Практическая схема диодного моста на напряжение 12 вольт

В блоках питания радио- и электроаппаратуры почти всегда используются выпрямители, предназначенные для преобразования переменного тока в постоянный. Связано это с тем, что практически все электронные схемы и многие другие устройства должны питаться от источников постоянного тока. Выпрямителем может служить любой элемент с нелинейной вольт-амперной характеристикой, другими словами, по-разному пропускающий ток в противоположных направлениях. В современных устройствах в качестве таких элементов, как правило, используются плоскостные полупроводниковые диоды.

Плоскостные полупроводниковые диоды

Наряду с хорошими проводниками и изоляторами существует очень много веществ, занимающих по проводимости промежуточное положение между двумя этими классами. Называют такие вещества полупроводниками. Сопротивление чистого полупроводника с ростом температуры уменьшается в отличие от металлов, сопротивление которых в этих условиях возрастает.

Добавляя к чистому полупроводнику небольшое количество примеси, можно в значительной степени изменить его проводимость. Существует два класса таких примесей:

Рисунок 1. Плоскостной диод: а. устройство диода, б. обозначение диода в электротехнических схемах, в. внешний вид плоскостных диодов различной мощности.

Слой на границе полупроводников p- и n-типа (p-n переход) обладает односторонней проводимостью ? хорошо проводит ток в одном (прямом) направлении и очень плохо в противоположном (обратном). Устройство плоскостного диода показано на рисунке 1а. Основа ? пластинка из полупроводника (германий) с небольшим количеством донорной примеси (n-типа), на которую помещается кусочек индия, являющегося акцепторной примесью.

После нагрева индий диффундирует в прилегающие области полупроводника, превращая их в полупроводник p-типа. На границе областей с двумя типами проводимости и возникает p-n переход. Вывод, соединенный с полупроводником p-типа, называют анодом получившегося диода, противоположный ? его катодом. Изображение полупроводникового диода на принципиальных схемах приведено на рис. 1б, внешний вид плоскостных диодов различной мощности ? на рис. 1в.

Принцип действия полупроводникового диода


Рис. 1
Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов – полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении – от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.

Поэтому при подаче на цепочку, содержащую диод, переменного напряжения Uвх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.

Строго говоря, выходное напряжение Uвых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.

Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

  • повышенная степень пульсаций выпрямленного напряжения;
  • низкий КПД;
  • большой вес трансформатора и его нерациональное использование.

Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ – использование диодного моста.

Простейший выпрямитель

Рисунок 2. Характеристики тока в различных схемах.

Ток, протекающий в обычной осветительной сети, является переменным. Его величина и направление меняются 50 раз в течение одной секунды. График зависимости его напряжения от времени показан на рис. 2а. Красным цветом показаны положительные полупериоды, синим ? отрицательные.

Поскольку величина тока изменяется от нуля до максимального (амплитудного) значения, вводится понятие действующего значения тока и напряжения. Например, в осветительной сети действующее значение напряжения 220 В ? во включенном в эту сеть нагревательном приборе за одинаковые промежутки времени выделяется столько же тепла, сколько в том же устройстве, в цепи постоянного тока напряжением 220 В.

Но на самом деле напряжение в сети меняется за 0,02 с следующим образом:

  • первую четверть этого времени (периода) ? увеличивается от 0 до 311 В,
  • вторую четверть периода ? уменьшается от 311 В до 0,
  • третью четверть периода ? уменьшается от 0 до 311 В,
  • последнюю четверть периода ? возрастает от 311 В до 0.

В этом случае 311 В ? амплитуда напряжения Uо. Амплитудное и действующее (U) напряжения связаны между собой формулой:

При включении в цепь переменного тока последовательно соединенных диода (VD) и нагрузки (рис. 2б), ток через нее протекает только во время положительных полупериодов (рис. 2в). Происходит это благодаря односторонней проводимости диода. Называется такой выпрямитель однополупериодным ? одну половину периода ток в цепи есть, во время второй ? отсутствует.

Ток, протекающий через нагрузку в таком выпрямителе, не постоянный, а пульсирующий. Превратить его практически в постоянный можно, включив параллельно нагрузке конденсатор фильтра Cф достаточно большой емкости. В течение первой четверти периода конденсатор заряжается до амплитудного значения, а в промежутках между пульсациями разряжается на нагрузку. Напряжение становится почти постоянным. Эффект сглаживания тем сильнее, чем больше емкость конденсатора.

Простые выпрямители, фильтры, стабилизаторы

Источники питания были и остаются важнейшей и незаменимой составляющей любой радиоэлектронной схемы. Для обеспечения схем необходимыми напряжениями используют либо автономные источники питания — батареи, аккумуляторы, либо, при питании радиоаппаратуры от сети переменного тока, — сетевые источники. Для того, чтобы понизить напряжение сети с 220 В до приемлемых для питания транзисторных схем значений и обеспечить надежную защиту пользователя от поражения электрическим током, используют понижающий трансформатор (рис. 35.1, 35.16). В исключительно редких случаях используют бестрансформаторные питающие устройства, однако в этом случае все управляющие элементы устройства (ручки, выключатели и пр.) и корпус должны быть надежно изолированы от сети. При пользовании такими устройствами необходимо строжайшее соблюдение правил техники безопасности!

Ниже будут рассмотрены основные варианты схем питания радиоэлектронной аппаратуры.

Рис. 35.1

Простейший выпрямитель — преобразователь переменного тока в постоянный — показан на рис. 35.1, 35.6. К вторичной (понижающей) обмотке трансформатора подключен один полупроводниковый диод VD1. Этот диод пропускает только одну полуволну переменного напряжения (однополупериодное выпрямление), поэтому для сглаживания пульсаций тока на выходе выпрямителя необходимо включать электролитический конденсатор С1 большой емкости. Параллельно ему подключается сопротивление нагрузки. Недостатки такого выпрямителя очевидны: повышенные пульсации выпрямленного напряжения, невысокий КПД. Величина пульсаций будет тем выше, чем меньше емкость сглаживающего пульсации напряжения конденсатора С1 и чем меньше величина сопротивления нагрузки. Величина выходного напряжения такого выпрямителя при работе без нагрузки составляет 1 ,41xUab.

На рис. 35.2 показана схема простейшего выпрямителя — формирователя двуполярного выходного напряжения. Коэффициент полезного действия такого выпрямителя выше, а все приводимые ранее рассуждения полностью распространяются и на эту схему.

Рис. 35.2

Рис. 35.3

Мостовая схема выпрямителя содержит четыре диода и представлена на рис. 35.3. Такая схема подключается к источнику переменного тока, например, к точкам А и В разделительного трансформатора (рис. 35.1). Выпрямитель имеет более высокий КПД, токи в ветвях моста распределяются равномерно. Недостатком схемы являются удвоенные потери на последовательно включенных диодах выпрямителя (за счет «прямого» напряжения). Выходное напряжение мостовой схемы выпрямителя при работе без нагрузки также составляет 1,41 xUAB.

Для выпрямления и умножения выходного напряжения применяют схемы, показанные на рис. 35.4 и 35.5. Часто подобные схемы используют в преобразователях напряжения, в том числе бестрансформаторных, а также в схемах получения высокого напряжения (до десятков киловольт) в телевизионных приемниках, озонаторах, уловителях пыли.

Рис. 35.4

Рис. 35.5

Рис. 35.6

В большинстве случаев выпрямленное напряжение надлежит тщательным образом отфильтровать от пульсаций сети переменного тока. При плохой фильтрации в динамиках будет слышна не радующая душу музыка или речь, а низкочастотный гул или рокот, так называемый «фон» переменного тока. Чем выше качество питающего напряжения, тем лучше будет работать радиоаппаратура. Нефильтрованное питание допустимо использовать лишь для электродвигателей постоянного тока, осветительных и нагревательных приборов.

Для сглаживания выходного напряжения выпрямителей предназначены LC- и RC-фильтры. Простейший из них (L=0, R=0) — емкостный — показан на рис. 35.1 и 35.6. Схема эта, действительно, крайне проста. Однако увеличивать до бесконечности емкость фильтрующего конденсатора невозможно: растут габариты и стоимость конденсатора, снижается надежность устройства в целом. Существует опасность того, что в момент включения устройства в сеть произойдет повреждение диода VD1 либо обмотки трансформатора: ведь незаряженный конденсатор представляет в момент включения короткозамкнутыи элемент. Через обмотку трансформатора и диод в этот момент протекает ток короткого замыкания, многократно превышающий допустимые значения и вызывающий их повреждение.

Рис. 35.7

Рис. 35.8

Рис. 35.9

Для уменьшения переменной составляющей на выходе выпрямителя используют индуктивные (дроссельные) и резистив-но-емкостные Г- и П-образные фильтры (рис. 35.7 — 35.9), а также их последовательное соединение. Напомним, если активное сопротивление (резистор) представляет собой одинаковое сопротивление как для постоянного, так и для переменного тока, то конденсатор для постоянного тока является разрывом цепи, а для переменного тока, в идеале, служит коротким замыканием (см. также главу 3). В свою очередь, индуктивность (дроссель), также в идеале, представляет собой бесконечно малое сопротивление постоянному току и бесконечно большое сопротивление переменному току. Следовательно, использование в качестве элемента фильтра дросселей вместо резисторов предпочтительнее. Однако дроссели имеют значительные габариты, массу и цену, являются более дефицитными и менее надежными элементами по сравнению с обычными резисторами.

В радиоаппаратуре используют и транзисторные фильтры (рис. 35.10). Радиолюбителю предлагается самостоятельно испытать и сравнить различные виды выпрямителей и фильтров при разных параметрах входящих в них элементов. Для контроля «качества» выходного напряжения может быть использован УНЧ или осциллограф, на вход которых через разделительный конденсатор подается выпрямленное напряжение. Питание усилитель должен получать от батарей (аккумулятора) либо от иного источника питания с хорошей фильтрацией выходного напряжения. В качестве простейшего тестера качества фильтрации можно использовать и телефонный капсюль, также подключаемый к выходу выпрямителя или фильтра через разделительный конденсатор.

Рис. 35.10

Рис. 35.11

Рис. 35.12

Далее будут рассмотрены простые стабилизаторы тока (рис. 35.11 — 35.15) и напряжения (рис. 35.16 — 35.20). Схемы стабилизации тока зачастую используют в генераторах импульсов для заряда постоянным током времязадающих конденсаторов, а также в измерительной технике, например, при измерении сопротивлений. На рис. 35.11 и 35.12 показаны схемы стабилизаторов тока [МК 5/86-XVI], При увеличении напряжения на таком двухполюснике (рис. 35.11) происходит самоограничение тока через него. Величину резисторов R1 и R2 можно определить как:

Рис. 35.13

На рис. 35.12 и 35.13 представлены другие схемы ограничения и стабилизации тока. При возрастании тока через датчик тока R2 (рис. 35.12) или R1 и включенный ему параллельно потенциометр R3 (рис. 35.13) уменьшается смещение на базе транзистора VT2 (рис. 35.12) или VT1 (рис. 35.13), соответственно. Транзисторы плавно, пропорционально протекающему через резисторы току, запираются, и ток стабилизируется. В определенных пределах ток ограничения (рис. 35.13) плавно регулируется потенциометром R3.

На рис. 35.14 показана схема стабилизатора тока на основе полевого транзистора. При увеличении тока через резистор R1 меняется смещение на управляющем (3 — И) переходе транзистора, он плавно запирается, ограничивая ток нагрузки.

Стабилизатор тока на основе микросхемы, в состав которой входит несколько десятков элементов (рис. 35.15), может обеспечить широкий диапазон токов нагрузки [Дж. Уитсон]. Популярная микросхема стабилизатора напряжения может стабилизировать еще и ток. Величина стабилизируемого тока в нагрузке рассчиты вается следующим образом: lH=(UBb|X/R1)+10 мА, где lH — в мА 11вых — в В; R1 — в кОм.

Рис. 35.14

Рис. 35.15

Рис. 35.16

На рис. 35.16 представлена схема несложного стабилизированного источника питания. Он содержит понижающий трансформатор, мостовой выпрямитель, конденсаторный фильтр и полупроводниковый стабилизатор напряжения. Схема стабилизатора напряжения позволяет плавно регулировать выходное напряжение в пределах от 0 до 12 В и защищена от коротких замыканий на выходе. Для питания низковольтного паяльника, а также для экспериментов с переменным электрическим током предусмотрена дополнительная обмотка трансформатора. Имеется индикация постоянного напряжения (светодиод HL2) и переменного (светодиод HL1). Для включения всего устройства используется тумблер SA1, а паяльника — SA2. Нагрузку отключает SA3. Для защиты цепей переменного тока от перегрузок предусмотрены предохранители FU1 и FU2. На ручке регулятора выходного напряжения (потенциометр R4) нанесены значения выходных напряжений.

Рис. 35.17

Рис. 35.18

Рис. 35.19

На рис. 35.17 показан фрагмент схемы модифицированного стабилизатора (рис. 35.16) с индикацией короткого замыкания в нагрузке. В нормальном режиме светится зеленый светодиод, при замыкании нагрузки — красный.

Рис. 35.20

Очень простой и высококачественный стабилизатор на специализированной микросхеме серии К142ЕН изображен на рис. 35.18. Транзисторные стабилизаторы показаны на рис. 35.19 и 35.20 [Р 4/81-61]. При значительных токах нагрузки транзистор VT4 (рис. 35.20) следует закрепить на теплоотводящей пластине из цветного металла.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Tweet Нравится

  • Предыдущая запись: Схема магнитофона Астра-2 на 6Н2П, 6Н1П, 6П14П и 6Е1П (2Вт)
  • Следующая запись: Радиомикрофон (жучок), управляемый голосом для диапазона 120-140 мГц
  • Похожие посты:

  • Коммутатор нагрузки из электромеханических будильников (0)
  • ПРЕДУСИЛИТЕЛЬ АУДИОСИГНАЛОВ C АРУ (2)
  • ИСТОЧНИК ПИТАНИЯ ДЛЯ АВТОМОБИЛЬНОГО РАДИОПРИЕМНИКА (0)
  • УСТРОЙСТВО ЭЛЕКТРИЧЕСКОЙ РАЗВЯЗКИ АККУМУЛЯТОРОВ (0)
  • ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АККУМУЛЯТОРА (0)
  • ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ ЛИТИЙ-НОННОГО ЭЛЕМЕНТА КОНТРОЛЛЕР ЗАРЯДНОГО УСТРОЙСТВА (0)
  • ОГРАНИЧИТЕЛЬ ЗАРЯДНОГО TOKA АККУМУЛЯТОРА (0)

Схема диодного моста

Более совершенной является двухполупериодная схема выпрямления, когда используются и положительный, и отрицательный полупериод. Существует несколько разновидностей таких схем, но чаще всего используется мостовая. Схема диодного моста приведена на рис. 3в. На ней красная линия показывает, как протекает ток через нагрузку во время положительных, а синяя ? отрицательных полупериодов.

Рисунок 4. Схема выпрямителя на 12 вольт с использованием диодного моста.

И первую, и вторую половину периода ток через нагрузку протекает в одном и том же направлении (рис. 3б). Количество пульсации в течение одной секунды не 50, как при однополупериодном выпрямлении, а 100. Соответственно, при той же емкости конденсатора фильтра эффект сглаживания будет более ярко выражен.

Как видно, для построения диодного моста необходимо 4 диода ? VD1-VD4. Раньше диодные мосты на принципиальных схемах изображали именно так, как на рис. 3в. Ныне общепринятым считается изображение, показанное на рис. 3г. Хотя на ней только одно изображение диода, не следует забывать, что мост состоит из четырех диодов.

Мостовая схема чаще всего собирается из отдельных диодов, но иногда применяются и монолитные диодные сборки. Их проще монтировать на плате, но зато при выходе из строя одного плеча моста, заменяется вся сборка. Выбирают диоды, из которых монтируется мост, исходя из величины протекающего через них тока и величины допустимого обратного напряжения. Эти данные позволяет получить инструкция к диодам или справочники.

Полная схема выпрямителя на 12 вольт с использованием диодного моста приведена на рис. 4. Т1 ? понижающий трансформатор, вторичная обмотка которого обеспечивает напряжение 10-12 В. Предохранитель FU1 ? нелишняя деталь с точки зрения техники безопасности и пренебрегать им не стоит. Марка диодов VD1-VD4, как уже говорилось, определяется величиной тока, который будет потребляться от выпрямителя. Конденсатор С1 ? электролитический, емкостью 1000,0 мкФ или выше на напряжение не ниже 16 В.

Напряжение на выходе ? фиксированное, величина его зависит от нагрузки. Чем больше ток, тем меньше величина этого напряжения. Для получения регулируемого и стабильного выходного напряжения требуется более сложная схема. Получить регулируемое напряжение от схемы, приведенной на рис. 4 можно двумя способами:

Остается надеяться, что описания и схемы, приведенные выше, окажут практическую помощь в сборке простого выпрямителя для практических нужд.

В электротехнике существует несостыковка. С одной стороны, передавать энергию на большие расстояния удобнее, если она имеет форму переменного напряжения. С другой, для питания смартфонов, светодиодов в лампочках, плат в телевизорах и подобной бытовой техники требуется постоянный ток. Данную проблему успешно решает такое семейство радиодеталей, как выпрямительные диоды.

Выпрямительный мост своими руками

Каждый, кто занимается конструированием электронных устройств, не обходится без выпрямителя. Он присутствует практически в каждом самодельном приборе, питаемом от сети. Для того чтобы собрать выпрямитель, недостаточно взять четыре диода и скрутить им ножки согласно приведенной схеме. Для того чтобы мост работал, придется ближе познакомиться с диодами и их характеристиками перед тем, как браться за паяльник. Основные характеристики, которые понадобятся при построении выпрямителя у полупроводников, следующие:

  1. Максимально допустимое обратное напряжение. Напряжение, которое способен выдерживать диод в закрытом состоянии.
  2. Максимально допустимый прямой ток. Ток, который может долговременно выдерживать диод без повреждения.
  3. Прямое напряжение. Величина падения напряжения на открытом диоде.
  4. Граничная частота. Частота переменного тока, на которой прибор еще может работать.

При сборке сетевого выпрямителя, способного отдавать в нагрузку ток в 1 А, необходимо сделать диодный мост на 12 вольт. Так выглядит практическая схема мостового выпрямителя.

Прежде всего, необходимо правильно всё рассчитать и подобрать нужный тип полупроводников, исходя из имеющихся диодов. Если в распоряжении есть диоды Д226, КД204А, КД201А и Д247, нужно открыть справочник и ознакомиться с их основными характеристиками (напряжением, током и граничной частотой):

  • Д226 — 400 В, 0,3 А, 1 кГц;
  • КД204А — 400 В, 0,4 А, 50 кГц;
  • КД201А — 100 В, 5 А, 1,1 кГц;
  • Д247 — 500 В, 10 А, 1 кГц.

Все четыре типа диодов подходят по напряжению и частоте, но первые два не выдержат ток в 1 А. Остаются КД201А и Д247. Решение взять те или другие зависит от конструкции блока питания. Первые диоды компактнее, вторые имеют хороший запас по току.

Сглаживающий конденсатор С1 нужно выбирать по типу, электрической емкости и напряжению. Понадобится электролитический конденсатор емкостью от 1 000 до 20 000 мкФ с рабочим напряжением не ниже 25 В. Чем выше емкость сглаживающего конденсатора, тем качественнее будет выпрямленное напряжение, но тем больше по габаритам окажется сама конструкция. Всю необходимую информацию, включая емкость, полярность и рабочее напряжение можно увидеть прямо на конденсаторе.

Осталось включить паяльник и спаять схему, не забывая при этом, что электролитические конденсаторы — полярные приборы. Они имеют плюс и минус, путать которые нельзя.

Что такое диоды

Диод – это полупроводниковый элемент на основе кристалла кремния. Ранее эти детали также изготавливались из германия, но со временем этот материал был вытеснен из-за своих недостатков. Электрический диод функционирует как клапан, т.е. он пропускает ток в одном направлении и блокирует его в другом. Такие возможности в эту деталь заложены на уровне атомарного строения его полупроводниковых кристаллов.

Читать также: Как сделать наждак из двигателя стиральной машины

Один диод не может получить из переменного напряжения полноценное постоянное. Поэтому на практике используют более сложные сочетания этих элементов. Сборка из 4 или 6 деталей, объединённых по специальной схеме, образует диодный мост. Он уже вполне способен справиться с полноценным выпрямлением тока.

Интересно. Диоды обладают паразитной чувствительностью к температуре и свету. Прозрачные выпрямители в стеклянном корпусе могут использоваться как датчики освещённости. Германиевые диоды (прим. Д9Б) подходят в качестве термочувствительного элемента. Собственно из-за сильной зависимости свойств этих элементов от температуры их и перестали производить.

Как сделать выпрямитель своими руками?

Если в наличии мастера имеются комплектующие детали, вполне реально изготовить самодельный сварочный выпрямитель. При условии соблюдения всех рекомендаций специалистов он гарантировано обеспечит процесс ручной дуговой сварки постоянным током, но потребуется применить электрод с обмазкой.

Использовать проволоку без обмазки также допустимо, но только при условии большого опыта в сварных вопросах. Для неопытного сварщика справиться с ней будет практически нереально.

Диодный мост для сварочного аппарата.

Обмазка при расплавлении электрода препятствует проникновению составляющих воздуха в расплавленный металл сварного соединения. Без нее контакт металла в расплавленном виде с азотом и кислородом снизят прочностные свойства шва, сделав его хрупким и пористым.

Сначала потребуется выбрать или смотать своими руками понижающий трансформатор с требуемыми параметрами. Собирают трансформатор до подключения диодного моста.

Если выбран путь самостоятельного изготовления аппарата, важно правильно рассчитать его элементы, в том числе:

  • параметры магнитопровода;
  • актуальное количество витков;
  • размеры сечения шин, проводов.

В работе не обойтись без светодиодов: нужны они в качестве проводников тока в одном единственном направлении. Простейший диодный выпрямитель, созданный по мостиковой схеме, монтируют на радиатор с целью теплообмена и охлаждения.

Мощные диоды для сварочного аппарата, по типу ВД-200, выделяют при работе довольно большой объем тепловой энергии. Чтобы обеспечить падающую характеристику тока, в цепь потребуется включить дроссель последовательно.

Активное переменное сопротивление в такой схеме обеспечит сварщику возможность плавно регулировать сварочный ток. Далее, один полюс нужно подключить к сварной проволоке, а второй ‒ к рабочему объекту.

Электролитический конденсатор в составе схемы необходим в качестве сглаживающего фильтра для снижения пульсаций.

Выполнить намотку реостата несложно своими силами, но для такой задачи потребуется керамический сердечник и проволока из никелина или нихрома. Актуальный диаметр проволоки определит величина регулируемого тока сварной операции.

Расчет сопротивления реостата нужно проводиться учетом удельного сопротивления электрода, его сечения и общей длины.

Электрическая схема сварки с диодным мостом.

Шаг регулировки тока для сварки зависит от диаметра витков. Если правильно собрать перечисленные детали в единый агрегат, процесс сварки будет сопровождаться постоянным током. Не лишним будет и монтаж резистора, препятствующего короткому замыканию при работе.

Оно может происходить при касании проволоки о металл без зажигания дуги. Если в это время на конденсаторе нет сопротивления, он мгновенно разрядится, произойдет щелчок, электрод разрушится или прилипнет к металлу.

При наличии резистора можно сгладить разряды на конденсаторе, сделать поджога электрода более простым и мягким. Изготовление аппарата для выпрямления сварного тока своими руками позволит создавать максимально аккуратные и долговечные сварные швы.

Однофазный и трёхфазный диодный мост

Существует две основные разновидности выпрямляющих сборок:

  • Однофазный мост. Чаще используется в бытовых электроприборах. Имеет 4 вывода. На два их них подаётся переменное напряжение, т.е. фаза (L) и ноль (N). С двух оставшихся снимается постоянное, т.е. плюс (+) и минус (-).
  • Трёхфазный мост. Встречается в мощных промышленных установках и оборудовании, питающимся от сети 380 вольт. На его вход подаются три фазы (L1, L2, L3). С выхода так же снимается постоянное напряжение. Такие мосты отличаются большими размерами и внушительными токами, которые они способны через себя пропустить.

Принцип работы диодного моста

Понять, как мост выполняет свою задачу, можно, разобравшись в том, как ведёт себя отдельный диод. Изначально имеются только два провода с переменным напряжением (L и N). Оно имеет форму синусоиды (рис. а). Если в схему добавить один диод, то он будет пропускать только положительную полуволну (рис. б), если этот компонент развернуть, то отрицательную составляющую (рис. в). Такое напряжение уже не будет переменным. Всё же оно не годится для питания серьёзных электроприборов. В нём наблюдаются моменты, когда ток совсем отсутствует. Применение четырёх диодов позволит получить постоянное напряжение без всяких прерываний (рис. г). Трёхфазные мосты выпрямляют по такому же методу. Однако они делают это одновременно с тремя синусоидами.

Выпрямитель

Полученное после диодного моста напряжение имеет форму синусоиды, у которой отрицательная составляющая отражена относительно оси времени. Проще говоря, оно имеет форму холмов и называется пульсирующим. Такое напряжение положительное. Не содержит моментов, когда ток не течёт. Но всё же оно нестабильное. Например, в точке «a» оно рано 0 вольт, а в «b» – имеет максимальное значение. Данный выпрямитель нельзя считать законченным.

Для решения этой проблемы требуется сглаживающий электролитический конденсатор. На плате он обычно располагается там же, где и диодная сборка. Ёмкость накапливает энергию в те моменты, когда она имеет пиковые значения (точка b), и отдаёт её в моменты провалов (a). На выходе получается прямая линия – полноценный постоянный ток, пригодный для питания последующих электронных компонентов, процессоров, микросхем и т.п.

Недостатки полного моста

У полноценного двухполупериодного моста имеются недостатки:

  1. Ток вынужден протекать не по одному диоду, а сразу по двум, включенным последовательно. Поэтому удваивается падение напряжения на выпрямительном элементе. Для маломощных мостов на кремниевых диодах оно может достигать 2 вольт. В мощных выпрямителях – порядка 10 В. Отсюда существенные потери мощности на выпрямляющем элементе и его повышенный нагрев.
  2. При выходе из строя одного и четырёх диодов мост продолжает работать. Данный дефект может быть незаметен без специальных замеров. Однако он создаёт риск более серьёзной поломки устройства, которое питается через неисправный мостик.

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические конденсаторы с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.

Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Конструкция

Схема любого выпрямительного моста включает в себя диоды. Они могут быть по отдельности распаяны на печатную плату или находиться в одном корпусе. Касаемо размера выпрямители бывают миниатюрными, например, импортные MB6S или советские КЦ405А. Последние в народе именуют «ка-цэшками» или «шоколадками».

Встречаются образцы с внушительными габаритами. Например, трёхфазный выпрямительный мост китайского производства. Прибор предназначен для токов в сотни ампер, поэтому имеет винтовой крепёж под силовые провода и плоскую металлическую теплопроводящую поверхность с отверстиями для фиксации на радиаторе охлаждения.

Особенность выпрямителей

Выпрямитель для сварочного аппарата выполняется по мостовой схеме. При изготовлении и применении диодов В200 нужно учитывать, что их корпус находится под напряжением.

Поэтому когда выпрямитель устанавливают на радиатор, он должен быть изолирован от остальных элементов схемы, от корпуса прибора и от соседних диодов тоже. А это создает определенные неудобства для сварщика.

Приходится использовать более крупный корпус. Для уменьшения габаритов аппарата применяют выпрямительный прибор ВЛ200, который имеет другую полярность. Это позволяет объединить полупроводники на два парных радиатора.

В последние годы стали выпускать довольно мощные диодные мосты в одном корпусе. По размерам такая конструкция из диодов примерно соответствует спичечному коробку, имеет площадку для посадки радиатора, максимальный прямой ток 30-50 А. Диодная сборка имеет значительно меньшую стоимость по сравнению с диодами В200.

Если по работе устройства требуется более мощный мост, то эту проблему можно легко решить, используя параллельное подключение мостовых сборок. Однако их надежность в таком случае будет ниже, чем у одиночных мощных диодов.

Маркировка выпрямителей

Не существует общепринятых правил, согласно которым производители маркируют свои диодные мосты. Каждый вправе называть своё изделие так, как считает нужным, т.е. по своей собственной номенклатуре.

Однако у большинства из этих деталей есть схожие признаки, помогающие визуально определить назначение их выводов. На фото трёхфазного моста (см. выше) отдельно выделен символ переменного тока – волнистая линия. Он указывает на то, что к этому контакту подключается входное синусоидальное напряжение. Также на некоторых моделях мостиков входные выводы помечаются буквами AC (Alternative Current), указывающими на переменный ток. При этом выходные контакты, с которых снимается постоянный ток, обозначаются символами DC (Direct Current) или традиционными «+» и «-». Дополнительно на некоторых выпрямителях со стороны плюса «подпилен» один из углов. Также на «+» может указывать и удлинённый вывод. Подобная маркировка свойственна многим электронным компонентам и называется ключом.

Диодный мостик своими руками

Чтобы самостоятельно собрать выпрямитель, понадобится 4 однотипных диода. При этом они должны подходить по обратному напряжению, максимальному току и рабочей частоте. Соединения нужно сделать в соответствии со схемой ниже. Между двумя катодами снимается положительное напряжение, между анодами – отрицательное. К точкам, в которых подключены разноимённые выводы диодов, подсоединяется источник переменного напряжения. Всю схему можно за пару минут спаять навесным монтажом или потрудиться и выполнить в виде небольшой печатной платы.

Дополнительная информация. Обратные напряжения диодов, включенных в последовательную цепь, складываются между собой.

Выбор типа сборки

Для каждой задачи существует свой оптимальный вариант выпрямительной диодной сборки. Все их можно условно разделить на 3 вида:

  • Выпрямитель на одном диоде. Применяется в самых простых и дешёвых схемах, где нет к.л. требований к качеству выходного напряжения, как, например, в ночниках.
  • Сдвоенный диод. Эти детали внешне похожи на транзисторы, ведь они выпускаются в таких же корпусах. Они также имеют 3 вывода. По сути, это два диода, помещённых в один корпус. Один из выводов – средний. Он может быть общим катодом или анодом внутренних диодов.
  • Полноценный диодный мост. 4 детали в одном корпусе. Подходит для устройств с большими токами. Применяется в основном на входах и выходах различных блоков питания и зарядных устройств.

Дополнительная информация. Выпрямители используются и в автомобилях. Они нужны для преобразования идущего с генератора переменного напряжения в постоянное. Оно, в свою очередь, необходимо для зарядки аккумулятора. Обычный бензогенератор вырабатывает переменный ток.

Читать также: Садовое кашпо в виде пня

Проверка элементов

В большинстве случаев для проверки выпаивать мостик из платы не требуется. Тестировать его следует точно так же, как 4 p-n перехода с подключением по схеме диодного моста. Данное измерение настолько распространено, что его возможность реализована в любом мультиметре. Прибор для теста нужно переключить в режим диодной прозвонки.

Падение напряжения в прямом направлении на исправном выпрямительном диоде составляет 500-700 мВ. В обратном – прибор отобразит «1». Сгоревшая деталь чаще всего показывает в обоих направлениях «0», т.е. короткое замыкание. Реже бывает полный обрыв элемента (также в обе стороны). Все замеры следует повторить для каждого входящего в состав моста диода. Итого 8 измерений, т.е. 4 в прямом направлении и 4 – в обратном. Если тестируется диод Шоттки, то этот параметр составляет 200-400 мВ.

Физические свойства p-n перехода

Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).

Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.

Использование барьера Шоттки

Применение диода Шоттки оправдано в двух случаях. Во-первых, когда нужно выпрямить высокочастотный ток. Барьер Шоттки идеально подходит для подобной задачи, ведь он имеет низкую ёмкость перехода и, соответственно, является быстродействующим. Во-вторых, когда требуется выпрямить большой ток в десятки или сотни ампер. В этом случае деталь отлично себя показывает ввиду низкого падения напряжения и малого тепловыделения.

Диодные мосты в мире электроники играют роль согласующего элемента. С их помощью можно подключать устройства, требующие постоянный ток, к сети удобного для передачи переменного напряжения. Подобных устройств очень много в быту, они крайне важны для комфортной жизни человека.

Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).

Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.

Примешанные атомы начинают образовывать, в зависимости от своей природы, свободные электроны или дырки. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный.

Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.

В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.

История изобретения

В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель.

В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.

В середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.

Принцип работы диода

Диод — это полупроводниковый прибор, имеющий малое сопротивление для тока в одном направлении, и препятствующий его прохождению в обратном. Физически диод состоит из одного p-n перехода. Конструктивно представляет собой элемент, содержащий два вывода. Вывод, подключённый к p-области, называется анодом, а соединённый с n-областью — катодом.

При работе диода существует три его состояния:

Прямым потенциалом называется такой сигнал, когда плюсовой полюс источника питания подключён к области p-типа полупроводника, другими словами, полярность внешнего напряжения совпадает с полярностью основных носителей. При обратном потенциале отрицательный полюс подключён к p-области, а положительный к n.

В области соединения материала n- и p-типа существует потенциальный барьер. Он образуется контактной разностью потенциалов и находится в уравновешенном состоянии. Высота барьера не превышает десятые доли вольта и препятствует продвижению носителей заряда вглубь материала.

Если к прибору подключено прямое напряжение, то величина потенциального барьера уменьшается и он практически не оказывает сопротивление протеканию тока. Его величина возрастает и зависит только сопротивления p- и n- области. При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки. Слои обедняются и сопротивление барьера прохождению тока возрастает.

Основным показателем элемента является вольт-амперная характеристика. Она показывает зависимость между приложенным к нему потенциалом и током, протекающим через него. Представляется эта характеристика в виде графика, на котором указывается прямой и обратный ток.

Физические процессы

В основе принципа работы диодного моста лежит способность p-n перехода пропускать ток только в одном направлении. Под p-n переходом понимается контакт двух полупроводников с различным типом проводимости. Граница, разделяющая области, характеризуется шириной запрещённой зоны, препятствующей прохождению зарядов. С одной её стороны находится p область, в которой основными носителями считаются дырки (положительный заряд), а с другой n область, где основные носители электроны (отрицательный заряд).

Находясь изолированно друг от друга, в каждой области элементарные частички совершают беспорядочные тепловые колебания, из-за чего их выделяемая энергия компенсируется и результирующий ток равен нулю. При соприкосновении этих областей возникают диффузионные токи, вызванные притягиванием зарядов друг к другу. В итоге частички сталкиваются и рекомбинируют (исчезают). В зоне соприкосновения происходит обеднение носителей, и их движение прекращается. Устанавливается состояние динамического равновесия.

При приложении к p-n переходу электрического поля картина меняется. При прямом смещении, то есть таком, когда положительный полюс источника питания подключается к p области, а отрицательный к n области, происходит введение основных носителей в области. Из-за этого ширина запрещённой зоны уменьшается, и частички свободно начинают проходить через барьер, образуя ток. Если же полярность источника питания изменить, то произойдёт ещё большее обеднение слоёв, в итоге барьер увеличится, и ток не возникнет.

Таким образом, в зависимости от полярности сигнала, приложенного к переходу, ширина запрещённой зоны увеличивается или уменьшается. Если на элемент, в основе работы которого используется p-n переход подать переменный сигнал, то в результате к нему попеременно будет прикладываться прямое и обратное напряжение. Соответственно, часть сигнала он будет задерживать, а часть пропускать.

Если же взять измерительный прибор, умеющий показывать форму сигнала (осциллограф), то на выходе радиоэлемента можно будет увидеть импульсы, длительность которых определяется периодом полуволны. Именно поэтому диод и называется выпрямительным, хотя к нему больше подходит название импульсный преобразователь. То есть устройство, преобразующее переменный сигнал в пачку импульсов.

Вам это будет интересно Расчет сопротивления контура заземления в частных домах

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Схема простого выпрямителя

Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.

При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.

Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.

Читать также: Пасхальное яйцо своими руками на пасху 2022 году — 5 лучших поделок

Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.

Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.

Схема простого выпрямителя переменного тока на одном диоде.

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

На вход выпрямителя подадим сетевое переменное

напряжение, в котором
положительные
полупериоды выделены красным цветом, а
отрицательные
– синим. К выходу выпрямителя подключим нагрузку (

), а функцию выпрямляющего элемента будет выполнять диод (
VD
).

При положительных

полупериодах напряжения, поступающих на анод диода диод
открывается
. В эти моменты времени через диод, а значит, и через нагрузку (

), питающуюся от выпрямителя, течет
прямой ток
диода
Iпр
(на правом графике волна полупериода показана красным цветом).

При отрицательных

полупериодах напряжения, поступающих на анод диода диод
закрывается
, и во всей цепи будет протекать незначительный
обратный ток
диода (
Iобр
). Здесь, диод как бы отсекает
отрицательную
полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (

), подключенную к сети через диод (
VD
), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а
пульсирующий
ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания. Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока

. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно

нагрузке подключить фильтрующий
электролитический конденсатор
(Cф) большой емкости.

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (

) во время отрицательных полупериодов
разряжается
через нагрузку (

). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (

) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс

) пока еще очень ощутим. В выпрямителе, с работой которого мы познакомились, полезно используется энергия только
половины
волн переменного тока, поэтому на нем теряется больше половины
входного
напряжения и потому такое выпрямление переменного тока называют
однополупериодным
, а выпрямители –
однополупериодными выпрямителями
. Эти недостатки устранены в выпрямителях с использованием
диодного моста
.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Диодный мост

Такое устройство представляет собой электрический прибор, служащий для преобразования переменного тока в постоянный. Словосочетание «диодный мост» образуется из слова «диод», что предполагает использование в нём диодов. Схема диодного моста выпрямителя зависит от сети переменного тока, к которой он подключается. Сеть может быть:

В зависимости от этого и выпрямительный мост называется мостом Гретца или выпрямителем Ларионова. В первом случае используется четыре диода, а во втором прибор собирается уже на шести.

Первая схема выпрямительного прибора собиралась на радиолампах и считалась сложным и дорогим решением. Но с развитием полупроводниковой техники диодный мост полностью вытеснил альтернативные способы выпрямления сигнала. Вместо диодов редко, но ещё применяются селеновые столбы.

Конструкции и характеристики прибора

Конструктивно выпрямительный мост выполняется из набора отдельных диодов или литого корпуса, имеющего четыре вывода. Корпус может быть плоского или цилиндрического вида. По принятому стандарту, значками на корпусе прибора отмечаются выводы подключения переменного напряжения и выходного постоянного сигнала. Выпрямители, имеющие корпус с отверстием, предназначены для крепления на радиатор. Основными характеристиками выпрямительного моста являются:

  1. Наибольшее прямое напряжение. Это максимальная величина, при которой параметры прибора не выходят за границы допустимых.
  2. Наибольшее допустимое обратное напряжение. Это максимальное импульсное напряжение, при котором мост длительно и надёжно работает.
  3. Наибольший рабочий ток выпрямления. Обозначает средний ток, протекающий через мост.
  4. Максимальная частота. Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев.

Превышение значений характеристик выпрямителя приводит к резкому сокращению срока его службы или пробою p-n переходов. Необходимо отметить такой момент, что все параметры диодов указываются для температуры окружающей среды 20 градусов. К недостаткам применения мостовой схемы выпрямления относят большее падение напряжения, по сравнению с однополупериодной схемой, и более низкое значение коэффициента полезного действия. Для уменьшения величины потерь и снижения нагрева мосты часто изготавливают с применением быстрых диодов Шотки.

Схема подключения устройства

На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами. Если выпрямитель собран из отдельных диодов, то рядом с каждым ставится обозначение VD и цифра, обозначающая порядковый номер диода в схеме. Редко используются надписи VDS или BD.

Диодный выпрямитель может подключаться напрямую к сети 220 вольт или после понижающего трансформатора, но схема включения его остаётся неизменной.

При поступлении сигнала в каждом из полупериодов ток сможет протекать только через свою пару диодов, а противоположная пара будет для него заперта. Для положительного полупериода открытыми будут VD2 и VD3, а для отрицательного VD1 и VD4. В итоге на выходе получится постоянный сигнал, но его частота пульсации будет увеличена в два раза. Для того чтобы уменьшить пульсацию выходного сигнала, используется, как и в случае с одним диодом, параллельное включение конденсатора С1. Такой конденсатор ещё называют сглаживающим.

Но случается так, что диодный мост ставится не только в переменную сеть, но и подключается в уже выпрямленную. Для чего нужен диодный мост в такой цепи, станет понятно, если обратить внимание в каких схемах используется такое его включение. Эти схемы связаны с использованием чувствительных радиоэлементов к переполюсовке питания. Использование моста позволяет осуществить простую, но эффективную защиту «от дурака». В случае ошибочного подключения полярности питания радиоэлементы, установленные за мостом, не выйдут из строя.

Проверка на работоспособность

Такой тип электронного прибора можно проверить, не выпаивая из схемы, так как в конструкциях устройств никакое его шунтирование не используется. В случае выпрямителя, собранного из диодов, проверяется каждый диод в отдельности. А в случае с монолитным корпусом измерения проводятся на всех четырёх его выводах.

Суть проверки сводится к прозвонке мультиметром диодов на короткое замыкание. Для этого выполняются следующие действия:

  1. Мультиметр переключается в режим позвонки диодов или сопротивления.
  2. Штекер одного провода (чёрного) вставляется в общее гнездо тестера, а второго (красного) в гнездо проверки сопротивления.
  3. Щупом, подключённым чёрным проводом, дотроньтесь до первой ножки, а щупом красного провода до третьего вывода. Тестер должен показать бесконечность, а если поменять полярность проводов, то мультиметр покажет сопротивление перехода.
  4. Минус тестера подается на четвёртую ногу, а плюс на третью. Мультиметр покажет сопротивление, при смене полярности бесконечность.
  5. Минус на первую ногу, плюс на вторую. Тестер покажет открытый переход, при смене – закрытый.

Такие показания тестера говорят об исправности выпрямителя. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром. Но при этом придётся подать питание на схему и замерить напряжение на сглаживающем конденсаторе. Его величина должна превышать входное в 1,4 раза.

Популярные записи

    Пасхальное яйцо своими руками на пасху 2022 году — 5 лучших поделок Регулятор оборотов двигателя постоянного тока 12 вольт Как сделать кораблик из пенопласта Как сделать сварочные клещи для точечной сварки Как построить конюшню для лошадей Паперкрафт для начинающих, бумажное моделирование, объемные скульптуры и простые фигуры из бумаги для детей Как сделать букет в коробке своими руками: пошаговая инструкция Капельное орошение в теплице и на огороде своими руками

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга

Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]