Схемы амперметров с линейной шкалой для измерения переменного тока

Применив синхронное выпрямление переменного тока, автор линеаризовал шкалу шунтового амперметра магнитоэлектрического типа без какого-либо усилителя В статье предлагаются варианты схем с однополупериодным и кольцевым синхронным выпрямителем, применяемым обычно в кольцевых модуляторах.

Шкала амперметра переменного тока, построенного с использованием магнитоэлектрического стрелочного прибора с шунтом и простого выпрямителя, обычно нелинейна. Это связано с тем что при уменьшении напряжения ниже некоторого порога (0,2…0,6 В) выпрямительные свойства германиевых и кремниевых диодов резко ухудшаются.

В результате требуется увеличивать падение напряжения на шунте либо применять линейные выпрямители на основе усилителей переменного напряжения. Однако повышение падения напряжения на шунте неизбежно приводит к потерям мощности и росту выходного сопротивления источника питания. К тому же этот способ лишь уменьшает нелинейность, но не устраняет ее полностью.

Правда, применение усилителей позволяет практически полностью устранить нелинейность, но сильно усложняет измеритель.

Между тем линейность простых из мерительных выпрямителей на полупроводниковых диодах можно значительно улучшить без особого усложнения, если использовать синхронное выпрямление.

Описание схемы

Светодиоды не отличаются большой мощностью, но использовать их в слаботочных электрических цепях допустимо и целесообразно. В качестве примера можно рассмотреть схему получения цифрового амперметра для определения силы тока в аккумуляторной батарее автомобиля, при номинальном диапазоне значений в 40…60 мА.


Вариант внешнего вида амперметра на светодиодах в столбик

Количество использованных светодиодов определит пороговое значение тока, при котором в работу будет включаться один из светодиодов. В качестве операционного усилителя можно использовать LM3915, либо подходящий по параметрам микроконтроллер. На вход будет подаваться напряжение через любой низкоомный резистор.

Удобно отражать результаты измерения в виде столбчатой диаграммы, где весь, практически используемый диапазон тока будет разделяться на несколько сегментов по 5…10 мА. Плюсом LED является то, что в схеме можно использовать элементы разного цвета – красного, зелёного, синего и т.д.

Для работы цифрового амперметра потребуются следующие компоненты:

  1. Микроконтроллер типа PIC16F686 с АЦП на 16 бит.
  2. Настраиваемые джамперы для выхода конечного сигнала. Можно, как альтернативу, применить DIP-переключатели, которые используются в качестве электронных шунтов или сигнальных замыканий в обычных электронных цепях.
  3. Источник питания постоянного тока, который рассчитан на рабочее напряжение от 5 до 15 В (при наличии стабильного напряжения, что контролируется вольтметром, подойдёт и 6 В).
  4. Контактная плата, где можно разместить до 20 светодиодов типа SMD.


Электрическая схема амперметра на LED источниках

Типовая схема и принцип работы инвертора

Чем дороже сварочный инвертор, тем больше в его схеме вспомогательных узлов, задействованных в реализации специальных функций. А вот сама схема силового преобразователя остаётся практически неизменной даже у дорогостоящего оборудования. Этапы превращения сетевого электрического тока в сварочный достаточно легко проследить — на каждом из основных узлов схемы происходит определённая часть общего процесса.

С сетевого кабеля через защитный выключатель напряжение подаётся на выпрямительный диодный мост, сопряжённый с фильтрами высокой ёмкости. На схеме этот участок легко заметить, здесь расположены внушительные по размеру «банки» электролитических конденсаторов. У выпрямителя задача одна — «развернуть» отрицательную часть синусоиды симметрично вверх, конденсаторы же сглаживают пульсации, приводя направление тока практически к чистой «постоянке».


Схема работы сварочного инвертора

Далее по схеме находится непосредственно инвертор.

С понижающего трансформатора напряжение снимает выходной выпрямитель, ведь мы хотим сварку именно на постоянном токе. Благодаря выходному фильтру природа тока меняется с высокочастотного пульсирующего до практически прямой линии. Естественно, в рассмотренной цепи преобразований есть множество промежуточных звеньев: датчиков, управляющих и контрольных цепей, но их рассмотрение выходит далеко за рамки любительской радиоэлектроники.

Конструкция сварочного инвертора: 1 — конденсаторы фильтра; 2 — выпрямитель (диодная сборка); 3 — IGBT-транзисторы; 4 — вентилятор; 5 — понижающий трансформатор; 6 — плата управления; 7 — радиаторы; 8 — дроссель

Последовательность размещения и монтажа амперметра

Входной сигнал по току (не более 1 А) подаётся от стабилизированного блока питания через шунтирующий резистор, допустимое напряжение на котором не должно быть более 40…50 В. Далее, проходя через операционный усилитель, сигнал поступает на светодиоды. Поскольку значение тока во время прохождения сигнала изменяется, то соответственно будет изменяться и высота столбика. Управляя током нагрузки, можно регулировать высоту диаграммы, получая результат с различной степенью точности.

Монтаж платы с SMD-компонентами, по желанию пользователя, можно размещать либо горизонтально, либо вертикально. Смотровое окошко перед началом тарировки необходимо перекрывать тёмным стеклом (подойдёт фильтр с кратностью 6…10х от обычной сварочной маски).

Тарировка цифрового амперметра состоит в подборе минимального значения нагрузки по току, при которой светодиод будет светиться. Варьирование настройки производится экспериментально, для чего в схеме предусматривается резистор с небольшим (до 100 мОм) сопротивлением. Погрешность показаний такого амперметра обычно не превышает нескольких процентов.

Вы знали, что можно переделать старый вольтметр в амперметр? Как это сделать — смотрите видео:

Однополупериодный синхронный выпрямитель для амперметра

На рис 1 приведена схема однополупериодного синхронного выпрямителя для амперметра с линеаризованной шкалой. В положительный полупериод переменного напряжения (плюс на верхних концах обмоток II и III) открываются диоды VD1 и VD2 подключая микроамперметр к шунту Rш. В отрицательный полупериод диоды закрыты.

В открытом состоянии диоды имеют малое дифференциальное сопротивление, и нелинейность этого сопротивления невелика, поэтому шкала получается практически линейной.

Рис. 1. Схема амперметра с трасформатором.

При использовании микроампер метров со шкалой 50 .200 мкА с максимальным падением напряжения на рамке не более 150 мВ минимальное напряжение на обмотке III может составлять 1,5…2 В для германиевых и 2…2,5 В для кремниевых диодов (при меньшем напряжении его нестабильность заметно сказывается на показаниях амперметра).

Максимальное напряжение ограничивается максимально допустимым обратным напряжением используемых диодов Минимальный ток диодов должен в 10.. 20 раз превышать максимальный ток микроамперметра. Дополнительную обмотку можно изготовить самостоятельно, намотав несколько витков тонкого изолированного про вода на катушку трансформатора, если его конструкция позволяет это сделать.

Резисторы R3 и R4 служат для подстройки нуля амперметра, сдвиг которого возникает за счет тока диода VD2, протекающего через шунт, и разброса параметров диодов.

Синфазность подключения обмоток II и III важна при сравнительно низком напряжении обмотки III (менее 2 В), так как при противофазном включении этих обмоток (в этом случае полярность подключения микроамперметра нужно изменить) в приборе появляется нелинейность шкалы (цена деления в конце шкалы плавно увеличивается), что, кстати, иногда может оказаться полезным. Однако при напряжении на обмотке III выше 4 ..5 В эта нелинейность практически не заметна и на фазу включения обмоток можно не обращать внимания

Для защиты микроамперметра от случайных перегрузок параллельно его выводам полезно включить кремниевый диод Д220 КД522 или КД521 в прямом направлении, предварительно убедившись, что он не влияет на показания микроамперметра в конце шкалы.

Как настраивать регулировочный резистор

Для этого последовательно устанавливают силу тока, которая проходит через определённый светодиод. В качестве контрольного прибора можно использовать обычный тестер. Вольтметр включается в схему перед микроконтроллером, а амперметр – после него. Для исключения влияния случайных пульсаций подключается также сглаживающий конденсатор.

Практическим плюсом изготовления прибора своими руками (светодиодов не должно быть менее четырёх) является устойчивость схемы при значительных изменениях первоначально заданного диапазона силы тока. В отличие от обычных диодов, которые при коротком замыкании выйдут из строя, светодиоды просто не загораются.

Св-диоды как измерители тока в аккумуляторной батарее автомобиля, не только экономят заряд и сохраняют аккумуляторы, но и позволяют более удобным способом считывать показания.

Аналогичным образом можно построить и цифровой вольтметр. В качестве источников света для такого варианта применения подойдут элементы на 12 В, а наличие дополнительного шунта в схеме вольтметра позволит более рационально использовать всю высоту столбчатой диаграммы.

Оцените, пожалуйста, статью. Мы старались:)

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Повышение продолжительности включения

Продолжительность включения в контексте сварочных инверторов более разумно называть продолжительностью нагрузки. Это та часть десятиминутного интервала, в которой инвертор непосредственно выполняет работу, оставшееся время он должен пребывать на холостом ходу и охлаждаться.

Для большинства недорогих инверторов реальная ПН составляет 40–45% при 20 °С. Замена радиаторов и устройство интенсивного обдува позволяют увеличить этот показатель до 50–60%, но это далеко не потолок. Добиться ПН порядка 70–75% можно путём замены некоторых радиоэлементов:

О замене самих силовых ключей стоит рассказать отдельно. Для начала следует переписать маркировку на корпусе элемента и найти подробный даташит на конкретный элемент. По паспортным данным выбрать элемент для замены достаточно просто, ключевыми параметрами служат пределы частотного диапазона, рабочее напряжение, наличие встроенного диода, тип корпуса и предельный ток при 100 °С. Последний лучше рассчитать собственноручно (для высоковольтной стороны с учётом потерь на трансформаторе) и приобрести радиоэлементы с запасом предельного тока около 20%. Из производителей такого рода электроники наиболее надёжными считаются International Rectifier (IR) или STMicroelectronics. Несмотря на довольно высокую цену, крайне рекомендуется приобретать детали именно этих брендов.

↑ Детали и конструкция

Все детали установлены на печатной плате. Дисплей вставляется в разъемы платы и крепится винтами к стойкам длиной 12 мм. В связи небольшим расстоянием между платами конденсаторы применены небольшой высоты C4, C5 на 16 Вольт, остальные на 6,3 или 10 Вольт. Измерительный резистор R7 должен быть высоковольтным. Я установил резистор типа МЛТ1. Шунт взят от неисправного мультиметра. В связи с тем, что различные типы дисплеев могут иметь различное подключение питания (ножки 1 и 2), то на печатной плате питание на ножки дисплея 1 и 2 поступает через перемычки. Их надо коммутировать правильно, в соответствии с применяемым дисплеем. Наличие русского алфавита в дисплее необязательно, так как он формируется программно. Микроконтроллер устанавливается в цанговую панельку.

Исключён фрагмент. Полный вариант доступен меценатам и полноправным членам сообщества.

Я запитал прибор от телефонного адаптера. В связи с тем, что на плате есть свой мост Br1, полярность подключения не имеет значения. Важно, чтобы на конденсаторе C4 было напряжение в пределах 10 – 15 Вольт.

↑ Файлы

Схема, печатная плата и программа с прошивкой

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]