Схемы тиристорных и симисторных регуляторов. Регулятор мощности тиристорный, напряжение и схемы своими руками


Некоторые нюансы выбора

Сделать тиристорный регулятор напряжения своими руками несложно. Это может быть первой поделкой начинающего радиолюбителя, которая сможет обеспечить регулировку температуры жала паяльника. К тому же паяльники с возможностью регулировки температуры заводского производства стоят дороже простых моделей без такой возможности. Поэтому можно ознакомиться с основами пайки и радиоконструирования, а также сэкономить немалую сумму. С помощью небольшого количества комплектующих можно собрать простой тиристор с навесным монтажом.

Навесной тип монтажа осуществляется без необходимости использования специальной печатной платы. С хорошими умениями в этой области можно таким способом собрать простые схемы достаточно быстро.

Можно сэкономить время и установить на паяльник готовый тиристор. Но если есть желание разобраться в схеме полностью, то тиристорный регулятор мощности придётся сделать своими руками.

Важно! Такое устройство, как тиристор, является регулятором общей мощности. Кроме этого, применяется для регулировки числа оборотов различного оборудования.

Но в первую очередь требуется понять общий принцип работы устройства, разобраться с его схемой. Это даст возможность правильно рассчитать необходимую мощность для оптимальной работы оборудования, на котором оно будет выполнять свои прямые обязанности.

Типы переменных резисторов

Проволочный

Состоит из трубчатого пластмассового или керамического каркаса, на который в виде однослойной обмотки уложена тонкая проволока с высоким сопротивлением (манганиновая или константановая).

По поверхности проволоки скользит металлический ползунок, который при перемещении касается следующего витка обмотки раньше, чем сойдет с предыдущего – этим обеспечивается плавность регулировки.

Для надежности контакта ползунка и токопроводящего слоя поверхность проволоки тщательно полируется.

Тонкопленочный

Состоит из каркаса в виде подковообразной диэлектрической пластины, покрытой тонкой пленкой, изготовленной из углерода, бора, металлизированных или композиционных материалов. По поверхности пленки скользит ползунок, прочно связанный с регулировочным механизмом.

Конструктивные особенности

Тиристор — это полупроводниковый элемент, которым можно управлять. Он может очень быстро при необходимости провести ток в одном направлении. В отличие от классических диодов с помощью тиристора выполняется регулировка момента подачи напряжения.

Он имеет сразу три элемента для вывода тока:

  • катод;
  • анод;
  • управляемый электрод.

Работать такой элемент будет только при соблюдении определённых условий. Во-первых, он должен размещаться в схеме под общим напряжением. Во-вторых, на управляющую часть электрода должен быть подан необходимый кратковременный импульс. Это позволит регулировать мощность прибора в нужном направлении. Можно будет выключать устройство, включать его и изменять режимы работы. В отличие от транзистора тиристор не требует удержания управляющего сигнала.

Применять тиристор в целях обеспечения постоянного тока является нецелесообразным, поскольку тиристор легко закрыть, если перекрыть поступление в него тока по цепи. А для переменного тока в таких устройствах, как тиристорный регулятор, применение тиристора обязательно, поскольку схема выполнена таким методом, чтобы полностью обеспечивать необходимое закрывание полупроводникового элемента. Любая полуволна способна полностью закрыть отдел тиристора в случае такой потребности.

Схему начинающим довольно сложно понять, но воспользовавшись инструкциями от специалистов, они значительно упростят себе процесс создания.

Принципиальная схема

При питании мощных нагрузок постоянным током часто применяется схема (рис.1) выпрямителя на четырех силовых вентилях. Переменное напряжение подводится к одной диагонали «моста», выходное постоянное (пульсирующее) напряжение снимается с другой диагонали. В каждом полупериоде работает одна пара диодов (VD1-VD4 или VD2-VD3).

Это свойство выпрямительного «моста» существенно: суммарная величина выпрямленного тока может достигать удвоенной величины предельного тока для каждого диода. Предельное напряжение диода не должно быть ниже амплитудного входного напряжения.

Поскольку класс напряжения силовых вентилей доходит до четырнадцатого (1400 В), с этим для бытовой электросети проблем нет. Существующий запас по обратному напряжению позволяет использовать вентили с некоторым перегревом, с малыми радиаторами (не злоупотреблять!).

Рис. 1. Схема выпрямителя на четырех силовых вентилях.

Внимание! Силовые диоды с маркировкой «В» проводят ток, «подобно» диодам Д226 (от гибкого вывода к корпусу), диоды с маркировкой «ВЛ» – от корпуса к гибкому выводу.

Использование вентилей различной проводимости позволяет выполнить монтаж всего на двух двойных радиаторах. Если же с корпусом устройства соединить «корпуса» вентилей «ВЛ» (выход «минус»), то останется изолировать всего один радиатор, на котором установлены диоды с маркировкой «В». Такая схема проста в монтаже и «наладке», но возникают трудности, если приходится регулировать ток нагрузки.

Если со сварочным процессом все понятно (присоединять «балласт»), то с пусковым устройством возникают огромные проблемы. После пуска двигателя огромный ток не нужен и вреден, поэтому необходимо его быстро отключить, так как каждое промедление укорачивает срок службы батареи (нередко батареи взрываются!).

Очень удобна для практического исполнения схема, показанная на рис.2, в которой функции регулирования тока выполняют тиристоры VS1, VS2, в этот же выпрямительный мост включены силовые вентили VD1, VD2. Монтаж облегчается тем, что каждая пара «диод-тиристор» крепится на своем радиаторе. Радиаторы можно применить стандартные (промышленного изготовления).

Другой путь – самостоятельное изготовление радиаторов из меди, алюминия толщиной свыше 10 мм. Для подбора размеров радиаторов необходимо собрать макет устройства и «погонять» его в тяжелом режиме. Неплохо, если после 15-минутной нагрузки корпуса тиристоров и диодов не будут «обжигать» руку (напряжение в этот момент отключить!).

Корпус устройства необходимо выполнить так, чтобы обеспечивалась хорошая циркуляция нагретого устройством воздуха. Не помешает установка вентилятора, который «помогает» прогонять воздух снизу вверх. Удобны вентиляторы, устанавливаемые в стойках с компьютерными платами либо в «советских» игровых автоматах.

Рис. 2. Схема регулятора тока на тиристорах.

Возможно выполнение схемы регулируемого выпрямителя полностью на тиристорах (рис.3). Нижняя (по схеме) пара тиристоров VS3, VS4 запускается импульсами от блока управления.

Импульсы приходят одновременно на управляющие электроды обоих тиристоров. Такое построение схемы «диссонирует» с принципами надежности, но время подтвердило работоспособность схемы («сжечь» тиристоры бытовая электросеть не может, поскольку они выдерживают импульсный ток 1600 А).

Тиристор VS1 (VS2) включен как диод – при положительном напряжении на аноде тиристора через диод VD1 (или VD2) и резистор R1 (или R2) на управляющий электрод тиристора будет подан отпирающий ток. Уже при напряжении в несколько вольт тиристор откроется и до окончания полуволны тока будет проводить ток.

Второй тиристор, на аноде которого было отрицательное напряжение, не будет запускаться (это и не нужно). На тиристоры VS3 и VS4 из схемы управления приходит импульс тока. Величина среднего тока в нагрузке зависит от моментов открывания тиристоров – чем раньше приходит открывающий импульс, тем большую часть периода соответствующий тиристор будет открыт.

Рис. 3. Схемы регулируемого выпрямителя полностью на тиристорах.

Открывание тиристоров VS1, VS2 через резисторы несколько «притупляет» схему: при низких входных напряжениях угол открытого состояния тиристоров оказывается малым – в нагрузку проходит заметно меньший ток, чем в схеме с диодами (рис.2).

Таким образом, данная схема вполне пригодна для регулировки сварочного тока по «вторичке» и выпрямления сетевого напряжения, где потеря нескольких вольт несущественна.

Эффективно использовать тиристорный мост для регулирования тока в широком диапазоне питающих напряжений позволяет схема, показанная на рис.4,

Устройство состоит из трех блоков:

  1. силового;
  2. схемы фазоимпульсного регулирования;
  3. двухпредельного вольтметра.

Трансформатор Т1 мощностью 20 Вт обеспечивает питание блока управления тиристорами VS3 и VS4 и открывание «диодов» VS1 и VS2. Открывание тиристоров внешним блоком питания эффективно при низком (автомобильном) напряжении в силовой цепи, а также при питании индуктивной нагрузки.

Рис. 4. Тиристорный мост для регулировки тока в широком диапазоне.

Рис. 5. Принципиальная схема блока управления тиристорами.

Открывающие импульсы тока с 5-вольтовых обмоток трансформатора подводятся в противофазе к управляющим электродам VS1, VS2. Диоды VD1, VD2 пропускают к управляющим электродам только положительные полуволны тока.

Если фазировка открывающих импульсов «подходит», то тиристорный выпрямительный мост будет работать, иначе тока в нагрузке не будет.

Этот недостаток схемы легко устраним: достаточно повернуть наоборот сетевую вилку питания Т1 (и пометить краской, как нужно подключать вилки и клеммы устройств в сеть переменного тока). При использовании схемы в пуско-зарядном устройстве заметно увеличение отдаваемого тока по сравнению со схемой рис.3.

Очень выгодно наличие слаботочной цепи (сетевого трансформатора Т1). Разрывание тока выключателем S1 полностью обесточивает нагрузку. Таким образом, прервать пусковой ток можно маленьким концевым выключателем, автоматическим выключателем или слаботочным реле (добавив узел автоматического отключения).

Читать также: Глубина пропила болгарки 150

Это очень существенный момент, поскольку разрывать сильноточные цепи, требующие для прохождения тока хорошего контакта, намного труднее. Мы не случайно вспомнили о фазировке трансформатора Т1. Если бы регулятор тока был «встроен» в зарядно-пусковое устройство или в схему сварочного аппарата, то проблема фазировки была бы решена в момент наладки основного устройства.

Наше устройство специально выполнено широкопрофильным (как пользование пусковым устройством определяется сезоном года, так и сварочные работы приходится вести нерегулярно). Приходится управлять режимом работы мощной электродрели и питать нихромовые обогреватели.

На рис.5 показана схема блока управления тиристорами. Выпрямительный мостик VD1 подает в схему пульсирующее напряжение от 0 до 20 В. Это напряжение через диод VD2 подводится к конденсатору С1, обеспечивается постоянное напряжение питания мощного транзисторного «ключа» на VT2, VT3.

Пульсирующее напряжение через резистор R1 подводится к параллельно соединенным резистору R2 и стабилитрону VD6. Резистор «привязывает» потенциал точки «А» (рис.6) к нулевому, а стабилитрон ограничивает вершины импульсов на уровне порога стабилизации. Ограниченные импульсы напряжения заряжают конденсатор С2 для питания микросхемы DD1.

Эти же импульсы напряжения воздействуют на вход логического элемента. При некотором пороге напряжения логический элемент переключается. С учетом инвертирования сигнала на выходе логического элемента (точка «В») импульсы напряжения будут кратковременными -около момента нулевого входного напряжения.

Рис. 6. Диаграмма импульсов.

Следующий элемент логики инвертирует напряжение «В», поэтому импульсы напряжения «С» имеют значительно большую длительность. Пока действует импульс напряжения «С», через резисторы R3 и R4 происходит заряд конденсатора C3.

Экспоненциально нарастающее напряжение в точке «Е», в момент перехода через логический порог, «переключает» логический элемент. После инвертирования вторым логическим элементом высокому входному напряжению точки «Е» соответствует высокое логическое напряжение в точке «F».

Двум различным величинам сопротивления R4 соответствуют две осциллограммы в точке «Е»:

  • меньшее сопротивление R4 – большая крутизна – Е1;
  • большее сопротивление R4 – меньшая крутизна – Е2.

Следует обратить внимание также на питание базы транзистора VT1 сигналом «В», во время снижения входного напряжения до нуля транзистор VT1 открывается до насыщения, коллекторный переход транзистора разряжает конденсатор С3 (происходит подготовка к зарядке в следующем полупериоде напряжения). Таким образом, логический высокий уровень появляется в точке «F» раньше или позже, в зависимости от сопротивления R4:

  • меньшее сопротивление R4 – раньше появляется импульс – F1;
  • большее сопротивление R4 – позже появляется импульс – F2.

Усилитель на транзисторах VT2 и VT3 «повторяет» логические сигналы -точка «G». Осциллограммы в этой точке повторяют F1 и F2, но величина напряжения достигает 20 В.

Через разделительные диоды VD4, VD5 и ограничительные резисторы R9 R10 импульсы тока воздействуют на управляющие электроды тиристоров VS3 VS4 (рис.4). Один из тиристоров открывается, и на выход блока проходит импульс выпрямленного напряжения.

Меньшему значению сопротивления R4 соответствует большая часть полупериода синусоиды – H1, большему – меньшая часть полупериода синусоиды – H2 (рис.4). В конце полупериода ток прекращается, и все тиристоры закрываются.

Рис. 7. Схема автоматического двухпредельного вольтметра.

Таким образом, различным величинам сопротивления R4 соответствует различная длительность «отрезков» синусоидального напряжения на нагрузке. Выходную мощность можно регулировать практически от 0 до 100%. Стабильность работы устройства определяется применением «логики» – пороги переключения элементов стабильны.

Области и цели использования

Для начала нужно понять, в каких целях используется такое устройство как тиристорный регулятор мощности. Применяются регуляторы мощности практически во всех строительных и столярных электрических инструментах. Кроме этого, в кухонной технике без них тоже никак. Они позволяют, к примеру, регулировать режимы скорости кухонного комбайна или блендера, скорость нагнетания воздуха феном, а также функционируют для обеспечения выполнения других не менее важных задач. Полупроводниковый элемент позволяет более эффективно регулировать мощность нагревательных приборов, то есть их основной части.

Если использовать тиристоры в схеме с высокоиндуктивной нагрузкой, то они могут просто не закрыться в нужный момент, что приведёт к выходу из строя оборудования. Многие пользователи видели или даже самостоятельно пользовались такими устройствами, как болгарки, шлифовальные машины или дрели. Можно заметить, что главным образом регулировка мощности осуществляется при помощи нажатия кнопки. Эта кнопка и находится в общем блоке с тиристорным регулятором мощности, который изменяет обороты двигателя.

Важно! Тиристорный регулятор не может менять обороты автоматически в асинхронных двигателях. А вот в коллекторном двигателе, оборудованном специальным щелочным узлом, работать регулировка будет корректно и полноценно.

Мощный электронный стабилизатор

Одним из лидеров в производстве энергетических систем является , она применяет в своих разработках инновационные технологии, что позволяет свести до минимума некоторые недостатки тиристорных стабилизаторов напряжения.

Однофазный тиристорный стабилизатор «Энергия Classic 12 000» представляет собой современное и надёжное устройство с высокими параметрами. Устройство работает в интервале входных напряжений от 125 до 254 вольт. Предельно допустимые величины могут составлять 60 вольт по минимуму и 265 вольт по максимуму. Стабилизатор имеет переключающую схему на 12 ступеней, выполненную на мощных тиристорах. Время переключения не превышает 20 мс.

Стабилизатор имеет защиту от пониженного напряжения, повышенного напряжения и перегрузки. При температуре силового трансформатора свыше 120°C так же срабатывает защита и стабилизатор отключается. Допустимая кратковременная перегрузка до 180%, может составлять 0,3 секунды. Входной фильтр подавляет все виды высокочастотных и импульсных помех. При питании нагрузки с нормальным напряжением сети используется система «байпас». Данный стабилизатор компании Энергия рассчитан на эксплуатацию в отапливаемом помещении с уровнем влажности не более 80%.

С этим читают:

Какой стабилизатор напряжения лучше: основные виды и их особенности

Стабилизаторы напряжения для дома: отзывы, какой лучше и по каким критериям делать выбор

Выбираем релейный стабилизатор напряжения: конструкция, преимущества и недостатки

Роман

24.07.2018 в 21:14

Добрый день! У меня на входе в загородный дом приходит 3 фазы. Трехфазных потребителей нет

Вопрос: могу ли я повесить стабилизатор (и какого типа?) только на одну фазу или в случае 3 фаз надо вешать стабилизаторы на каждую? Трехфазный стаб не рассматриваю, т к важное для защиты оборудование висит на одной фазе

Ответить ↓

Александр Старченко

(Автор записи)07.08.2018 в 05:39

Добрый день. Какой будет тип и мощность нагрузки? Для требовательных потребителей хорошо подойдет например RUCELF КОТЕЛ-600. У него напряжение синусоидальной формы, для чувствительной электроники, мощность до 600ВА (рекомендуется около 300Вт). Его стоимость 3500р. Доставка по России 500р. Если заинтересованы, звоните по телефону, указанному на сайте.

Роман

01.08.2018 в 21:43

Здравствуйте! Приобрёл в интернете релейный стабилизатор. В принципе не плохая вещь, но с помощью изм.прибора увидел, что он в режиме ХХ потребляет порядка 1.6 — 1.7 А !!! Вот это аппетит!.

Почему в описаниях /характеристиках/ стабилизаторов нет такого важного пункта, как ток хх ??? Коммерческая уловка? Теперь мой стаб. висит на стене в режиме байпаса грудой металла а-ля «чемодан без ручки»… Неужели нет стабов с «божеским» током хх ?!

Спасибо и удачи!

Ответить ↓

Игорь

03.03.2020 в 20:58

См.параметр КПД. Обычно 95-97%. 3% от мощности 8кВт это 240вт или 240в*а/220в =1.1а

Сергей

20.08.2018 в 21:58

Доброго дня. Подскажите, можно ли использовать семисторный стабилизатор IEK-2000 для питания кондиционера инверторного типа и телевизора? А то пишут, что и синусоиды нет на выходе, и для мотора вредно и тд. Так вот, можно ли использовать его или поискать с сервоприводом. Релейный не хочется из-за щелканья реле.

Ответить ↓

Александр Старченко

(Автор записи)28.08.2018 в 06:34

Добрый день, Сергей. Все верно, для мотора очень вредно, щетки сгорят. Но сервопривод тоже будет шуметь — жужжать мотором. Релейный же на небольшую мощность щелкать будет несильно.

Andrey

02.12.2018 в 12:24

Человек же пишет что кондиционер ИНВЕРТОРНОГО типа то есть ему без раницы на форму синусойды по входу.

Принцип действия

Особенность работы заключается в том, что в любом приборе напряжение будет регулироваться мощностью и перебоями в электросети согласно синусоидальным законам.

Любой тиристор общей мощности может пропускать ток только в одном направлении. Если тиристор не отключить, то он будет продолжать работать и отключится только после совершения определённых действий.

При самостоятельном изготовлении необходимо спроектировать конструкцию таким образом, чтобы внутри было достаточно свободного места для установки регулирующего рычага или кнопки. В том случае когда устройство устанавливается по классической схеме, целесообразно подключение через особый выключатель, который будет изменять цвет при разном уровне мощности.

Кроме этого, такое дополнение позволяет частично предотвратить возникновение ситуаций с поражением человека током. Не нужно будет искать подходящий корпус, а также прибор будет иметь привлекательный внешний вид.

Способы закрывания тиристора

Существует множество способов закрывания тиристоров. Но в первую очередь необходимо помнить, что подача любых сигналов на электрод не сможет закрыть его и погасить действие. Электрод способен только запустить устройство. Существуют и аналоги — запираемые тиристоры. Но их прямое предназначение немного шире, чем у обычных выключателей. Классическую схему тиристорного регулятора напряжения можно выключить только прерыванием подачи тока на уровне анод-катод.

Закрыть регулятор мощности на тиристоре ку202н можно минимум 3 способами. Можно просто отключить всю схему от батарейки. Таким образом диод выключится. Но если повторно включить устройство, то оно не включится, поскольку тиристор остаётся в закрытом состоянии. Он будет находиться в таком положении, пока не будет нажата соответствующая кнопка.

Вторым способом закрытия тиристора является прерывание подачи тока. Это можно сделать, просто замкнув соединение катода анода с помощью обычной проволоки. Проверить можно на схеме с простым светодиодом вместо прибора. Если перемычку из проволоки подсоединить, как указано выше, то всё напряжение пойдёт через проволоку, а уровень тока, которой пойдёт в тиристор, будет нулевым. После того как забрать проволоку обратно, тиристор закроется и прибор выключится. В этом случае прибор — это светодиод, и он погаснет. Если экспериментировать с подобными схемами, то в качестве перемычки можно использовать пинцет.

Если вместо светодиода установить нагревательную спираль большой мощности, то можно получить законченный тиристорный регулятор.

Третий способ заключается в том, чтобы уменьшить напряжение питания до минимального, после чего изменить полярность на противоположную. Такая ситуация приведёт к выключению устройства.

Простой регулятор напряжения

Для производства простейшей системы, работающей на 12 вольтах, понадобятся такие ключевые элементы, как выпрямитель, генератор и аккумулятор. Генератор является одним из главных компонентов. Для изготовления понадобятся вышеупомянутые радиодетали, а также схема простейшего регулятора мощности. Стоит отметить, что в ней нет стабилизаторов.

Для изготовления необходимо подготовить такие элементы:

  • 2 резистора;
  • 1 транзистор;
  • 2 конденсатора;
  • 4 диода.

Специально для транзистора лучше устанавливать систему охлаждения. Это позволит избежать перегрузок системы. Устройство лучше устанавливать с хорошим запасом мощности, чтобы заряжать в последующем аккумуляторы с небольшой ёмкостью.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]