Все понимают, как можно с помощью обычного паяльника ЭПСН, мощностью 40 ватт, и мультиметра, самостоятельно ремонтировать различную электронную технику, с выводными деталями. Но такие детали сейчас встречаются, в основном только в блоках питания различной техники, и тому подобных силовых платах, где протекают значительные токи, и присутствует высокое напряжение, а все платы управления, сейчас идут на SMD элементной базе.
На плате SMD радиодетали
Так как же быть, если мы не умеем демонтировать и впаивать обратно SMD радиодетали, ведь тогда минимум 70% от возможных ремонтов техники, мы уже самостоятельно не сможем выполнить. Кто нибудь, не очень глубоко знакомый с темой монтажа и демонтажа, возможно скажет, для этого необходимы паяльная станция и паяльный фен, различные насадки и жала к ним, безотмывочный флюс, типа RMA-223, и тому подобное, чего в мастерской домашнего мастера обычно не бывает.
У меня есть дома в наличии, паяльная станция и фен, насадки и жала, флюсы, и припой с флюсом различных диаметров. Но как быть, если тебе вдруг потребуется починить технику, на выезде на заказ, или в гостях у знакомых? А разбирать, и привозить дефектную плату домой, или в мастерскую, где есть в наличии соответствующее паяльное оборудование, неудобно, по тем или иным причинам? Оказывается выход есть, и довольно простой. Что нам для этого потребуется?
Что нужно для хорошей пайки
- 1. Паяльник ЭПСН 25 ватт, с жалом заточенным в иголку, для монтажа новой микросхемы.
- 2. Паяльник ЭПСН 40-65 ватт с жалом заточенным под острый конус, для демонтажа микросхемы, с применением сплава Розе или Вуда. Паяльник, мощностью 40-65 ватт, должен быть включен обязательно через Диммер, устройство для регулирования мощности паяльника. Можно такой как на фото ниже, очень удобно.
- 3. Сплав Розе или Вуда. Откусываем кусочек припоя бокорезами от капельки, и кладем прямо на контакты микросхемы с обоих сторон, в случае если она у нас, например в корпусе Soic-8.
- 4. Демонтажная оплетка. Требуется для того, чтобы удалить остатки припоя с контактов на плате, а также на самой микросхеме, после демонтажа.
- 5. Флюс СКФ (спиртоканифольный флюс, растолченная в порошок, растворенная в 97% спирте, канифоль), либо RMA-223, или подобные флюсы, желательно на основе канифоли.
- 6. Удалитель остатков флюса Flux Off, или 646 растворитель, и маленькая кисточка, с щетиной средней жесткости, которой пользуются обычно в школе, для закрашивания на уроках рисования.
- 7. Трубчатый припой с флюсом, диаметром 0.5 мм, (желательно, но не обязательно такого диаметра).
- 8. Пинцет, желательно загнутый, Г – образной формы.
Частые ошибки при пайке
Неопытные мастера часто допускают следующие ошибки:
- установка коннектора на токоведущие контакты. Это приведёт к плохому соединению;
- работа паяльником, разогретым до 300 °C и выше. Это спровоцирует сжигание токоведущих нитей;
- использование агрессивного раствора приведёт к разъеданию контактов;
- несоблюдение полярности при установке диода на плату.
Чтобы новый диод работал долго и не перегорел, перед установкой на плату с неё следует удалить остатки припоя. Для этого рекомендуется использовать проволочную оплётку от экранированного провода. Допущенные в процессе работы ошибки могут спровоцировать мгновенное перегорание или взрыв лампы при включении.
Распайка планарных деталей
Итак, как происходит сам процесс? Кое-что почитайте тут. Мы откусываем маленькие кусочки припоя (сплава) Розе или Вуда. Наносим наш флюс, обильно, на все контакты микросхемы. Кладем по капельке припоя Розе, с обоих сторон микросхемы, там где расположены контакты. Включаем паяльник, и выставляем с помощью диммера, мощность ориентировочно ватт 30-35, больше не рекомендую, есть риск перегреть микросхему при демонтаже. Проводим жалом нагревшегося паяльника, вдоль всех ножек микросхемы, с обоих сторон.
Демонтаж с помощью сплава Розе
Контакты микросхемы у нас при этом замкнутся, но это не страшно, после того как демонтируем микросхему, мы легко с помощью демонтажной оплетки, уберем излишки припоя с контактов на плате, и с контактов на микросхеме.
Итак, мы взялись за нашу микросхему пинцетом, по краям, там где отсутствуют ножки. Обычно длина микросхемы, там где мы придерживаем ее пинцетом, позволяет одновременно водить жалом паяльника, между кончиками пинцета, попеременно с двух сторон микросхемы, там где расположены контакты, и слегка тянуть ее вверх пинцетом. За счет того что при расплавлении сплава Розе или Вуда, которые имеют очень низкую температуру плавления, (порядка 100 градусов), относительно бессвинцового припоя, и даже обычного ПОС-61, и смещаясь с припоем на контактах, он тем самым снижает общую температуру плавления припоя.
Демонтаж микросхем с помощью оплетки
И таким образом микросхема у нас демонтируется, без опасного для нее перегрева. На плате у нас образуются остатки припоя, сплава Розе и бессвинцового, в виде слипшихся контактов. Для приведения платы в нормальный вид мы берем демонтажную оплетку, если флюс жидкий, можно даже обмакнуть ее кончик в нее, и кладем на образовавшиеся на плате “сопли” из припоя. Затем прогреваем сверху, придавив жалом паяльника, и проводим оплеткой вдоль контактов.
Читать также: Мебельный кондуктор своими руками чертежи с размерами
Выпаивание радиодеталей с оплеткой
Таким образом весь припой с контактов впитывается в оплетку, переходит на нее, и контакты на плате оказываются очищенными полностью от припоя. Затем эту же процедуру, нужно проделать со всеми контактами микросхемы, если мы собираемся запаивать микросхему в другую плату, или в эту же, например после прошивания с помощью программатора, если это микросхема Flash памяти, содержащая прошивку BIOS материнской платы, или монитора, или какой либо другой техники. Эту процедуру, нужно выполнить, чтобы очистить контакты микросхемы от излишков припоя. После этого наносим флюс заново, кладем микросхему на плату, располагаем ее так, чтобы контакты на плате строго соответствовали контактам микросхемы, и еще оставалось немного места на контактах на плате, по краям ножек. С какой целью мы оставляем это место? Чтобы можно было слегка коснувшись контактов, жалом паяльника, припаять их к плате. Затем мы берем паяльник ЭПСН 25 ватт, или подобный маломощный, и касаемся двух ножек микросхемы расположенных по диагонали.
Припаивание SMD радиодеталей паяльником
В итоге микросхема у нас оказывается “прихвачена”, и уже не сдвинется с места, так как расплавившийся припой на контактных площадках, будет держать микросхему. Затем мы берем припой диаметром 0.5 мм, с флюсом внутри, подносим его к каждому контакту микросхемы, и касаемся одновременно кончиком жала паяльника, припоя, и каждого контакта микросхемы. Использовать припой большего диаметра, не рекомендую, есть риск навесить “соплю”. Таким образом, у нас на каждом контакте “осаждается” припой. Повторяем эту процедуру со всеми контактами, и микросхема впаяна на место. При наличии опыта, все эти процедуры реально выполнить за 15-20 минут, а то и за меньшее время. Нам останется только смыть с платы остатки флюса, растворителем 646, или отмывочным средством Flux Off, и плата готова к тестам, после просушивания, а это происходит очень быстро, так как вещества применяемые для смывания, очень летучие. 646 растворитель, в частности, сделан на основе ацетона. Надписи, шелкография на плате, и паяльная маска, при этом не смываются и не растворяются.
Единственное, демонтировать таким образом микросхему в корпусе Soic-16 и более многовыводную, будет проблематично, из-за сложностей с одновременным прогреванием, большого количества ножек. Всем удачной пайки, и поменьше перегретых микросхем! Специально для Радиосхем – AKV.
Устройство любой светодиодной лампы
Любая лампочка такого типа состоит из цоколя с контактами, корпуса и матового светорассеивателя (в современных модификациях — пластикового купола или трубки).
Внутреннее устройство светодиодной лампы:
- платформа с диодами, соединёнными последовательно;
- радиатор теплоотвода, защищающий платформу от перегрева;
- провода, передающие питание («плюс» и «минус»), один из них выведен вниз, на контакт, другой заведён под цоколь;
- драйвер, распрямляющий переменный ток и понижающий напряжение 220 вольт до приемлемого для светодиодов;
- конденсаторы, поглощающие скачки напряжения и защищающие прибор от взрыва и перегорания (обычная ёмкость — 250, идеальная — 800 микрофарад).
Почему не горит лампа
Чаще всего, лампа перестаёт гореть вовсе не из-за тотальной поломки на плате или взрыва конденсатора (что тоже случается), а из-за банального разрыва цепи. Один из диодов на платформе перегорает по той или иной причине. Подсоединены эти элементы последовательно. Соответственно, цепь разрывается, и перестают гореть все диоды. Такой же принцип работы у ёлочных гирлянд. Попробуйте выкрутить один диод, и погаснет вся цепочка.
Взрыв конденсатора — относительно редкая причина. Она характерна для дешёвых марок, где стоят элементы с недостаточной ёмкостью, порядка 200—250 микрофарад.
Как починить
Перегоревший диод обычно заметен сразу: на нём появляется чёрное пятно. Если уверенности нет, лучше проверить каждый элемент. Это делается либо амперметром, либо батарейкой с прикреплёнными к её концам проводками. По очереди замыкается каждый из диодов, пока не определятся неисправные.
Чтобы восстановить цепь, перегоревший диод нужно убрать и замкнуть контур иным способом либо заменить элемент. Запасные диоды нужного образца продаются в радиодеталях, а также на китайских торговых площадках, например «АлиЭкспресс». Ресурс mschistota.ru напоминает, что диоды выпускаются разного качества, и брать их стоит у проверенного продавца.
Рекомендуем: Проблемы с окнами из ПВХ и способы их устранения по гарантии и самостоятельно
Самый вероятный выход — поставить перемычку одним из двух способов:
- припаять короткую и тонкую проволочку, соединив «+» и «–» контактной площадки под удалённым диодом;
- капнуть сначала флюсом, а затем припоем так, чтобы занять края контактной площадки.
Почему нужно паять SMD светодиоды?
При изготовлении светотехнических изделий, в которых применяются светодиоды поверхностного монтажа – пайка SMD светодиодов производится автоматически. Ручная пайка таких светодиодов может потребоваться в нескольких случаях – при ремонте устройств или при их макетировании в процессе проектирования изделия. Иногда паяют вручную при начале мелкосерийного производства новых изделий.
В процессе ручной и механизированной пайки главная проблема при пайке светодиодов на плату – выдержать необходимый температурный режим и не перегреть корпуса светодиодов. Точнее на перегрев плохо реагируют полупроводниковые материалы светоизлучающего кристалла.
Последствием перегрева кристалла может быть ускоренная деградация светодиода, при которой:
- уменьшается яркость свечения светодиода;
- меняется оттенок света;
- светодиод может за считанные недели или даже дни почти погаснуть или физически выгореть от перегрева.
Высокочастотное мерцание светодиодной лампы
Более основательная проблема – мерцание светодиодных ламп во включенном состоянии с частотой 100 Гц (сто раз в секунду). Наши органы зрения не распознают подобную пульсацию, но мозг способен легко воспринимать колебания с максимальной частотой до трёхсот раз в секунду.
Такой свет, установленный в коридоре или ванной комнате, не вызовет проблем. А вот чтение или выполнение точных работ при таком освещении будет вызывать повышенную утомляемость вплоть до головной боли.
Как распознать такую пульсацию, если глаз её не видит? Возьмите шариковую ручку либо простой карандаш и быстро поразмахивайте им перед лампочкой. Если карандаш при быстром движении будет «распадаться» на отдельные фрагменты – пульсация имеется.
Другой способ установления подобной пульсации – взглянуть на лампу через встроенную камеру мобильного телефона.
Наличие темных полос подтверждает высокочастотную пульсацию.
Процедура ручной пайки SMD-светодиодов на плату
Если вы будете ремонтировать светотехническое изделие с SMD-светодиодами, то процедура будет состоять из таких этапов:
- демонтаж светодиода, вышедшего из строя;
- подготовка места пайки нового светодиода;
- установка светодиода на место и его крепление;
- пайка светодиода;
- промывка пайки и ее защита.
Для демонтажа можно использовать обычный маломощный паяльник, например, мощностью 25 Вт. Ему утончают жало до 1 – 2 мм и облуживают кончик.
Если пайки были покрыты защитным лаком, то его или смывают, или аккуратно сдирают небольшую часть скальпелем или монтажным ножом. Очищенное место быстро прогревают жалом паяльника до расплавления припоя и «промокают» его кусочком экранирующей оплетки, снятой с кабеля. Можно для этой цели скрутить в «кисточку» несколько тонких проводков.
Так распаивают и очищают все контакты корпуса светодиода, после чего снимают его с платы. Контактные площадки на плате паяльником очищают от остатков припоя. Новый светодиод устанавливают на его штатное место. Смачивают контактные площадки и контакты SMD-корпуса спирто-канифольным флюсом и пропаивают их.
Делать это нужно быстро, чтобы не была превышена допустимая температура пайки светодиодов.
Полученные пайки должны иметь гладкую блестящую поверхность и полностью покрывать контакт на корпусе и контактную площадку на плате.
После проверки качества пайки они промываются спиртом от остатков флюса. После чего они и корпуса светодиодов защищаются от внешнего воздействия нанесением слоя защитного лака. Так паяют вручную при мелкосерийном производстве.
Читать также: Из чего состоит шуруповерт
Если имеется возможность изготовления трафаретов для нанесения паяльной пасты на контактные площадки на плате, то одному человеку можно делать до 5 и более тысяч паек за смену. Паяльная паста – это смесь флюса и пылеобразного припоя.
В наше время самым распространенным видом освещения является светодиодное. Благодаря огромному количеству преимуществ, такие источники света заняли свое место практически в любой сфере человеческой деятельности.
Без них уже нельзя представить радиоэлектронную технику, современные игрушки и многие другие атрибуты современного общества. Особенно часто в качестве осветительных приборов сегодня используются светодиодные ленты. Поэтому очень важно знать, как паять диоды своими руками, чтобы самостоятельно чинить в быту вышедшие из строя радиоэлектрические детали или их правильно заменить.
Как устроена светодиодная лента
Гибкая основа ленты служит печатной платой с токоведущими нитями для SMD светодиодов. На лицевой поверхности расположен диодный блок. Он сгруппирован по три элемента, включающие диод и ограничительный резистор.
Каждый блок отделяет разметка в виде рисунка ножниц. На этом месте светодиодная лента перерезается, если надо ее укоротить или повернуть при прокладке в другую сторону. Светодиодный блок имеет токоведущие контакты для припаивания проводов или установки соединительных коннекторов.
С тыльной стороны нанесен клеящий слой, закрытый защитной пленкой. Во время монтажа лента просто приклеивается к алюминиевому профилю или на любую чистую поверхность.
Работает лента от постоянного тока напряжением 12 или 24 вольта. Источником служит блок питания. Бывают ленты, рассчитанные на напряжение 36 и 48 вольт, но в быту они редко используются.
Для светодиодных лент применяют одноцветные и трехцветные SMD диоды. Самый распространенный – первый вариант с одним кристаллом. Диоды светятся белым, синим, красным или другим цветом.
Второй вариант – это лампочки с тремя кристаллами. Один RGB диод способен светиться, например, красным, синим и зеленым цветом. Переключение свечения осуществляется контроллером.
Продаются светодиодные ленты рулонами длиной по 5 м. На каждый 1 м может быть припаяно 30, 60 и более лампочек. Для защиты от влаги и механических повреждений производят изделия с силиконовым покрытием.
Вспоминаем курс школьной физики
Для того чтобы паять светодиоды (например, типа SMD), необходимо знать, что обозначают некоторые знаки, нанесенные на схемы. А именно:
- «U». Это буквой на всех электрических схемах обозначают напряжение. Оно измеряется в В (вольтах);
- «I». Под этим обозначением кроется ток. Он измеряется в А (амперах);
- «R». Такая буква означает электрическое сопротивление элементов схемы. Этот показатель измеряется в Ом (омах).
Все перечисленные выше значения отражают закон Ома, который описывается следующей формулой:
Кроме этого необходимо понимать, что под буквой «Р» находится мощность, которая измеряется в Вт (ваттах). Мощность определяется по следующей формуле:
Расшифровку этих значений необходимо обязательно знать для того, чтобы правильно припаять светодиоды в любые схемы и платы.
Как разобрать лампу
Конкретный способ зависит от модели и марки светодиодной лампы, журнал «Мисс Чистота» предлагает ознакомиться с типовыми подходами.
Лампы с цоколем e27 и e14
Если светорассеиватель выполнен из пластика, то процедура не занимает много времени:
Снять светорассеиватель. В случае фиксации шипом — слегка сжать и отделить от корпуса
Если деталь держится силиконовым герметиком (в более дешёвых моделях, в том числе Ecola) — провести скальпелем или канцелярским ножом, подрезая пасту, затем убрать купол. Отпаять, нагрев паяльником, два провода в центре платформы с диодами. Открепить винты либо подрезать силиконовый слой по окружности платформы. Перевернуть лампочку на бок, поддеть ножом заглушку на конце цоколя, вынуть и отложить её. Отогнуть показавшийся провод. Аккуратно потянуть или поддеть ножом и осторожно поднять платформу с диодами. Во многих моделях она слита с радиатором
В других случаях нужно сначала вынуть платформу, а затем поднять радиатор. Вытянуть или отрезать (первый вариант предпочтителен) провод, заведённый под корпус. Извлечь плату с драйвером и конденсаторами.
Чтобы усилить яркость светодиодной лампы, можно попробовать заменить диодную платформу, припаяв провода к пучку диодных лент
При этом важно смазать дно платформы термопастой, а конденсаторы заменить на более ёмкие. Однако ленты, вставленные в пластиковый светорассеиватель, будут его неизбежно перегревать, так что прослужит такая лампа, скорее всего, недолго
Плюс этого метода в том, что отрезки ленты подключаются параллельно, и если одна из них перегорит, остальные продолжат работать.
Лампы с цоколем g13
Главное отличие этих устройств — прямое, а не круговое расположение диодов, в остальном конструкция того же типа. Чтобы разобрать её, нужно:
- Освободить винты либо аккуратно прогреть торцевую заглушку (и силиконовый слой под ней).
- Снять колпачок с контактами, не разрывая провода.
- Если светорассеиватель самостоятельная деталь и крепится на алюминиевой базе, вытянуть его и снять. Если крепление монолитное, то нужно аналогично первому снять второй торцевой контакт.
- Отпаять провода от контактов.
- Вынуть площадку с диодами. Обычно на ней снизу крепятся драйвер и конденсаторы.
Все описанные способы подходят для случаев с пластиковыми светорассеивателями. На рынке всё ещё встречаются светодиодные лампочки со стеклянными корпусами. К сожалению, любая попытка разобрать такую конструкцию почти гарантированно приведёт к поломке: стекло расколется. Чинить подобные устройства опасно, легко порезаться. Поэтому имеет смысл либо заменить их новой лампой, либо попытаться найти пластиковый светорассеиватель и поставить на старый корпус.
Рекомендуем: Нюансы выбора плиточного клея для теплого пола
Каким образом подключаются диоды
Прежде чем приступать к пайке светодиодов (например, типа SMD), необходимо знать, каким образом они подключаются к схеме или последовательно друг к другу (если речь идет о светодиодных лентах).
Обратите внимание! Светодиоды, чаще всего, подключатся в сеть с напряжением в 12 или 9 В. Но обычно приборы рассчитаны на уровень потребляемого тока в 0,02 А (20 мА).
Идеальным вариантом для светодиодов является подключение их через стабилизатор тока. При этом следует помнить, что такие стабилизаторы обойдутся несколько дороже, чем единичные светодиоды (например, типа SMD). Это нужно учитывать, при самостоятельной сборке радиоэлектрических приборов.
Для того чтобы запитать светодиоды желтого и красного свечения, зачастую необходимо напряжение в 2,0 В. В то же время для питания светодиодов синего, зеленого и белого цветов — 3,0 В. Разобраться в этом вопросе поможет следующий пример:
- в наличии имеется батарея на 12 В, а также светодиоды на 0,02 А и 2,0 В;
- самым простым решением здесь будет подача напряжения в 2,0 В на каждый диод;
- при этом лишние 10 В необходимо будет погасить при помощи резистора. Его еще часто называют сопротивлением;
- используя закон Ома, вычисляем величину сопротивления (R = U/I). В результате получаем R = 10,0/0,02 = 500 Ом;
- также, чтобы уберечь сопротивление от лишнего тепла, необходимо провести расчеты его мощности. В результате получится Р = 10,0 * 0,02 А = 0,2 Вт.
Для большей надежности необходимо брать сопротивление немного большей емкости. Обратите внимание! При увеличении мощности сопротивления естественным образом увеличатся его габаритные размеры. Зная вышеприведенные аспекты, вы сможете правильно подключить светодиоды к батарее, используя для этого резистор. Главное здесь точно соблюдать полярность используемых деталей.
Параллельное соединение светодиодов
Подключение одного светодиода никогда не создаст больших проблем. Что делать, если необходимо запитать два, три, четыре и более светодиодов? Верно. Нужно собрать LEDs в строку ( цепочку ). Соединения могут быть нескольких типов: параллельное соединение светодиодов, последовательное и параллельно-последовательное. Напишу несколько слов об этих соединениях. Авось кому-нибудь пригодится.
Для тех, кто еще не знает — самым оптимальным является последовательное соединение светодиодов. В этом случае ток на каждом LED, соединенном последовательно, будет одинаковым. Такое соединение нам позволяет легко контролировать токи.
Однако, не смотря на это, существуют источники питания, мощность которого не позволит запитать последовательные светодиоды. В этом случае нам и поможет параллельное соединение светодиодных источников.
Параллельное соединение светодиодов не правильное
Повторюсь еще раз — параллельное соединение светодиодов используют только тогда, когда источник питания низковольтный.
Не смотря на то, что такой тип соединения не очень приветствуется, его частенько используют. В таких типах соединений есть одно правило — параллельное соединение светодиодов никогда не происходит с использованием ТОЛЬКО ОДНОГО резистора!!!
Ну или для тех, кто понимает только визуальные картинки, то не правильное параллельное соединение будет выглядеть так:
Естественно, возникает вопрос — ПОЧЕМУ нельзя соединять так? А дело тут простое…
Расчет сопротивления при параллельном соединении светодиодов
Рассмотрим параллельное соединение светодиодов на примере двух источников питания. Данные будут получены из расчета удвоенного значения потребляемого тока. Т.е. ограничивающий резистор имеет в двое меньшее сопротивление, нежели. если бы мы запитывали один светодиод. В любом случае стоит помнить, что двух одинаковых LED не бывает, не смотря даже на то, если они выпущены одним заводом и из одной партии.
Все диоды имеют разброс по потребляемому току, внутреннему сопротивлению. Кристалл с меньшим сопротивлением возьмет больше тока. Таким образом возникнет некий перекос. Это можно определить визуально. С большим потреблением диод буде светиться сильнее, с меньшим слабее.
Если диоды из одной партии, то перекос не будет сильно заметен, а если LEDs еще и от разных производителей, то вполне возможна ситуация когда диод перегорит.
Вернемся «к нашим баранам»… Резистор рассчитывается на двойное потребление тока, а следовательно при перегорании одного — второй получает удвоенное напряжение и удвоенный ток. Это тоже критично. Данное правило справедливо не только для параллельного соединения двух светодиодов, но также и для большего количества с одним резистором. При перегорании одного, остальные выйдут из строя в самые короткие сроки, из-за пропорционально растущего напряжения и тока.
Правильное параллельное соединение светодиодов
На картинке показано правильное параллельное соединение светодиодов. От варианта с одним резистором, данный способ отличается тем, что каждый диод соединяют в параллель через свой резистор. Такое соединение не позволит появиться перекосу. Даже, если по каким-то причинам светодиод перегорит, второй не получит увеличенного напряжения.
Плюсы и минусы параллельного соединения светодиодов
Большим плюсом параллельного соединения стоит отметить, что в случае правильного соединения светодиодов при перегорании одного из них, остальные будут работать. При последовательном соединении светодиодов выход из строя одного из них приведет к тому, что строка из последовательно соединенных чипов перестанет светиться.
Минусом параллельного соединения светодиодов отметим — удорожание конструкции, за счет того, что в цепи появляются новые элементы. В результате конечный продукт может оказаться достаточно громоздким.
Стоит представить себе елочную гирлянду с таким соединением диодов… Для ее работоспособности придется соединять еще один проводник к паре светодиод-резистор. Поэтому 99,9 % всех гирлянд собраны из последовательно соединенных светодиодов.
Что необходимо для работы
Многие любители радиоэлектроники, практикующие самостоятельную сборку различных приборов, интересуются возможностью самостоятельной пайки светодиодов (например, типа SMD) для схем. При наличии должных инструментов, а также знаний, самостоятельное создание таких схем вполне возможно. Для такого вида работ вам понадобятся:
- тестер;
- калькулятор;
- медицинский пинцет (необязательно, но рекомендуется);
- паяльник.
Обратите внимание! При работе со светодиодами, особенно при их проверке, нужно следить за тем, чтобы не направлять луч, идущий от этих элементов, себе в глаза.
Как видим, набор инструментов здесь невелик и легко найдется в любом доме. С таким набором вы сможете правильно припаять диоды, как в схеме, так и последовательно в составе светодиодной ленты.
Lukey 702 – бюджетный вариант
Паяльный фен, входящий в состав одноимённой станции, укомплектованной классическим паяльником и блоком управления. Предусмотрена плавная регулировка массовым потоком воздуха. Имеется функция выставки необходимой температуры.
Расположение компрессора турбинного типа в рукоятке позволило сэкономить место, уменьшить габаритные размера аппарата, улучшить внутреннюю термодинамику. Значительно снижен звук, производимый нагнетателем. «Спящий» режим включается автоматически, при расположении устройства на подставке.
Плюсы:
- Широкий функционал, наличие типового паяльника.
- Производительность, температурный диапазон.
- Цена для таких технических возможностей.
Минусы:
Подвирает с температурой, необходимо калибровать. На первый взгляд, конструкция хлипковата.
Строение диодных элементов и как их паять
Стандартный светодиод представляет собой стеклянную колбу с примерным диаметром в 5 мм, к которой прикреплен ножки-выводы.
Внешний вид диода
Короткая ножка представляет собой минусовый вывод, а длинная – плюсовой. Если их перепутать при пайке, то светодиод не загорится. Процесс пайки таких элементов имеет следующий алгоритм:
- каждый диод размещаем в своем месте;
- места пайки следует обработать обычным оловом, флюсом;
- после этого прикладываем к ним на пару секунд паяльник;
- после этого остатки ножек можно просто откусить.
После того как вы припаяли все светодиоды к схеме, необходимо проверить дело рук своих. Для этого их следует подсоединить к питанию. Если все диоды светятся, это означает, что вы все сделали правильно. Кроме этого есть светодиоды, которые для удобства работы с ними, выпускаются в виде специальных лент. Их можно нарезать и соединять друг с другом, что дает возможность использовать их для подсветки помещений, витрин и т.д.
Читать также: Сопротивление в сети 220 вольт
Места для разрезания led ленты и пайки проводов
Резать такую ленту нужно только в соответствующих местах. Если разрезать в другом месте, то вы просто испортите изделие, повредив соединение светодиодов. Спаивать такие кусочки нужно с помощью специальных контактных площадок, которыми заканчиваются эти участки.
Обратите внимание! Паять светодиодные ленты можно при помощи паяльника с мощностью в 40 В.
В качестве флюса здесь стоит использовать специальный раствор, который имеет вид геля. Помните, что концы проводов в данной ситуации стоит хорошо залудить. Также моно использовать специальные приспособления для создания контактов между кусками светодиодной ленты – коннекторы. Но они стоят достаточно дорого, поэтому редко применяются.
Как припаять резистор к светодиоду
Если в вашей схеме не предусмотрено ограничение тока так называемым драйвером, то можно по-старинке воспользоваться резисторами.
Подключать напрямую в сеть светодиоды нельзя, так как кроме повышенного тока, он еще и переменный. Резистор и драйвер преобразуют ток в постоянный.
Каждому светодиоду в идеале нужен отдельный резистор. Это если диодов немного. Если их, например, сотня, как в некоторых гирляндах, или пусть даже пару десятков, придется приобрести драйвер.
Если сталкиваетесь с понятиями «резистор» и «драйвер» впервые, мы подобрали наглядные инструкции:
Резистор нужно подключать в схеме после питания и до светодиода. Паяется он просто. В главе «Особенности пайки» мы оставили видео, как паять любой контакт (см.выше). Никаких особенностей здесь нет. Единственное, в чем можно сомневаться – это выбор флюса, то есть вещества, которое очищает поверхность контакта от оксидной и/или жировой пленки. Как вариант – специальная паста.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Как правильно паять SMD компоненты – список инструментов и принцип пайки Это ухудшает дизайнерский замысел, влияет на интерьер, несколько изменяет теплообмен, что незначительно сказывается на ресурсе отремонтированного светильника. Спрашивайте, я на связи!
Особенности пайки
После того, как мы освежили школьные знания и азы подключения светодиодных элементов, а также нашли все необходимые инструменты, можно приступать к непосредственной работе с деталями. Светодиоды можно подключать последовательно. Здесь важно знать, как это следует делать правильно.
Обратите внимание! Для того чтобы последовательно припаять диоды, следует подбирать их с одинаковыми параметрами.
Получившиеся цепочки светодиодов можно использовать в самых различных приборах и назначениях. Наиболее часто с их помощью организуют различного рода подсветки (открытые или закрытые) помещений, а также транспортных средств. При установке таких цепочек следует помнить о том, что напряжение в электросети автомобиля будет выше, чем 12 В (14-14,5 В). Для сети питания машины не характерно постоянство напряжение. Чтобы подавить возможные помехи, нужны специальные стабилизаторы напряжения.
Самостоятельный сбор стабилизаторов напряжения возможен на основе микросхем КРЕН8А и К142ЕН8А для сети 9 В. Микросхемы КРЕН8Б и К142ЕН8Б подойдут для сети напряжения в 12 В. Для припайки данного элемента подойдет малогабаритный паяльник. Его жало должно нагреваться до 260 градусов.
Обратите внимание! Длительность процесса пайки на каждую точку должна составлять 3-5 секунд.
Что сама пайка прошла правильно, необходимо знать следующие правила и рекомендации:
- при отсутствии даже минимального опыта пайки необходимо предварительно потренироваться. Иначе велик риск того, что светодиоды не будут работать или вообще испортятся. Для повышения своих навыков следует использовать провода с разным сечением;
- обязательно необходимо использовать стандартный оловянно-свинцовый припой, флюс для алюминия;
Флюс для алюминия
- провода, которые не были покрыты окислами, необходимо сразу же после оголения лудить. Для этого нужно взять небольшое количество припоя и разогреть его на жале паяльника. Затем касаемся им канифоли и проводим по оголенным участкам проводов. В результате таких манипуляций припой растечется тонкой пленкой;
- иногда лужение не допускается. Тогда провод следует положить на таблетку аспирина и нагреть паяльником. Нагревание длится 3-5 секунд.
Процесс пайки светодиодов
Зная эти правила, вы сможете правильно спаять светодиоды последовательно.
Основные принципы пайки и распространенные ошибки
Процесс пайки SMD светодиодов состоит в нанесении тонкого слоя припоя (легкоплавкого оловянно-свинцового сплава с различными добавками) одновременно на контакты присоединяемой детали и токоведущих дорожек печатной платы. Используются физические процессы:
- смачивание металлов расплавом;
- капиллярное пропитывание мелких зазоров между контактами, обеспечивающее соединение как в механическом, так и в электрическом отношении.
Для того, чтобы паять диоды SMD, необходимо использовать специальный паяльник с малой мощностью и ограничивать время контакта ЛЕД прибора с горячим рабочим органом. Специалисты рекомендуют не превышать 3-5 секунд. Распространенной ошибкой является использование паяльников с тонким жалом. Это снижает эффективность теплопередачи и не позволяет качественно нагреть контакты и дорожки печатной платы.
Опытные люди рекомендуют пользоваться нормальным жалом, сточенным под углом. Большая масса обеспечит быстрый прогрев площадок и расплав припоя, исключая перегрев светодиода. Жидкий припой под действием эффектов смачивания и капиллярного впитывания затекает в мельчайшие зазоры между ножками элемента и дорожкой печатной платы, после чего горячий паяльник убирают в сторону. Припой застывает и создает монолитный участок прочного соединения деталей.
Вторая ошибка, приводящая к выходу светодиода из строя — перегрев. Чрезмерно долгое прикосновение паяльника к ножкам ЛЕД элемента приводит к повышению температуры излучающего кристалла. Если постоянно не контролировать длительность прикосновения жала к детали, избежать чрезмерного нагрева не удастся.
Другой вариант пайки
Кроме обычных светодиодов, существуют чипы, которые монтируются в светодиодные ленты. Наиболее часто встречаемыми на сегодняшний день являются светодиоды типа SMD.
Этот элемент электросхемы представляет собой безвыводной компонент. SMD не имеет традиционных проволочных выводов из меди. Поэтому такие элементы соединяются с помощью дорожек печатной платы. Для соединения SMD диода с платой также используется пайка. К ним необходимо припаять дорожки путей и контактные площадки. Запаять такой компонент схемы несложно, поскольку для этого можно использовать маломощный тип паяльника на 10-12 Вт. Поэтому можно вполне удобно и быстро спаять каждый последовательно расположенные контакт в отдельности.
Бывают ситуации, когда необходимо выпаять SMD-компоненты для их замены или проверки. В такой ситуации, чтобы не допустить перегрева элемента, нужно прогревать все его выводы одновременно. Если такая потребность с SMD-компонентами случается часто, тогда имеет смысл приобрести специальный набор жал для паяльника. Эти жала должны иметь два или три маленьких разветвленных окончания. С ними очень легко работать с SMD, так как риск их повреждения минимизируется даже в тогда, когда они приклеены к печатной плате. Иногда невозможно использовать маломощный паяльник. Тогда, чтобы не повредить элемент во время пайки, к жалу мощного паяльника следует навить медный провод с диаметром в один миллиметр.
Навитый на жало провод
С такой самодельной насадкой будет достаточно легко обходиться и мощным паяльником при работе с SMD светодиодами.
Пайка в заводских условиях
Заводская пайка SMD-деталей
Для того чтобы своими руками выполнять работы по впаиванию SMD-компонентов, понадобится наличие определенных инструментов и расходных материалов, к которым можно отнести следующие:
- паяльник для пайки SMD-контактов;
- пинцет и бокорезы;
- шило или игла с острым концом;
- припой;
- увеличительное стекло или лупа, которые необходимы при работе с очень мелкими деталями;
- нейтральный жидкий флюс безотмывочного типа;
- шприц, с помощью которого можно наносить флюс;
- при отсутствии последнего материала можно обойтись спиртовым раствором канифоли;
- для удобства паяния мастера пользуются специальным паяльным феном.
Припой для пайки
Использование паяльника на 220 В приведет к не лучшим последствиям. Это связано с высокой температурой нагрева его жала, под действием которой жидкий флюс быстро улетучивается и не позволяет эффективно смачивать детали припоем.
Специалисты не советуют пользоваться паяльником с конусным жалом, так как припой трудно наносить на детали и тратится уйма времени. Наиболее эффективным считается жало под названием «Микроволна». Очевидным его преимуществом является небольшое отверстие на срезе для более удобного захвата припоя в нужном количестве. Еще с таким жалом на паяльнике удобно собирать излишки пайки.
Использовать припой можно любой, но лучше применять тонкую проволочку, с помощью которой комфортно дозировать количество используемого материала. Паяемая деталь при помощи такой проволочки будет лучше обработана за счет более удобного доступа к ней.
Почему при ремонте Led светильника 220 В необходимо учитывать температурные условия его эксплуатации
• led datasheet 10W / Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 1.82 MB, скачан:888 раз./
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Как починить Дорогостоящий ремонт светодиодных светильников в некоторых ситуациях можно выполнить самостоятельно, в домашних условиях, что мы и рассмотрим далее. Спрашивайте, я на связи!
Последовательное подключение
При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.
Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).
Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:
Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!
Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.
Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.
Вот пример готового устройства:
Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.
И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.
Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.
Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:
Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.
Основные теоретические вопросы
Вольт-амперная характеристика (сокр. ВАХ) – это график отображающий зависимость величины тока протекающего через любой прибор от напряжения, приложенного к нему. Простая и очень ёмкая характеристика для анализа нелинейных компонентов. С её помощью можно выбрать режимы работы, и определить характеристики источника питания для прибора.
Взгляните на пример линейной и нелинейной ВАХ.
График под номером 1 на рисунке отображает линейную зависимость тока от напряжения, такую имеют все приборы резистивного характера, например:
- Лампа накаливания;
- обогреватель;
- резистор (сопротивление);
График номер 2 – это ВАХ характерная для p-n переходов диодов, транзисторов и диодов.