Печи с соляной ванной для тепловой обработки стали или легких металлов

  • Закалка
  • Нагрев металла
  • Защита изделия от окалины и обезуглероживания
  • Охлаждающие жидкости
  • Процесс отпуска

Термическая обработка сталей – одна из самых важных операций в машиностроении, от правильного проведения которой зависит качество выпускаемой продукции. Закалка и отпуск сталей являются одними из разнообразных видов термообработки металлов.
Тепловое воздействие на металл меняет его свойства и структуру. Это позволяет повысить механические свойства материала, долговечность и надежность изделий, а также уменьшить размеры и массу механизмов и машин. Кроме того, благодаря термообработке, для изготовления различных деталей можно применять более дешевые сплавы.

Также вам не помешает знать, как правильно варить полуавтоматом.


Как закалялась сталь

Термообработка стали заключается в тепловом воздействии на металл по определенным режимам ля изменения его структуры и свойств.

К операциям термообработки относятся:

  • отжиг;
  • нормализация;
  • старение;
  • закалка стали и отпуск стали (и пр.).

Термообработка стали: закалка отпуск – зависит от следующих факторов:

  • температуры нагрева;
  • времени (скорости) нагрева;
  • продолжительности выдержки при заданной температуре;
  • скорости охлаждения.

Закалка

Закалка стали – это процесс термообработки, суть которого заключается в нагреве стали до температуры выше критической с последующим быстрым охлаждением. В результате этой операции повышаются твердость и прочность стали, а пластичность снижается.

При нагреве и охлаждении сталей происходит перестройка атомной решетки. Критические значения температур у разных марок сталей неодинаковы: они зависят от содержания углерода и легирующих примесей, а также от скорости нагрева и охлаждения.

После закалки сталь становится хрупкой и твердой. Поверхностный слой изделий при нагреве в термических печах покрывается окалиной и обезуглероживается тем более, чем выше температура нагрева и время выдержки в печи. Если детали имеют малый припуск для дальнейшей обработки, то брак этот является неисправимым. Режимы закалки закалки стали зависят от ее состава и технических требований к изделию.

Охлаждать детали при закалке следует быстро, чтобы аустенит не успел превратиться в структуры промежуточные (сорбит или троостит). Необходимая скорость охлаждения обеспечивается посредством выбора охлаждающей среды. При этом чрезмерно быстрое охлаждение приводит к появлению трещин или короблению изделия. Чтобы этого избежать, в интервале температур от 300 до 200 градусов скорость охлаждения надо замедлять, применяя для этого комбинированные методы закалки. Большое значение для уменьшения коробления изделия имеет способ погружения детали в охлаждающую среду.

Способы закалки

Так как нет такой закаливающей среды, которая давала бы быстрое охлаждение в интервале температур 650 — 400 °С и медленное охлаждение выше и главным образом ниже этого интервала, то применяют различные способы закалки, обеспечивающие необходимый режим охлаждения.

Закалка через воду в масло

Закалка через воду в масло (закалка в двух средах):

1 — нормальный режим; 2 — недодержка в воде; 3 — передержка в воде.

Для уменьшения скорости охлаждения в мартенситном интервале применяют закалку в двух средах. Вначале деталь погружают в воду и после короткой выдержки в воде переносят в масло. Поэтому такой способ закалки называют закалкой через воду в масло.

Быстрое охлаждение вводе предотвращает перлитное превращение, а последующее замедленное охлаждение в масле уменьшает закалочные напряжения в мартенситном интервале. Наиболее ответственный момент — выдержка в воде, продолжительность которой устанавливают для каждого конкретного изделия. И передержка, и недодержка в воде могут привести к браку.

При недодержке в воде происходит частичный или полный распад аустенита и получается заниженная твердость, а при передержке возникают более сильные закалочные напряжения, которые могут привести к короблению и образованию трещин.

Несмотря на указанные недостатки, закалку через воду в масло широко применяют в производстве режущего инструмента из углеродистой стали (углеродистая сталь обладает небольшой прокаливаемостью, и режущий инструмент из нее нельзя закаливать в масле).

Закалка в воде и горячих средах

Закалка в воде и горячих средах:

1 — закалка в воде; 2 — ступенчатая закалка; 3 — изотермическая закалка.

Другой способ уменьшения скорости охлаждения в мартенситном интервале — ступенчатая закалка. Нагретое до температуры закалки изделие быстро погружают в ванну с горячей средой, а затем после некоторой выдержки выдают на воздух или погружают в холодное масло. Впервые закалка в горячей среде была описана Д. К. Черновым.

В 1885 г. в известном докладе «О приготовлении стальных бронепробивающих снарядов» Д. К. Чернов сообщил, что снарядная сталь при закалке в расплаве свинца с оловом приобретает такую же твердость, как и при закалке в холодной воде. При выборе режима ступенчатой закалки помогает С-диаграмма. Температуру горячей среды (температуру «ступеньки») выбирают вблизи мартенситной точки (на 20 — 30 °C выше нее) в области высокой устойчивости переохлажденного аустенита.

Время выдержки в горячей среде (длина «ступеньки») должно быть меньше инкубационного периода при соответствующей температуре. Ступенчатая закалка более проста в исполнении, чем закалка через воду в масло, и дает более стабильные результаты.

Другое важное преимущество ступенчатой закалки — выравнивание температуры по сечению изделия при выдержке в горячей среде. Мартенситное превращение после этой выдержки происходит при медленном охлаждении и одновременно по всему объему, в результате чего уменьшаются закалочные напряжения.

Наконец, весьма существенное преимущество — то, что сталь при температуре «ступеньки» находится в аустенитном состоянии. После извлечения из горячей среды изделие некоторое время пластично, и его можно править для устранения коробления.

Это особенно ценно для тонких и длинных изделий, при закалке которых даже в горячей среде неизбежно коробление. Часто используют правку вручную, но наилучшие результаты дает правка под прессом. Правка может продолжаться при охлаждении ниже точки Мн, так как непосредственно в момент мартенситного превращения (но не после его окончания) пластичность повышена.

Основной недостаток ступенчатой закалки — малая скорость охлаждения в горячей среде. Поэтому применение ступенчатой закалки к углеродистым сталям ограничено изделиями небольшого сечения (до 8 — 10 мм толщиной).

Изделие большого сечения охлаждается в горячей среде медленно, и аустенит успевает претерпеть эвтектоидный распад. Изделия из легированных сталей, у которых меньше критическая скорость охлаждения, проще подвергать ступенчатой закалке. Так, например, ступенчатой закалкой широко пользуются при обработке инструментов и деталей машин из хромистой стали (ШХ16, ХВГ и 9ХС).

Разновидностью ступенчатой закалки является закалка в горячей среде, температура которой несколько ниже мартенситной точки. Более низкая температура «ступеньки» обеспечивает большую прокаливаемость, а так как количество мартенсита еще невелико, то основные преимущества ступенчатой закалки сохраняются. Но править изделие при этом уже нельзя.

При ступенчатой закалке используют три группы горячих сред: минеральные масла, расплавы селитр и расплавы щелочей.

Если длина «ступеньки», находящейся в температурном интервале бейнитного превращения, больше времени изотермического распада аустенита, то операцию термообработки называют изотермической или бейнитной закалкой. Бейнитное превращение является промежуточным между перлитным и мартенситным (смотрите Бейнитное превращение).

Сталь со структурой нижнего бейнита по механическим свойствам ближе к закаленной на мартенсит, чем к стали с перлитной структурой. При бейнитном превращении происходит мартенситная γ → α-перестройка. По способу практического осуществления рассматриваемый процесс мало отличается от ступенчатой закалки. Поэтому его относят к закалке с полиморфным превращением.

Изотермическую закалку проводят в тех же горячих средах, что и ступенчатую. Время выдержки в горячей среде должно быть больше времени изотермического превращения аустенита, и его можно ориентировочно выбрать, руководствуясь С-диаграммой. Изотермической закалке можно подвергать изделия небольшого сечения, так как в горячей среде охлаждение идет медленно.

При выдержке в горячей среде температура по сечению изделия успевает выровняться еще в большей степени, чем при ступенчатой закалке.

Резкое уменьшение закалочных напряжений и коробления — важное преимущество изотермической закалки.

Кроме уменьшения закалочных напряжений, у изотермической закалки есть и другое преимущество. При одинаковой твердости вязкость нижнего бейнита больше, чем у стали, отпущенной после закалки на мартенсит.

Одной из причин этого считают более однородное распределение карбидных частиц в бейните. При бейнитном превращении в некоторых легированных сталях сохраняется большое количество остаточного аустенита, который не превращается в мартенсит при охлаждении после изотермической выдержки.

Изотермическая закалка таких сталей обеспечивает высокую ударную вязкость, резко уменьшает чувствительность к надрезу и перекосам по сравнению с закаленной на мартенсит и отпущенной сталью. Следовательно, изотермическая закалка позволяет повысить конструктивную прочность стали.

Ниже сравниваются свойства стали 30ХГС после обычной закалки с отпуском и изотермической закалки:

σв, кгс/мм2σ0,2, кгс/мм2ан, кгс * м/см2
Закалка с 880 °С в воде + отпуск при 520 °С110854,5
Изотермическая закалка с 880°С в селитре при 300 °С1651306

«Теория термической обработки металлов», И.И.Новиков

Защита изделия от окалины и обезуглероживания

Для изделий, поверхности которых после термообработки не шлифуются, выгорание углерода и образование окалины недопустимо. Защищают поверхности от подобного брака применением защитных газов, подаваемых в полость электропечи. Разумеется, такой прием возможен только в специальных герметизированных печах. Источником подаваемого в зону нагрева газа служат генераторы защитного газа. Они могут работать на метане, аммиаке и других углеводородных газах.

Если защитная атмосфера отсутствует, то изделия перед нагревом упаковывают в тару и засыпают отработанным карбюризатором, чугунной стружкой (термисту следует знать, что древесный уголь не защищает инструментальные стали от обезуглероживания). Чтобы в тару не попадал воздух, ее обмазывают глиной.

Соляные ванны при нагреве не дают металлу окисляться, но от обезуглероживания не защищают. Поэтому на производстве их раскисляют не менее двух раз в смену бурой, кровяной солью или борной кислотой. Соляные ванны, работающие на температурах 760 – 1000 градусов Цельсия, весьма эффективно раскисляются древесным углем. Для этого стакан, имеющий множество отверстий по всей поверхности, наполняют просушенным углем древесным, закрывают крышкой (чтобы уголь не всплыл) и после подогрева опускают на дно соляной ванны. Сначала появляется значительное количество языков пламени, затем оно уменьшается. Если в течение смены таким способом трижды раскислять ванну, то нагреваемые изделия будут полностью защищены от обезуглероживания.

Степень раскисления соляных ванн проверяется очень просто: обычное лезвие, нагретое в ванне в течение 5 – 7 минут в качественно раскисленной ванне и закаленное в воде, будет ломаться, а не гнуться.

Охлаждающие жидкости

Основной охлаждающей жидкостью для стали является вода. Если в воду добавить небольшое количество солей или мыла, то скорость охлаждения изменится. Поэтому ни в коем случае нельзя использовать закалочный бак для посторонних целей (например, для мытья рук). Для достижения одинаковой твердости на закаленной поверхности необходимо поддерживать температуру охлаждающей жидкости 20 – 30 градусов. Не следует часто менять воду в баке. Совершенно недопустимо охлаждать изделие в проточной воде.

Недостатком водяной закалки является образование трещин и коробления. Поэтому таким методом закаливают изделия только несложной формы или цементированные.

  • При закалке изделий сложной конфигурации из конструкционной стали применяется пятидесятипроцентный раствор соды каустической (холодный или подогретый до 50 – 60 градусов). Детали, нагретые в соляной ванне и закаленные в этом растворе, получаются светлыми. Нельзя допускать, чтобы температура раствора превышала 60 градусов.

Режимы

Пары, образующиеся при закалке в растворе каустика, вредны для человека, поэтому закалочную ванну обязательно оборудуют вытяжной вентиляцией.

  • Закалку легированной стали производят в минеральных маслах. Кстати, тонкие изделия из углеродистой стали также проводят в масле. Главное преимущество масляных ванн заключается в том, что скорость охлаждения не зависит от температуры масла: при температуре 20 градусов и 150 градусов изделие будет охлаждаться с одинаковой скоростью.

Следует остерегаться попадания воды в масляную ванну, так как это может привести к растрескиванию изделия. Что интересно: в масле, разогретом до температуры выше 100 градусов, попадание воды не приводит к появлению трещин в металле.

Недостатком масляной ванны является:

  1. выделение вредных газов при закалке;
  2. образование налета на изделии;
  3. склонность масла к воспламеняемости;
  4. постепенное ухудшение закаливающей способности.
  • Стали с устойчивым аустенитом (например, Х12М) можно охлаждать воздухом, который подают компрессором или вентилятором. При этом важно не допускать попадания в воздухопровод воды: это может привести к образованию трещин на изделии.
  • Ступенчатая закалка выполняется в горячем масле, расплавленных щелочах, солях легкоплавких.
  • Прерывистая закалка сталей в двух охлаждающих средах применяется для обработки сложных деталей, изготовленных из углеродистых сталей. Сначала их охлаждают в воде до температуры 250 – 200 градусов, а затем в масле. Изделие выдерживается в воде не более 1 – 2 секунд на каждые 5 – 6 мм толщины. Если время выдержки в воде увеличить, то на изделии неизбежно появятся трещины. Перенос детали из воды в масло следует выполнять очень быстро.

Сварка автомобиля своими руками – нелегкая задача, но выполнимая.

Вам нужно быстро и качественно нарезать металл? Воспользуйтесь плазменной резкой! Как правильно ее выполнять, читайте в этой статье.

Если вас интересует, как сделать токарную обработку металлических изделий, читайте статью по https://elsvarkin.ru/obrabotka-metalla/tokarnaya-obrabotka-metalla-obshhie-svedeniya/ ссылке.

Термообработка в расплаве солей

Закалка стали – один из наиболее важных процессов в термообработке металла, от которого напрямую зависит качество продукции. Плохая закалка может привести к излишней мягкости металла, перекаленная деталь, в свою очередь, становится очень хрупкой.

Виды закалки

Еще древние мастера, работавшие в кузнях, замечали, как тепловое воздействие в разной степени влияет на металл, меняя его структуру и свойства. С помощью термообработки можно улучшить механические характеристики детали, сделать ее более долговечной и даже уменьшить вес за счет увеличения прочности! В современном машиностроении задача комплексного улучшения эксплуатационных свойств металлических материалов в значительной степени связана с разработкой новых технологических процессов поверхностного упрочнения деталей. Термообработка позволяет даже изготавливать качественные детали из более дешевых сплавов, улучшая их характеристики до нужной отметки. Закалка стали – процесс термообработки, в результате которого сталь нагревается до критической температуры и быстро охлаждается. Цель такой обработки – повышение твердости и прочности детали с уменьшением ее пластичности.

Основные задачи, требующие решения при термообработке:

  • защита от обезуглероживания;
  • защита от цементации;
  • защита от окисления;
  • скорость охлаждения.

Для защиты от обезуглероживания, особенно быстрорежущей стали, рекомендуется применение растворов солевых ванн.

Подготовка раствора солей

В 95% рабочего объема тигля расплавляется соль Petrofer HS 760, после полного расплава добавляются 5% Petrofer NEUTROSAL. Небольшие порции NEUTROSAL посыпаются на ванну и сразу же перемешиваются. После этого следует нагрев до нужной температуры. О надежности необезуглероживания позволяет судить также и внешний вид ванны. Ванна должна быть прозрачной. На поверхности время от времени появляются язычки пламени, маленькие хлопья в ванне являются нормальными и представляют собой продукты реакции инертора с кислородом. Если ванна помутнеет, то в ней появились оксиды и растворенный кислород. В этом случае надежность необезуглероживания не обеспечивается.

Области применения:

  1. Необезуглероживающий отжиг и закалка всех видов инструментальной стали и высокопроцентной хромистой стали, а также науглероженных деталей, в особенности, если цементованный слой местами обработан.
  2. Обработка необезуглероживающим отжигом термически улучшенной или цементируемой стали (отжиг на крупное зерно).
  3. Обезуглероживающий нагрев быстрорежущей стали до 1100°C. Обезуглероживающий твердый припой в солевой ванне.

Необходимо упомянуть, что при закалке в растворах солевых теплых ваннах поверхность деталей не окрашивается в иссиня-черный цвет, как это обычно происходит при закалке в ваннах, содержащих цианид. Поверхность обычно получается пестрой, светло-коричневого или красно-коричневого цвета.

Защита деталей от цементации

Цементация — один из главных процессов в термическом упрочнении деталей, поверхности которых работают на износ. К таким деталям относятся шестерни, вал-шестерни, сателлиты, полуоси, и многие другие изделия. Очень часто в процессе изготовления таких деталей, возникает необходимость исключить науглероживание на определенном участке. Такая необходимость возникает по разным причинам: требования конструкторской документации, требования по дальнейшей механической обработке и т.д. В связи с этим возникает вопрос о защите этих поверхностей от насыщения углеродом и исключения получения высокой твердости при последующей закалке сталей. Способ защиты деталей от цементации самый интересный и перспективный. Он заключается в использовании покрытий и защитных антицементационных паст Petrofer SURFATECT различного химического состава. Новые на водной основе и классические защитные пасты на основе растворителей для частичного покрытия от цементации, азотирования стальных деталей в газовой атмосфере. В зависимости от типа-оснастки защитных паст Petrofer SURFATECT легко растворяются в воде после обработки или удаляются механическим способом.

Оксидирование стали – это один из наиболее эффективных способов защиты поверхности металла от негативных внешних воздействий. В результате на металле образуется защитное покрытие в виде специфической пленки. Особенности и функции такой пленки напрямую зависят от метода оксидирования.

Оксидирование – для увеличения коррозионной стойкости. Для оксидирования применяют оксидирующие ванны. Petrofer Blacky при рабочей температуре до 150°C.

После термообработки деталей в расплавах солей детали промывают горячей водой, что не всегда благоприятно влияет на коррозионную стойкость, для решения данной проблемы применяется 2-3% раствор концентрата Petrofer AQUAPLUS 22. AQUAPLUS 22 применяется при необходимости надежной антикоррозийной защиты без значительных изменений физических свойств воды как, например, в системах охлаждения, при поверхностной закалке с применением индукционного нагрева и газопламенной закалки.

Для каждого вида закалки металла существует отдельный режим, определяющий исход процесса. Нужно учесть температуру нагрева, вычислить точное время и скорость нагрева, продолжительность выдержки детали при максимальном значении температуры, скорость охлаждения.

На атомном уровне при достижении критической температуры перестраивается атомная решетка.

Для разных марок стали существует своя критическая температура, в зависимости от уровня содержания углерода и примесей. Закалка делает металл твердым, но в то же время хрупким. Охлаждение детали должно проходить быстро, чтобы атомная структура не преобразовалась в промежуточную структуру. При этом слишком быстрое охлаждение может привести к растрескиванию стали или короблению. Во избежании брака скорость охлаждения при достижении порога в 200°С замедляют. Некоторые марки стали закаляются и при более высоких температурных режимах (1250–1300°С). Эти марки не подвержены растрескиванию, поэтому в предварительном подогреве они не нуждаются. Сложные детали, которые имеют резкие переходы или тонкие грани, предварительно подогревают в отдельных печах или соляных ваннах, применяя соли Petrofer AS 135. Температура подогрева – до 500°С.

Охлаждение металла – опасности и предосторожности!

В качестве основы для охлаждающих жидкостей используют воду. Водяная закалка имеет ряд недостатков. Главный минус – образование трещин и коробление металла, поэтому таким способом пользуются только при изготовлении цементированных изделий или изделий несложной формы, которые будут проходить финишную обработку. Изделия более сложной формы из конструкционной стали охлаждаются в растворе полимерных сред Petrofer AQUATENSID BW-FF. Охлаждение происходит равномерно; в отличие от закалки водой, не происходит смягчения и минимизируются разрушения. Огромное преимущество здесь – негорючесть, связанная с высоким содержанием воды, низким уровнем образования дыма и отсутствием паровой рубашки. Низкоконцентрированные растворы AQUATENSID BW-FF имеют охлаждающий эффект на уровне воды, но без их отрицательных свойств. Разумеется, неконтролируемое, неравномерное образование паровой оболочки на заготовке (феномен Лейденфроста) можно избежать. Применение AQUATENSID BW-FF с более высокой концентрацией дает характеристики охлаждения маслом. В области температур конвекционной фазы / мартенсита эффект охлаждения здесь уменьшается по сравнению с чистой водой. В результате неизбежно возникающие трансформационные напряжения не излишне накладываются высокими тепловыми напряжениями, трещины практически устраняются.


Термическая обработка легких металлов с помощью AQUATENSID

Легированные сплавы AL используются не только в авиации сегодня, но и в большей степени для легких конструкции в секторе транспортных средств. Закалка этих сплавов после гомогенизационного отжига, а также других сплавов AL после формования является еще одной областью применения для AQUATENSID. Из-за регулируемой скорости охлаждения, достигается снижение риска критических деформаций металла, в отличие от не контролируемой скорости охлаждения в воде. Таким образом, можно избежать серьезных усилий по переработке.

Полимерные растворы AQUATENSID также нашли множество применений при термообработке алюминиевых компонентов. Так, например, в аэрокосмической промышленности части прокаливаемого алюминиевого сплава длиной около 1,5 м с поперечными сечениями между 30 и 120 мм в 25% растворе полимера AQUATENSID почти без искажений охлаждаются, в отличие от охлаждения в воде. В случае повышенного риска растрескивания возможно использование водно-полимерной закалки Petrofer FEROQUENCH 2000.


Минеральные масла – наиболее подходящая охлаждающая среда для изделий из легированной стали, как и для тонких изделий, из углеродистой стали. Недостаток таких ванн состоит в том, что независимо от температуры среды скорость охлаждения не меняется. Масла для закалки разделяют на две основные группы:

  1. Масла с обычной скоростью закалки Petrofer ISODUR 220 причем скорость при температуре 30°С, что при температуре 100°С она будет одинакова.
  2. Масла, устойчивые к испарению для закалки с высокой интенсивностью охлаждения например ISORAPID 227 HM.



В частности, при использовании обычных масел для закалки сама среда имеет склонность к возгоранию. К тому же, со временем масло теряет закаливающие способности. При использовании масел, устойчивых к испарению для закалки с высокой интенсивностью охлаждения повышаются окислительные свойства, срок службы продукта, а главное качество закалки улучшается почти в два раза. Стойкость к окислению данных продуктов в пять раз выше по сравнению с индустриальным маслом — соответственно замена масла происходит намного реже.

Для оценки качества масла могут применяться и другие характеристики:

Температура вспышки — очень важное свойство в плане противопожарной безопасности. Как правило, не требуется применять масла с температурой вспышки на 50-60°С выше, чем температура процесса с учетом объема ванны масла и его теплопроводности.

Стойкость против старения — показатель экономической эффективности использования того или иного масла. Это время нормальной работы охлаждающей среды до образования продуктов горения и шлака на дне и стенках ванны. Время смены масла чаще определяется практически, по изменению цвета закаливаемых изделий или появлением мягких пятен на поверхности.

Еще одной экономической характеристикой качества масла является скорость уноса вещества с обрабатываемыми поверхностями деталей. Она не может быть однозначно определена, т.к. в большей степени зависит от конкретных условий использования (одиночный закалочный бак, бак в составе автоматической линии, с учетом времени на стекание или без учета). Однако эта характеристика находится в некоторой корреляции с вязкостью масла и чаще не превышает 1% площади обрабатываемых изделий.

При сравнении характеристик масел, нужно обращать внимание на допустимое количество воды и посторонних примесей.Вода в масле может быть причиной неравномерной твердости и возгорания закалочного бака. Чем больше воды в масле, тем больше вероятность этих явлений.

Из вышесказанного следует, что при выборе такого идеального и безопасного закалочного масла, в первую очередь следует учитывать его вязкость, температуру парообразования, теплопроводность и температуру вспышки. Идеальное закалочное масло должно охлаждать изделия максимально быстро в области минимальной устойчивости аустенита и максимально медленно в области температуры от 200°С до полного охлаждения.

Процесс отпуска

Отпуску подвергаются все закаленные детали. Это делается для снятия внутренних напряжений. В результате отпуска несколько снижается твердость и повышается пластичность стали.

В зависимости от требуемой температуры отпуск производится :

  • в масляных ваннах;
  • в селитровых ваннах;
  • в печах с принудительной воздушной циркуляцией;
  • в ваннах с расплавленной щелочью.

Температура отпуска зависит от марки стали и требуемой твердости изделия, например, инструмент, для которого необходима твердость HRC 59 – 60, следует отпускать при температуре 150 – 200 градусов. В этом случае внутренние напряжения уменьшаются, а твердость снижается незначительно.

Быстрорежущая сталь отпускается при температуре 540 – 580 градусов. Такой отпуск называют вторичным отвердением, так как в результате твердость изделия повышается.

Изделия можно отпускать на цвет побежалости, нагревая их на электроплитах, в печах, даже в горячем песке. Окисная пленка, которая появляется в результате нагрева, приобретает различные цвета побежалости, зависящие от температуры. Прежде чем приступать к отпуску на один из цветов побежалости, надо очистить поверхность изделия от окалины, нагара масла и т. д.

Обычно после отпуска металл охлаждают на воздухе. Но хромоникелевые стали следует охлаждать в воде или масле, так как медленное охлаждение этих марок приводит к отпускной хрупкости.

Соляная электродная ванна

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 21 февраля 2022 года.

Розжиг соляной электродной ванны в индустриальных условиях (температура 1100 С°)

Соляная электродная ванна представляет собой металлическую или керамическую ванну, наполненную солью, в которую опущены электронагреватели. Часть ванны, в которой находятся электронагреватели, отделена от рабочей части перегородкой. Ванна помещена в корпус и прикрыта сверху зонтом. Для пуска ванны используется специальный погружной электронагреватель. Соляные ванны обеспечивают быстрый и равномерный разогрев изделий, помещаемых в расплавленную соль. Они применяются, в частности, для нагрева под закалку и отпуск инструментов.

Преимущества:

— более быстрый (в 4-5 раз) нагрев, по сравнению с электро- и газонагревательными печами;

— равномерный нагрев всей поверхности детали;

— равномерность температурного поля во всем расплаве с погрешностью ±1 °C;

— возможность частичного нагрева под закалку (например только рабочую часть сверла или ударную часть зубила);

— при нагреве детали не окисляются;

— высокие рабочие температуры:

Общие сведения о печах-ваннах.

Печи-ванны применяются для нагрева под закалку, от­пуск, нормализацию, химико-термическую обработку и для охлаждения при ступенчатой и изотермической закалке.

В зависимости от процесса термической обработки в каче­стве жидких сред применяют расплавленные соли, щелочи, металлы (свинец, олово, спла­вы свинца и олова, сплавы свинца и силумина и др.) и минеральные масла.

В расплавленных солях присутствуют растворенные кислород и окислы, которые вызывают окисление и обезуглероживание стали. Поэтому перед работой и в процессе работы ванну периодически раскисляют специальными смесями. Для раскисления ванн с хло­ристыми солями применяются небольшие добавки ферросилиция или буры, а для хлористого бария — фтористый магний. Для рас­кисления щелочных ванн — цианистые соли.

Преимущества печей-ванн: высокая скорость и равномерность нагрева деталей, точность регулирования температуры, отсутствие окисления и обезуглеро­живания, возможность осуществления местной термической и хи­мико-термической обработки. Недостатки печей-ванн: необходи­мость периодической смены солей, малая стойкость тиглей, воз­можность коррозии поверхности детали при несвоевременной очи­стке ее от солей и требования очень строгого соблюдения правил безопасности труда. При правильной организации работы ванн большинство недостатков легко устранимы, поэтому они нашли ши­рокое применение при термической обработке.

Ванны могут работать на любом виде топлива и электроэнер­гии. По способу обогрева различают печи-ванны с внешним обо­гревом, с внутренним обогревом, электродные.

Ванны с внешним обогревом.

Ванны с внешним обогревом. Представляют собой тигель, вставленный в печь с электрическим или пламенным нагревом. Тигли бывают литые, штампованные или сварные с толщиной стен­ки 12—30 мм. Тепло передается расплаву через стенки тигля, по­этому температура рабочего пространства печи должна превышать температуру расплава, что увеличивает опасность прогорания тиг­ля. В случае прогара тигля в ванне предусмотрен сток для солей и жидкого металла.

Средняя производительность ванн с пламенным обогревом в зависимости от размеров тигля составляет от 20 до 125 кг/ч.

Рис. 1. Электрическая тигельная печь-ванна типа СВГ: / — тигель, 2 — рабочая камера, 3 — чугунная плита, 4 — раздвигаемая крышка, 5 — вытяж­ной колпак, 6 — термопара, 7 — отверстие для подвешивания приспособлений с деталями

Широкое распространение в термическом производстве получили электрические печи-ванны. Внешний нагрев тигля осуществляется нагревателями из сплавов высокого электросопротивления. Рабо­чая температура ванны не превышает 850° С.

Недостаток ванн с внешним обогревом: трудность получения высокой температуры и сравнительно низкий КПД

Тигельные электрические печи-ванны с внешним обогревом вы­пускаются трех типов: СВГ-1,5.2/8,5, СВГ-2,5.3,5/8,5 и СВГ-3,5.4/8,5 производительностью 30, 60 и 100 кг/ч и мощностью 10, 20 и 30 кВт.

Электрическая печь-ванна типа СВР показана на рис. 1. Конт­роль температуры осуществляется термопарами. Одна термопара выведена через крышку и контролирует температуру в тигле, дру­гая термопара помещается в рабочем пространстве ванны у на­гревателей. Эта термопара связана с автоматическими регулирую­щими температуру приборами.

У ванны внизу под тиглем имеется сток для расплавленных со­лей в случае прогара тигля.

Ванны с внутренним обогревом.

Ванны с внутренним обогревом. Имеют трубчатые нагреватели, опущенные непосредственно в расплав. Внутренний обогрев уменьшает потери тепла, повышает к. п. д. печи, увеличивает срок служ­бы тигля и способствует получению в нем равномерной темпера­туры. Для ускорения нагрева и увеличения его равномерности ванны имеют механические мешалки с электроприводом или на­сосы.

Ванна с трубчатыми нагревателями (ТЭН) для термической об­работки деталей из алюминиевых сплавов показана на рис. 2. Максимальная рабочая температура ванны 520° С, мощность 300 кВт.

Рис. 2. Схема электрической ванны с внутренним обогревом:

/ — сварной тигель, 2 — футеровальная крышка, 3—U-образные нагревательные элементы

Электродные печи-ванны.

В этих ваннах нагревателем является сама соль, напоминающая ванну.

Ток подается к электродам с помощью шин от специально­го трансформатора, понижаю­щего напряжение с 220/380 В до 24,2—5,5 В. Ток пропуска­ется между стальными элек­тродами. Во избежание элек­тролиза соли применяют пере­менный ток.

Расплавленные соли имеют высокое электрическое сопро­тивление и при прохождении через них тока выделяется тепло, достаточное для разо­грева соли и поддержания тре­буемой температуры расплава. В твердом виде соль не прово­дит электрический ток.

Эти печи являются наибо­лее экономичными. В промыш­ленности получили широкое распространение трехфазные электродные печи-ванны типа СВС.

Соляные электродные ван­ны применяют: до 650° С — низкотемпературного отпуска стали, отжига и нагрева под закалку алюминиевых сплавов, отпуска, низкотемпературного циа­нирования, азотирования и первой ступени нагрева под закалку быстрорежущей стали;

до 850° С — для нагрева под закалку углеродистой стали, среднетемпературного цианирования, отжига стали и цветных метал­лов, для второй ступени нагрева под закалку быстрорежущей стали;

до 1000° С — для нагрева под закалку углеродистой и низколе­гированной стали и для термообработки чугунных отливок;

до 1300°С — для нагрева под закалку быстрорежущей стали, отжига нержавеющих сталей и др.

Электродные ванны выпускают мощностью 35, 60 и 100 кВт.

Рис. 3. Конструкция электродной ванны СВС-35/13: 1_ кожух, 2 —футеровка. 3 — перегородка, 4 — цепная занавеска (для предохранения ра­бочих от брызг расплавленной соли), о — зонт вытяжной, 6 — пирометр. 7 — электроды (3 шт.). 8 — противовес

Ванны имеют прямоугольную форму рабочего пространства с размерами до 350X800X400 мм. В этих ваннах имеются внутренние экраны, отделяющие электроды от рабочего объема соли. При такой конструкции ток не проходит через детали, экран предохраняет их от соприкосновения с электродами, позволяет лучше использовать рабочий объем соли. Металлическая перегородка предохраняет электродную группу от возможного замыкания через нагреваемую деталь.|

Температура ванн до 1300° С измеряется радиационным пирометром, а для температур до 1000°С — термопарами.

Пуск соляных ванн производится с помощью приспособления (стойка с нихромовыми нагревателями). При пропускании тока от трансферматора приспособление нагревается и расплавляет соль. Приспособление находится в затвердевшей соли. Трехфазная электродная печь-ванна СВС-35/13 (мощностью 35 кВт, максимальная рабочая температура 1300°С) показана на рис. 3.

Для термической обработки быстрорежущей стали используют трех- или четырехэлектродные тигельные печи-ванны. Ванны мон­тируются в одном каркасе и кладке. Каждый тигель предназначен для отдельной операции: первый для подогрева приблизительно до 650° С, второй — до 850° С, третий для окончательного нагрева до 1260—1280° С, а четвертый для охлаждения под ступенчатую закалку.

Масляные печи-ванны.

Применяют для низкого отпуска, искус­ственного старения и охлаждения при ступенчатой и изотермиче­ской закалке. Электрическая масляная ванна с изолированными на­гревателями показана на рис 4. Эти печи-ванны име­ют индекс СВМ. Цифры в числителе индекса указыва­ют длину рабочего прост­ранства (диаметр) и высоту (дм), знаменатель — тем­пературу в сотнях градусов. Ванны выпускают с раз­мерами тигля: шириной 5,8 и 10 дм, длиной 5X8 и 10 дм и высотой 5 и 10 дм. Мощ­ность от 15 до 40 кВт. Мас­ляные ванны круглого сече­ния (рис. 5) изготовляют­ся со стальным тиглем диа­метром 2,5; 3,5; 5,0; 8,0 дм и высотой 2,5; 5,0; 8,0; 10,0 дм.

Мощность 5—20 кВт. В больших ваннах глубиной свыше 10 дм предусмотрены мешалки для механического перемешивания масла.

Печи с соляной ванной для тепловой обработки стали или легких металлов

Печи с соляной ванной выгодно отличаются превосходной однородностью температуры и очень хорошей теплопередачей на заготовку. Как правило, тепловая обработка выполняется с более короткими периодами выдержки, чем в камерных печах. Так как загруженный материал проходит тепловую обработку без участия кислорода, окалина и изменение цвета поверхности деталей сведены к минимуму. Печи с соляной ванной TS 20/15 — TSB 90/80 могут использоваться для тепловой обработки металлов в ваннах с нейтральной и активной соляной средой. В них происходят такие процессы, как нитрование после обработки по методу Tenifer при температуре до 600 °C, науглероживание до 950 °C или светлый отжиг при температуре до 1000 °C.

Тигель в печи с соляной ванной установлен в подвешенном состоянии и при необходимости может легко заменяться. Поставляются два типа тигелей:

  • Тигель типа P: низкоуглеродистая сталь и хромоникелевое покрытие для науглероживающих ванн, ванн с нейтральной солью и ванн для отжига до 850 °C
  • Тип тигеля C: высоколегированная хромо-никелевая сталь для ванн нейтральной соли и ванн для отжига до 1000 °C

тигели являются быстроизнашивающимися частями, так как они подвергаются термическим нагрузкам в ходе нагрева и охлаждения и корродирующим воздействиям соли. На износ тигеля влияют следующие факторы:

  • рабочая температура;
  • количество циклов нагрева и охлаждения;
  • соль;
  • обрабатываемый материал;
  • количество обрабатываемого материала;
  • загрязнения обрабатываемого материала.
  • Тигель следует регулярно проверять на износ и отсутствие повреждений. При заказе печи рекомендуем также заказывать запасной тигель.

Возможна поставка печей с соляной ванной для тепловой обработки стали и алюминия. 

Исполнение из стали:

  • Tмакс в соляной среде: 750 °C или 1000 °C
  • Техника безопасности согласно EN 60519-2
  • Система управления ванной с расплавом Измерение температуры в соляной ванне и в печном пространстве за тигелем
  • Съемная стальная плита с бортиком
  • Изолированная крышка, поворачивающаяся в сторону
  • Однородность температуры согласно DIN 17052-1 до +/- 2 °C в соляной ванне
  • Регулируемый ограничитель температуры в пространстве печи для защитны людей и установки
  • Легкая замена тигеля
  • Использование по назначению в рамках руководства по эксплуатации

Исполнение из алюминия и стали, но:

  • Tмакс в соляной среде: 550 °C
  • Термореле в печи и в соляной ванне для защиты персонала и оборудования
  • Световой и звуковой аварийный сигнал для предупреждения в случае превышения критической температуры
  • Термограф Eurotherm 6100e для протоколирования характеристики температуры

Печи с соляной ванной могут оснащаться электрическим или газовым обогревом

  • С электрическим обогревом (модель TS): Высококачественные нагревательные элементы свободного излучения на керамических несущих трубах
  • Четырехсторонний обогрев тигеля
  • При дефекте одного нагревательного элемента нагрев возможен с использованием оставшихся нагревательных элементов
  • С газовым обогревом (модель TSB):
      Система горелки с оптимизированным контролем пламени: высокий КПД за счет избыточного давления для предотвращения подсоса воздуха
  • Оборудование горелки изготовлено согласно DIN EN 746, часть 2
  • Горизонтальный отвод отработанных газов вокруг тигеля
  • Рейтинг
    ( 1 оценка, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]