Топ 25 самых прочных и легких металлов на земле


Глоссарий по физике

  1. Физическая природа прочности
  2. Механизм разрушения
  3. Значения предела прочности на растяжение
  4. Механические свойства металлов
  5. Прочность металлов
  6. Пластичность металлов
  7. Твердость
  8. Модуль продольной упругости
  9. Литература по прочности

Прочность твёрдых тел в широком смысле

— способность твёрдых тел сопротивляться разрушению (разделению на части), а также необратимому изменению формы (пластической деформации) под действием внешних нагрузок.

Прочность твёрдых тел в узком смысле

— сопротивление разрушению. В зависимости от материала, вида напряжённого состояния (растяжение, сжатие, изгиб и др.) и условий эксплуатации (темп-pa, время действия нагрузки и др.) в технике приняты различные меры прочности твердых тел (предел текучести, временное сопротивление, предел усталости и т.д.).

Разрушение твёрдого тела — сложный процесс, зависящий от множества факторов, поэтому величины, определяющие прочность твёрдых тел, являются условными.

Рис. 1. Зависимость силы взаимодействия двух атомов от расстояния между ними.

Физическая природа прочности

Прочность твёрдых тел обусловлена в конечном счёте силами взаимодействия между атомами или ионами, составляющими тело. Напр., сила взаимодействия двух соседних атомов (если пренебречь влиянием окружающих атомов) зависит лишь от расстояния между ними (рис. 1). При равновесном расстоянии r0 ~ 0,1 нм (1 ) эта сила равна нулю. При меньших расстояниях сила положительна и атомы отталкиваются, при больших — притягиваются. На критич. расстояниисила притяжения по абс. величине максимальна и равна FT. Напр., если при растяжении цилинд-рич. стержня с поперечным сечением S0 действующая сила Р, направленная вдоль его оси, такова, что приходящаяся на данную пару атомов внеш. сила превосходит макс. силу притяжения FT, то атомы беспрепятственно удаляются друг от друга. Однако, чтобы тело разрушилось вдоль нек-рой поверхности, необходимо, чтобы все пары атомов, расположенные по обе стороны от рассматриваемой поверхности, испытывали действие силы, превосходящей FT. Напряжение, отвечающее силе F т, наз. теоретич. прочностью на разрыв s т (sT0,1 E, где E — модуль Юнга). Однако на практике наблюдается разрушение при нагрузке Р*, к-рой соответствует напряжение s = P*/S в 100-1000 раз меньше s т· Расхождение теоретич. П. т. т. с действительной объясняется неоднородностями структуры тела (границы зёрен в поликристаллич. материале, посторонние включения и др.), из-за к-рых нагрузка Р распределяется неравномерно по сечению тела.

Механизм разрушения

Если на участке поверхности малых размеров (но значительно превышающих сечение одного атома) локальное напряжение окажется больше s т, вдоль этой площадки произойдёт разрыв. Края разрыва разойдутся на расстояние, большее rк, на к-ром межатомные силы уже малы, и образуется микротрещина (рис. 2). Зарождению микротрещин при напряжении ниже sт способствуют термич. флуктуации.

Рис. 2. Трещина Гриффита; заштрихована область, в которой сняты напряжения. Стрелки указывают направление напряжения.

Локальные напряжения особенно велики у края образовавшейся трещины, где происходит концентрация напряжений, причём они тем больше, чем больше её размер. Если этот размер больше нек-рого критич. rс, на атомы у края трещины действует напряжение, превосходящее sт, и трещина растёт дальше по всему сечению тела с большой скоростью — наступает разрушение. Величина rс определяется из условия, что освободившаяся при росте трещины упругая энергия материала покрывает затраты энергии на образование новой поверхности трещины: (где g — энергия единицы поверхности материала). Прежде чем возрастающее внеш. усилие достигнет необходимой для разрушения величины, отд. группы атомов, особенно входящие в состав дефектов в кристаллах, обычно испытывают перестройки, при к-рых локальные напряжения уменьшаются («релаксируют»). В результате происходит необратимое изменение формы тела — пластич. деформация; ей также способствуют термич. флуктуации. Разрушению всегда предшествует большая пли меньшая пластич. деформация. Поэтому при оценке rс в энергию g должна быть включена работа пластич. деформации уР. Если пластич. деформация велика не только вблизи поверхности разрушения, но и в объёме тела, то разрушение вязкое. Разрушение без за-метных следов пластич. деформации наз. хрупким. Характер разрушения проявляется в структуре поверхности излома. В кристаллич. телах хрупкому разрушению отвечает скол по кристаллографич. плоскостям спайности, вязкому — слияние микропустот и скольжение. При низкой температуре разрушение преим. хрупкое, при высокой — вязкое. Темп-pa перехода от вязкого к хрупкому разрушению наз. критич. температурой хладноломкости.

Поскольку разрушение есть процесс зарождения и роста трещин и пор, оно характеризуется скоростью или временемот момента приложения нагрузки до момента разрыва, т. е. долговечностью материала. Исследования мн. кристаллич. и аморфных тел показали, что в широком интервале температур Т и напряжений s, приложенных к образцу, долговечность при растяжении определяется соотношением

гдеприбл. равно периоду тепловых колебаний атомов в твёрдом теле (10-12 с), энергия U0 близка к энергии сублимации материала, активац. объём V составляет обычно неск. тысяч атомных объёмов и зависит от структуры материала, сформировавшейся в процессе предварительной термич. и механич. обработки и во время нагружения. При низких темп-pax долговечность очень резко падает с ростом напряжения, так что прп любых важных для практики значенияхсуществует почти постоянное предельное значение напряжения выше к-рого образец разрушается практически мгновенно, а ниже — живёт неограниченно долго. Это значение s0 можно считать прочности пределом (табл.).

Значения предела прочности на растяжение

кгс/мм2 (1 кгс/мм2=10 МН/м2)

s0 s0/E
Графит (нитевидный кристалл) 2400 0,024
Сапфир (нитевидный кристалл) 1500 0,028
Железо (нитевидный кристалл) 1300 0,044
Тянутая проволока из высокоуглеродистой стали 420 0,02
Тянутая проволока из вольфрама 380 0,009
Стекловолокно 360 0,035
Мягкая сталь 60 0,003
Нейлон 50

Времязатрачивается на ожидание термофлуктуац. зарождения микротрещин и на их рост до критич. размера . Когда к образцу прикладывают напряжение s, он деформируется сначала упруго, затем пластически, причём около структурных неоднородностей, имевшихся в исходном состоянии или возникших при пластич. деформации, образуются большие локальные напряжения (напр., в кристаллах — в результате скопления дислокаций). В этих местах зарождаются микротрещины. Их концентрация может быть очень большой (напр., в нек-рых ориентиров. полимерах до 1015 трещин в 1 см3). Однако их размеры, определяемые масштабом структурных неоднородностей, значительно меньше . Под пост. напряжением размеры и концентрация трещин растут медленно и тело не разрушается, пока случайно (напр., в результате последоват. слияния близко расположенных соседних трещин) одна из них не дорастёт до критич. размера. Поэтому при создании прочных материалов следует заботиться не столько о том, чтобы трещины не зарождались, сколько о том, чтобы они не росли.

Случайное распределение структурных неоднородностей по объёму образца, по размерам и по степени прочности и случайный характер термин. флуктуации приводят к разбросу значений долговечности (а также предела П. т. т.) при испытаниях одинаковых образцов при заданных значенияхи Т. Вероятность встретить в образце «слабое» место тем больше, чем больше его объём. Поэтому П. т. т. (разрушающее напряжение) малых образцов (напр., тонких нитей) выше, чем больших из того же материала (т. н. масштабный эффект). Участки с повышенным напряжением, где легче зарождаются микротрещины, встречаются чаще у поверхности (выступы, царапины). Поэтому полировка поверхности и защитные покрытия повышают П. т. т. Напротив, в агрессивных средах П. т. т. понижена.

Механические свойства металлов

Прочность металлов

Прочность

— свойство твердых тел сопротивляется разрушению, а также необратимыми изменениями формы. Основным показателем прочности является временное сопротивление, определяемое при разрыве цилиндрического образца, предварительно подвергнутого отжигу.

По прочности металлы можно разделить на следующие группы:

непрочные металлы

— (временное сопротивление не превышает 50 МПа) — олово, свинец, висмут, а также мягкие щелочные металлы.

прочные металлы

— (от 50 до 500 МПа) — магний, алюминий, медь, железо, титан и другие металлы, составляющие основу важнейших конструкционных сплавов

высокопрочные металлы

— (более 500 МПа) — молибден, вольфрам, ниобий и др.

К ртути понятие прочности неприменимо, поскольку это жидкость.

Временное сопротивление металлов указано в таблице 10.

Таблица 10. Прочность металлов

МеталлВременное сопротивление, МПаМеталлВременное сопротивление, МПа
Титан580Цинк120-140
Железо200-300Алюминий80-120
Медь200-250Золото120
Магний120-200Олово27
Серебро150Свинец18

Пластичность металлов

Пластичность

— свойство твердых тел сохранять часть деформации при снятии нагрузок, которые их вызвали. В качестве показателя пластичности выборочно относительное удлинение, определяемое при тех же испытаниях, что и временное сопротивление.

По степени пластичности металлы принято подразделять следующим образом:

высокопластичные металлы

— (относительное удлинение превосходит 40 %) — металлы, составляющие основу большинства конструкционных сплавов (алюминий, медь, железо, титан, свинец) и «легкие» металлы (натрий, калий, рубидий идр.)

пластичные металлы

— (относительное удлинение лежит в диапазоне между 3% и 40%) — магний, цинк, молибден, вольфрам, висмут и др. (наиболее обширная группа)

хрупкие металлы

— (относительное удлинение меньше 3%) — хром, марганец, кольбат, сурьма.

Высокая очистка хрупких металлов несколько повышает пластичность. Сплавы, полученные на их основе, почти не поддаются обработке давлением. Промышленные изделия из них часто получают путем литья. Относительное удлинение металлов характеризует таблица 11.

Таблица 11. Пластичность металлов

МеталлОтносительное удлинение, %МеталлОтносительное удлинение, %
Золото65Титан50
Серебро65Олово40
Свинец65Алюминий30-40
Медь50-60Цинк30
Железо40-50Магний10-22

Твердость

Твердость

— характеристика материала, отражающая его прочность и пластичность, определяемая путем вдавливания шарика (метод Бринелля) или призмы (метод Виккерса). Количественный оценкой твердости является число твердости НВ, равное отношению нагружения (Н) к площади поверхности отпечатка (мм2).

Значения твердости металлов по Бринеллю приведена в таблице 12.

Таблица 12. Твердость металлов

МеталлНВМеталлНВ
Титан160Алюминий16-25
Железо70-80Серебро25
Магний30-40Золото18
Медь40Олово5
Цинк33Свинец4

Модуль продольной упругости

Модуль продольной упругости, модуль Юнга, Е

— определяет жесткость металла, т.е. интенсивность увеличения напряжения по мере увеличения упругости деформации.

Таблица 13. Модуль Юнга металлов при 20 oС

МеталлЕ * 10-5, МПаМеталлЕ * 10-5, МПа
Железо2,17Золото0,83
Цинк1,30Алюминий0,72
Медь1,25Олово0,55
Титан1,08Магний0,45
Серебро0,83Свинец0,18

Литература по прочности

  1. Гуль В. Е., Структура и прочность полимеров, 3 изд., М., 1978;
  2. Разрушение, пер. с англ., т. 1, М., 1973;
  3. Регель В. Р., Слуцкер А. И., Томашевский Э. Е., Кинетическая природа прочности твердых тел, М., 1974.

к библиотеке к оглавлению FAQ по эфирной физике ТОЭЭ ТЭЦ ТПОИ

Знаете ли Вы,

что cогласно релятивистской мифологии «гравитационное линзирование — это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника.» (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО — воздействия гравитации на свет) При этом они забывают, что поле действия эффекта ОТО — это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд — 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов. Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

Рейтинг самых крепких элементов в мире

Существует большое количество известных металлов и сплавов. Среди самых сильных — 10 элементов.

Тантал

Металл под названием тантал, который был открыт в 1802 году, занимает третье место в нашем списке. Он был открыт шведским химиком А. Г. Экебергом. Долгое время считалось, что тантал идентичен ниобию. Однако немецкому химику Генриху Розе удалось доказать, что это два разных элемента. Ученый Вернер Болтон из Германии смог выделить чистый тантал в 1922 году. Это очень редкий металл. Крупнейшие месторождения танталовой руды были обнаружены в Западной Австралии.

Благодаря своим уникальным свойствам тантал является очень востребованным металлом. Он находит разнообразное применение:

  • В медицине тантал используется в производстве проволоки и других компонентов, которые могут связывать ткани и даже выступать в качестве заменителя кости;
  • Сплавы, содержащие тантал, устойчивы к агрессивным средам и поэтому используются в аэрокосмической и электронной промышленности;
  • Тантал также используется для получения энергии в ядерных реакторах;
  • Он также широко используется в химической промышленности.

Титан

Последнее место в десятке самых твердых металлов занимает титан. Первая чистая форма этого элемента была получена химиком Й. Й. Берцелиусом из Швеции в 1825 году. Титан — это легкий, серебристо-белый титановый металл, очень твердый и устойчивый к коррозии и механическим нагрузкам. Титановые сплавы используются во многих отраслях машиностроения, медицины и химической промышленности.

Иридий

Иридий находится в верхней части списка самых твердых металлов. Он был открыт в начале XIX века английским химиком Смитсоном Теннантом. Иридий обладает следующими физическими свойствами:

  • Имеет серебристо-белый цвет;
  • Температура его плавления составляет 2466 oC;
  • Температура его кипения составляет 4 428 °C;
  • Его удельное сопротивление составляет 5,3-10-8 Ом-м.

Поскольку иридий — самый твердый металл на планете, с ним трудно работать. Тем не менее, он по-прежнему используется в различных промышленных приложениях. Например, из него делают маленькие шарики, которые используются в ручках. Иридий также используется в производстве компонентов для космических ракет и некоторых деталей для автомобилей.

В природе встречается очень мало иридия. Находки этого металла являются своего рода доказательством того, что метеориты упали там, где он был найден. Эти космические тела содержат значительное количество этого металла. Ученые считают, что наша планета также богата иридием, но его месторождения находятся ближе к ядру Земли.

Вольфрам


Самый твердый металл, встречающийся в природе. Этот редкий химический элемент также является самым тугоплавким из металлов (3422 °C).

Впервые он был обнаружен в виде кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых, Хуана Хосе и Фаусто д’Эльхухара, к открытию кислоты из минерала тунграмита, из которого затем с помощью древесного угля был выделен вольфрам.

Помимо широкого использования в лампах накаливания, способность вольфрама работать в экстремальных тепловых условиях делает его одним из самых привлекательных элементов для оружейной промышленности. Во время Второй мировой войны металл сыграл важную роль в налаживании экономических и политических отношений между европейскими странами.

Вольфрам также используется для получения твердых сплавов и в аэрокосмической промышленности для производства ракетных сопел.

Бериллий

Теперь эту металлическую красоту лучше не защищать. Потому что бериллий очень токсичен, а также канцерогенен и вызывает аллергию. Если вы вдыхаете воздух, содержащий бериллиевую пыль или пары бериллия, у вас может развиться бериллиоз — заболевание, поражающее легкие.

Однако бериллий не только вреден, но и полезен. Например, добавьте в сталь всего 0,5% бериллия, и вы получите пружины, которые будут упругими, даже если довести их до красного каления. Они могут выдерживать миллиарды циклов нагрузки.

Бериллий используется в аэрокосмической промышленности для создания теплозащитных экранов и систем наведения, для создания огнеупорных материалов. Даже вакуумная трубка Большого адронного коллайдера сделана из бериллия.

Уран

Это радиоактивное вещество естественного происхождения очень широко распространено в земной коре, но концентрируется в определенных твердых горных породах.

Один из самых твердых металлов в мире, он имеет два важных коммерческих применения — ядерное оружие и ядерные реакторы. Поэтому конечными продуктами урановой промышленности являются бомбы и радиоактивные отходы.

Рений

Рений — очень редкий и дорогой металл, который, хотя и встречается в природе в чистом виде, обычно добавляется в молибденит.

Если бы костюм Железного человека был сделан из рения, он мог бы выдерживать температуру 2000°C без потери прочности. Что будет с Железным человеком внутри костюма после такого «огненного шоу» — умалчивается.

Металл используется в нефтехимической и химической промышленности. Этот металл используется в нефтехимической промышленности, электронике и электротехнике, а также в авиационных и ракетных двигателях.

Осмий


Серебристый, голубоватый металл светлого цвета. Он относится к платиновой группе и считается одним из самых плотных элементов. Он характеризуется твердостью. Os — хрупкий металл, но он устойчив к механическим воздействиям и кислотоустойчив.
Ученые зафиксировали присутствие осмия в металлических метеоритах. Образуя идеальный состав с другими элементами, он широко применяется в медицине, электронике, химии и нефтехимии, ракетостроении, широко используется в производстве ручек.

Хром


Хром — это металл сине-белого цвета. Он обладает высокой прочностью и твердостью, а также сильными магнитными свойствами. Он не становится хрупким и устойчив к воздействию кислот и щелочей.

Он используется в производстве различных сплавов, которые применяются в медицинском оборудовании. Cr также используется в синтезе искусственных рубинов, а соли четырехвалентного хрома применяются для консервации древесины и дубления кожи.

Рутений


Название второго по силе металла на древнем языке рутений означает Россия. Этот металл имеет серебристый цвет, относится к группе платины и содержится в мышечных тканях всех живых существ на земле.

Это высокопрочный, твердый, тугоплавкий металл, устойчивый к воздействию химических веществ и способный образовывать сложные соединения. Рутений используется в аэрокосмической, медицинской и электронной промышленности, а также в качестве добавки для придания золоту черного цвета.

Графен

Молекулярная решетка графена. Первый пункт в нашем списке — материал, который широко используется в аэрокосмической и автомобильной промышленности. Когда безопасность стоит на первом месте, а запуск ракет в космос кажется очень опасным, использование графена просто необходимо. Он в 200 раз прочнее стали. Графен состоит из одного слоя атомов углерода, расположенных в виде треугольной решетки.

Железо и сталь

Как чистое вещество, железо не такое твердое по сравнению с другими участниками рейтинга. Однако из-за минимальных затрат на его добычу он часто используется в сочетании с другими элементами для производства стали.

Сталь — это очень твердый сплав, изготовленный из железа и других элементов, таких как углерод. Это наиболее часто используемый материал в строительстве, машиностроении и других отраслях промышленности. И даже если вы не имеете к ним никакого отношения, вы все равно используете сталь каждый раз, когда режете еду ножом (если, конечно, он не керамический).

Искусственный металл

В 2015 году калифорнийские ученые создали микролаты. В настоящее время это самый легкий металл на Земле, состоящий на 99,99% из воздуха. Однако благодаря особой конструкции элемент обладает высокой прочностью. Он представляет собой переплетение трубок, каждая из которых имеет размер 0,001 человеческого волоса. Удивительные свойства микроволокна только начинают в полной мере использоваться в промышленности.

Углеродное волокно

Черный композит из углеродного волокна. Характеристики углеродного волокна, которые делают его отличным выбором для военных машин, ракет и деталей спортивных автомобилей, — это высокая жесткость и очень низкий вес. Углеродное волокно также может выдерживать очень высокие температуры и обладает высокой устойчивостью к воздействию различных абразивных химических веществ. По сути, углеродное волокно — это сверхплотные, выровненные атомы углерода, диаметр которых составляет от 5 до 10 микрометров.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]