноль в электрике обозначение
Монтаж перемычки
В некоторых наборах, и в NS073 в частности, требуется такая технологическая операция, как установка перемычки. Перемычка на печатной плате обозначается чертой:
Перемычка не является электронным компонентом и в состав набора не входит. Её можно выполнить как из небольшого обрезка провода, так и из обрезка одного из выводов любой радиодетали. Формуют перемычку так же, как и резистор.
Монтаж светодиодов
Светодиод – это разновидность диода. И он тоже имеет полярность, которую важно соблюдать при монтаже.
На печатной плате обозначен вывод «+» (анод) светодиода.
У самого светодиода вывод «+» (анод) длиннее. Но ориентироваться на этот ключ можно только до обрезки выводов диода. Есть и другая метка полярности – скос на корпусе диода у вывода катода («-»). Монтируем все светодиоды (в наборе NS073 их 20 штук). Загибаем их выводы с обратной стороны платы. Торчащих выводов становится много, плата принимает неаккуратный вид, но не нужно этого бояться, на следующем этапе мы обрежем лишние выводы. Если же выводы очень мешают – можно обрезать некоторые из них или вообще все в процессе монтажа. Как это делать, рассказывается ниже.
Обрезка выводов
Вот такой «ужас» наблюдается у нас с обратной стороны платы после установки всех компонентов.
Сейчас мы приведём плату в аккуратный вид, обрезав выводы (или, как говорится на жаргоне радиомонтажников, «причешем» плату).
Нам потребуются радиотехнические бокорезы (подробнее об этом инструменте описано в уроке №1). Инструмент держим практически перпендикулярно плате. От каждого вывода оставляем около 1-2 мм. Слишком длинный вывод будет некрасиво торчать. Кроме того, длинные выводы разных компонентов могут в процессе последующей пайки замкнуться друг с другом и образовать паразитные перемычки. Слишком коротко обрезанный вывод может привести к выпадению компонента. Желательно, чтобы вывод не выходил за пределы контактной площадки. На картинках ниже излишне длинный вывод и вывод оптимальной длины.
Таким образом. обрезаем все выводы. В итоге у нас получится примерно такая картина:
Плата готова к пайке.
Пайка конструкции
О необходимом для сборки набора паяльном инструменте рассказывается в уроке №1. Кратко напомню: потребуется паяльник (или паяльная станция) и припой с каналом канифоли. Удобно также применять фиксатор платы – так называемую «третью руку».
Плату удобно зафиксировать с помощью специального держателя типа «третья рука», или каким-либо другим образом.
В одну руку (для правшей – в правую) берём паяльник, в другую – пруток припоя. Конечно, паяльник должен быть горячим. Таковым он становится не мгновенно после включения в розетку, а через несколько минут после этого. Если подвести горячее жало к припою, тот начнёт плавиться.
Жало паяльника ставим на точку пайки. Обратите внимание – не на кончик вывода детали, а именно на контактную площадку. Одновременно подаём в эту же точку пруток припоя. Как и жало паяльника, пруток подаём не на кончик вывода, не на паяльник, а на контактную площадку. Припой начинает плавиться. Немного как бы подаём пруток на точку пайки, при этом слегка перемещая паяльник. Всё, у нас сформировалась точка пайки. Убираем припой, а затем паяльник. Ждём секунду – припой застыл, точка пайки готова. На точку пайки уходит 2-3 миллиметра прутка припоя (это очень ориентировочные данные, зависящие от типа припоя и контактной площадки). Процесс идёт гораздо быстрее, чем я об этом рассказываю. На одну точку пайки у меня уходит около секунды. Допустимо – до трёх секунд. Если греть точку пайки дольше, теоретически могут возникнуть проблемы: можно перегреть деталь, или контактная площадка или дорожка могут отклеиться от основы платы. Но на практике это маловероятно. В комплекте Мастер Кит только качественные платы, а компоненты в конструкторах для начинающих не такие «нежные» и прощают многие ошибки, в том числе и перегрев.
Качественная пайка блестит и ровная. Если пайка рыхлая, матовая – значит, вы используете некачественный припой (либо припой без канала канифоли), или паяльник либо недостаточно горячий, либо, что чаще всего бывает, слишком горячий. Я рассказал о технологии пайки, при которой пруток припоя подаётся непосредственно в зону пайки, а жало же используется только как нагреватель. Для современных жал из малообгораемых материалов это единственно правильная техника. Если же вы используете паяльник с обычным медным жалом, можно расплавлять некоторое количество припоя на жале, и переносить жидкий припой в точку пайки на жале, как на лопате. Попробуйте – возможно, так вам будет удобнее. Всё очень просто. Но это как футбол: требуется практика. Можно прочесть многие тома по теории футбола, но это не значит, что вы научитесь в него играть. Практика – это что-то другое и совершенно необходимое.
Промывка платы
Строго говоря, современные флюсы, входящие в состав припоев, допускают безотмывочный процесс. То есть можно плату не промывать. Но такая печатная плата выглядит некрасиво, на ней плохо видны дефекты пайки, да и вообще есть такое понятие – «культура производства», и каждый уважающий себя производитель платы промывает. На производстве применяют специальные отмывочные машины, но тратить несколько тысяч долларов и приобретать такую машину размером с половину комнаты для радиолюбителя нецелесообразно. Хороших результатов можно достичь с помощью спирта, старой зубной щётки и салфеток. Смачивая щётку, хорошенько надраиваем плату со стороны пайки, на заключительно же этапе удобно применять для очистки и просушки платы салфетки. Теперь наша смонтированная плата чистенькая, красивая, её и людям не стыдно показать. После отмывки на плате легче найти дефекты. Поэтому ещё раз внимательно посмотрите на плату и убедитесь, что все контактные площадки хорошо припаяны, а паразитных замыканий нет. При необходимости дефекты устраняем.
Устранение дефектов пайки
На рисунке ниже имеются два дефекта пайки: один из выводов пропаян неполностью, только с одной стороны. Такой контакт ненадёжный (на профессиональном жаргоне это называется «непропай»). Другой же вывод мы просто забыли припаять. Собранная с такими дефектами пайки конструкция может или совсем не заработать, или работать нестабильно.
Исправим дефекты, заново пропаяв обнаруженные проблемные точки пайки.
Иногда в процессе пайки допускаются паразитные соединения припоем соседних выводов:
Если не заметить такие дефекты пайки, то готовая конструкция может не только не заработать, но и вообще выйти из строя сразу же после включения. Поэтому необходимо внимательно проверять монтаж. Допустим, мы обнаружили паразитное замыкание (на радиотехническом жаргоне такой дефект часто называют неблагозвучно – «соплёй»). Я расскажу вам, как восстановить нормальную пайку.
Читать также: Принцип работы жидкостного манометра
1. С помощью ножа (скальпеля). Прогреваем паяльником дефектную пайку, и проводим острым лезвием между точками пайки. Дефект устранён. 2. С помощью специального инструмента – вакуумной помпы, которая по-другому называется «радиотехнический отсос». Прогреваем место пайки, подносим отсос, нажимаем его кнопку – излишки припоя втягиваются в инструмент. Пайка исправлена! 3. С помощью специальной радиотехнической «оплётки». Прогреваем место пайки, вводим в место пайки многожильную медную «оплётку» – под действием сил натяжения лишний припой впитывается на «оплётку». Пайка исправлена!
В следующем уроке я расскажу о том, как настраивать и подключать собранную конструкцию.
Пользоваться паяльником должен уметь каждый мужчина. Сегодня речь пойдет о пайке плат. Паяют платы обычно оловянно-свинцовым припоем, который плавится при температуре 180-200° С. Лучше пользоваться легкоплавким составом Вуда, температура плавления которого составляет 70° С.
Приспособление для выпайки электрорадиоэлементов из печатной платы.
Вместе с припоем используют флюс, защищающий детали от окисления во время пайки. В составе флюса для работы с платами не должно быть кислоты. Самый распространенный флюс — канифоль. Можно натуральную сосновую канифоль измельчить в порошок и растворить в этиловом или борном спирте. Жидкую канифоль наносят на нужные места кисточкой.
Выберите хороший паяльник
И все же без паяльника даже здесь не обойтись. Нужен он будет как для пайки ряда радиодеталей (тиристоров, диодов, светодиодов), так и для удаления излишков припоя. Особенно удобно будет использовать паяльник с наконечником «Микроволна».
Сам наконечник отличается только своей формой: он имеет выемку в форме ложки. Очищенный и обеспеченный канифолью, такой наконечник легко зачерпнет припой там, где имеется его излишек. А паять с его помощью – сплошное удовольствие: необходимое количество металла можно капнуть в место пайки практически с ювелирной точностью.
Будем считать, что с пайкой деталей в печатную плату вы справились. Даем полученной плате остыть и доводим ее до состояния, готового к использованию. С внешней стороны предстоит кусачками отщипнуть торчащие контактные ножки, на место пайки можно нанести специальный защитный слой диэлектрика (делается эта операция крайне редко). Плату можно будет считать готовой. Получается, очень даже недорогой ремонт можно произвести своими руками для любого домашнего радиоустройства.
Стоит напомнить, что при горении канифоли выделяется в большом количестве удушливый газ, который вреден как для глаз, так и для органов дыхания. Пары свинца тоже очень вредны для здоровья. Обычно домашние мастера просто дуют в место пайки, отгоняя едкий дым. Считать достаточной такую защиту не стоит; лучше обеспечьте свое рабочее место хорошей вытяжкой. К рабочему месту можно предъявить и ряд других требований, но они по большей части касаются тех, кто занимается пайкой регулярно.
Подготовка к паянию
Требования к оборудованию для пайки таковы:
Последовательность обслуживания выводов деталей.
- Лучший вариант — паяльная станция. В ее состав входит все необходимое (при стоимости от 800 рублей).
- Мощность обычного паяльника не должна превышать 40 Вт.
- Напряжение питания может быть 12 В, 18 В, 24 В, 220 В. Также бывают газовые инструменты.
- Желательно иметь в комплекте несколько жал разных форм и размеров.
- Очень удобно термостойкое жало.
- Правильный флюс, продающийся в шприцах, обеспечит хорошее качество пайки.
- Припой чаще всего используют в виде проволоки диаметром в 1-5 мм. Наиболее распространен диаметр в 1,5-2 мм.
- Понадобятся в работе нож, небольшие кусачки, пинцет.
Выбор пасты для пайки
Качество любого флюса выражается в том, что при пайке он не выгорает, только едва испаряется, а продукты его разложения легко удаляются растворителем. Лучший флюс – специальные пасты. Мы выбрали топовые наименования, исходя из опыта знакомых мастеров:
- Interflux 2005 и 8300
- Kingbo RMA-218
- Amtech RMA-223
- Флюс-гель Rexant BGA и SMD
На всякий случай держите в уме старые, «дедовские» способы найти флюс и в глухой деревне. Это таблетка аспирина, фруктовый сок, оливковое масло, нашатырь с глицерином, канифоль со спиртом. Наиболее очевидный для сельской местности – смола сосны или ели. Нужно растопить смолу на слабом огне, а потом разлить по спичечным коробкам.
Подготовка паяльника
Совершенно новый паяльник нужно подготовить к работе. При включении обычно сгорают маслянистые вещества с выделением достаточного количества дыма. После выгорания паяльник выключают и остужают. Жало паяльника нужно зачистить напильником. Затем снова его включают в сеть, зачищенное жало опускают в канифоль и прикасаются к припою. Рабочая поверхность должна покрыться ровным серебристым слоем припоя.
Паяльник для работы с платами может иметь мощность от 15 до 30 Вт. Более мощный инструмент применяют для припаивания толстых проводов и крупных радиодеталей. Часто используется паяльник, который называют паяльным карандашом.
Отсос для припоя.
В последние годы в магазинах можно приобрести паяльную станцию. Специалисты отмечают, что работать с таким прибором гораздо проще, чем с обычным паяльником. Такая установка обладает рядом преимуществ:
- Можно с точностью до градуса контролировать рабочую температуру во время проведения пайки.
- С помощью станции можно паять детали из меди, стали, алюминия, полипропилена, пластика и других материалов.
- Станция обладает долговечностью.
Но есть у нее и недостатки, к которым следует отнести довольно высокую стоимость и большие затраты электроэнергии.
Паять платы значительно легче, чем работать с обычными проводами. Детали отлично фиксируются в калиброванных отверстиях. Нет необходимости поддерживать их с помощью тисков, плоскогубцев и других приспособлений.
Инструкция по пайке деталей на плату
Монтаж микросхем и других подобных деталей происходит в несколько приемов:
- Деталь вставляется в приготовленное для нее место.
- Жало разогретого паяльника вместе с припоем подносятся к месту пайки.
- Припой наносится на выводы детали и контакты платы тонким ровным слоем.
- Жало паяльника быстро отводится от места пайки.
Паяльник на 12 Вольт.
Разогретый паяльник жалом должен соприкасаться с самой платой и с контактами детали одновременно. Его нельзя отводить до тех пор, пока место пайки не покроется ровным слоем припоя. На это требуется не более секунды. Навык приходит очень быстро.
Излишки припоя удаляются из зоны пайки очень просто. Нужно взять кусок медной оплетки многожильного провода, поднести конец к месту пайки. Весь припой уйдет в нее. На плате останется только ровный слой, достаточный для удержания детали на месте и для обеспечения электрического контакта.
Как выглядят микротрещины в пайке на печатных платах
Микротрещины в пайке вокруг выводов радиоэлементов при монтаже в отверстие очень хорошо заметны даже невооруженным взглядом. Часто видны также отслоения дорожек от платы.
Микротрещины в пайке вокруг планарных радиоэлементов для поверхностного монтажа видны чаще всего под увеличением в микроскоп под определенным углом отражения света.
Микротрещины в пайке контактов BGA микросхем не видны даже микроскопом. Иногда их можно увидеть с помощью микрозонда с подсветкой. Микрозонд представляет собой световод с линзой на конце. Его помещают в зазор между платой и микросхемой.
Посмотрите видео о визуальных системах контроля качества пайки:
Припаивание к плате SMD деталей
Компоненты SMD являются безвыводными. У них нет традиционных выводов в виде проволочек. С платой эти детали соединяются с помощью контактных площадок, расположенных на корпусе детали. Паяются они с помощью паяльника мощностью в 10-12 Вт, паяльной станцией. Жало обычного паяльника желательно доработать, сделав его раздвоенным или растроенным.
На жало мощного паяльника можно навить медный провод диаметром в 1 мм, сделав из концов провода рабочие жала. Такой инструмент используется для работы со светодиодами и с другими радиоэлементами. Расстояние между жалами можно регулировать. В любой момент такую насадку легко снять и отложить до лучших времен.
Приспособление к паяльнику для пайки мелких деталей.
На платах электронных устройств часто встречаются микросхемы, имеющие корпус SOIC. Их паять и выпаивать лучше всего горячим воздухом с помощью паяльной станции. Но она есть не у всех. Можно воспользоваться паяльником мощностью в 10 Вт. Места, подлежащие пайке, нужно смазать спирто-канифольным жидким флюсом, ножки — прогреть паяльником. Жало должно быть очень тонким. Если расстояние между ножками микросхемы равно 1,25 мм, ширина жала не может быть больше 1 мм.
Транзисторы могут быть в корпусе DPAK. Паять их рекомендуется паяльником мощностью в 40 Вт. Радиодеталь устанавливают на место, пропаивают выводы. Затем прижимают сам транзистор к плате и одновременно прогревают его паяльником. Как только он слегка просядет, пайка закончена.
Как восстановить дорожку на плате без пайки
При отпаивании шлейфа дисплея на телефоне недогрел и 2 площадочки под контакты шлейфа с их тончайшими дорожками оторвал.
Концы дорожек нашел. Ранее восстанавливал дорожки с помощью медной проволоки. Здесь же помимо этого нужно сделать и площадки под припаивание шлейфа на плату.
Как это осуществить?
Чем приклеить, чтобы держалась площадка?
Я уже пробовал немного на конце расплющить залуженную предварительно медную проволоку, капнуть на место бывшей площадочки немножко цапон лака, таким образом приклеив это дело к плате.
Может, есть более удачный способ как это сделать?
По роду своей деятельности мне часто приходится сталкиваться с подобными случаями — отслаиванием токопроводящих дорожек на платах различной аппаратуры. Такое часто случается, если «пироги печет сапожник». Вот и приходится порой подчищать хвосты — приводить платы в подобающий вид. Перепробовал много способов и остановился на совсем неожиданном: выручил авторынок. Там всегда можно приобрести токопроводящий клей для восстановления проводников, которые греют заднее стекло. Клей хорошо держится на плате, имеет низкое сопротивление. К нему можно легко приклеить контактную площадку, а уж к ней припаять все, что нужно.
В этом случае конечно стоит для начала понять, насколько серьезное это повреждение, если контактные площадки уже оторваны, то не думаю, что есть смысл их восстанавливать, особенно если шлейф не вставляется в разъем, а впаивается.
Я обычно в этом случае брал тонкую проволоку, например из кусочков многожильного провода и припаивал эти провода с одной стороны туда, куда они подходили с площадок, а с другой стороны прямо к шлейфу(разумеется если он выдерживает нагрев и не плавится его изоляция от этого).
Потом достаточно будет только приклеить этот участок шлейфа к плате и все будет нормально, но вообще конечно все зависит от конкретной ситуации, где-то можно сделать так, а в некоторых случаях придется придумывать немного иное решение проблемы.
Для тех, кто столкнулся с такой проблемой, скажу, что можно восстановить электрическую проводимость дорожек, но не их серебряное покрытие.
Для лучшего понимания, постараюсь вкратце объяснить принципиальное устройство клавиатуры ноутбука. Основную функцию по передаче информации несут три тонких (порядка 0,3−0,5 мм), гибких листа пластмассы, напоминающие полиэтиленовую пленку.