Кавитационный теплогенератор: устройство, виды, применение

Принято считать, что сопло Лаваля – это техническое устройство, предназначенное исключительно для разгона газовых потоков до сверхзвуковых скоростей.

Возьмем рисунок из статьи Википедии. (Рис.1.), на котором схематично показано сечение сопла, а также динамика давления, температуры и скорости газового потока вдоль оси сопла.

Рис.1 Иллюстрация работы сопла Лаваля. По мере движения газа по соплу, его абсолютная температура Т и давление Р снижаются, а скорость V возрастает. М — число Маха.

Суживающая часть сопла называется конфузором, а расширяющая – диффузором. Хочу обратить внимание на соотношение длин конфузора и диффузора. Диффузор по длине больше конфузора. И хотя на этот факт в разных источниках никто не обращает внимание, думаю, что это важный параметр, значение которого необходимо соблюдать. Причем, если проектировать сопло Лаваля для газового и парового потока, то, действительно, длина конфузора должна быть меньше длины диффузора.

Не знаю, как объясняют этот факт ученые люди, но как русский дилетант могу предположить, что это связано с некими газовыми законами. Если сравнивать сопло Лаваля и самый обыкновенный ДВС (двигатель внутреннего сгорания), то можно заметить, что между ними есть некая аналогия – чередование фаз сжатия и разряжения, что в итоге позволяет выделиться внутренней энергии газа (топлива). В ДВС имеется 4 фазы – две изотермические и две адиабатические. В сопле Лаваля, похоже, есть только две фазы – адиабатическое сжатие и изотермическое расширение.

Сжатие осуществляется в конфузоре. И для адиабатического процесса он должен быть коротким. Изотермическое расширение происходит в диффузоре, поэтому для приближения процесса к изотермическому диффузор должен быть длинным, гораздо длиннее конфузора.

Говорить об идентичности сжатия и разряжения газа вдоль центральной оси сопла Лаваля, конечно, надо с некой долей условности, так как быстротечность процессов в нём не позволяет осуществляться процессу теплообмена между струёй газа и окружающей средой. Но кто говорит об окружающей среде? Ведь надо же в первую очередь объяснить, откуда топливо при своём сгорании черпает ту энергию, которая позволяет забрасывать спутники и космические корабли на орбиту Земли и даже дальше? Умные люди утверждают, что это так называемая внутренняя энергия топлива, но сам механизм этого процесса мудро замалчивают, ссылаясь на некие законы природы, открытые экспериментальным путём.

Мне, как дилетанту, остается предположить, что внутренняя энергия топлива – это ответная реакция эфирной и газовой среды на движущийся вдоль сопла Лаваля поток газа. Вначале эту совместную среду подвергают адиабатическому сжатию, потом – изотермическому расширению. И в ответ эфиро-атомная смесь отвечает выбросом инфракрасного излучения и разного рода ударными волнами. И этот ответ в большой степени зависит от состава газа. Разные газы дают разные ответные реакции. Но при любом газе важно учитывать участие в этом процессе эфирной среды.

Сопло Лаваля можно даже рассматривать в качестве простого варианта теплового насоса.

Соединив два сопла Лаваля, Шестеренко получил свой насадок. Здесь можно познакомиться с одним его патентом. А здесь с другим патентом. При желании любой пользователь может найти еще патенты Шестеренко на насадки и супернасадки разной конструкции. Думаю, что в последние годы никто в открытую не заявляет, что он использует насадки Шестеренко в тех или иных производственных процессах. Но, похоже, эти конструкции уже активно работают по всему миру, в том числе и в России.

Сопло Лаваля некоторые изобретатели пытались использовать в теплогенераторах в качестве кавитатора. Как известно, вода при высоких скоростях начинает парить прямо в потоке, образуя множество мелких пузырьков пара, которые схлопываясь, порождают массу интересных феноменов, одним из которых является нагрев воды. Правда, при использовании классических сопел Лаваля, которые хорошо работают в газовых потоках, в водном потоке кавитация приводила к слабому сверхъединичному эффекту – 120-200%. Это, конечно, требовало пересмотра некоторых положений физики, но с другой стороны, такой КУМ (коэффициент усиления мощности) не позволял надеяться на создании мощных энергогенераторов и всегда таил в себе угрозу, что найдется желающий охаять такой скромный результат, списав всё это на невежество первооткрывателей и несовершенство измерительной методики или техники. Именно по такому сценарию подвергались критике первые опыты по холодному ядерному синтезу. Такая же реакция была на создателей первых теплогенераторов, например, Потапова. Поэтому для водных потоков требовалась совсем другая форма сопел Лаваля. И такие попытки были проведены.

Остальную информацию желающие могут получить непосредственно из самого патента. Нам же важно понять, что для легко вскипающих жидкостей сопло Лаваля должно иметь конструкцию отличную от тех, что хорошо работают с газовыми потоками. И, скорее всего, для каждого конкретного газа или жидкости, а также для выбранных режимов работы, следует создавать «своё» сопло Лаваля.

Сопло Лаваля для легкокипящей жидкости, например воды, должно учитывать такой факт, как увеличение объема массы в случае формирования в жидкости двух фаз – жидкости и пара. Ибо пар занимает при давлении в 1 атмосферу объем в сотни раз больше. Для воды этот показатель равен примерно 600-700. Поэтому для увеличения объема потока в два раза требуется, чтобы в пар превратилась незначительная часть жидкости, буквально 1-3%. При этом имеет место рост давления, возрастает силовое воздействие смеси. И этот результат достается даром, как проявление неких законов Природы – законов фазового перехода, роль Эфира в которых еще просто не изучена.

Именно по этой причине у меня и появилась уверенность в том, что сопло Лаваля – это сверхъединичное устройство, которое позволяет использовать не только теплотворную способность топлива, как это имеет место в ДВС, Дизеле или двигателе Стирлинга, но также и ответную реакцию среды, проявлением которой является не только дополнительное инфракрасное излучение и ударные волны, но и масса других интересных эффектов.

Принцип работы сопла Лаваля:

Ниже на иллюстрации показана работа сопла Лаваля.

По мере движения газа по соплу, его абсолютная температура Т и давление Р снижаются, а скорость V возрастает. Внутренняя энергия газа преобразуется в кинетическую энергию его направленного движения. КПД этого преобразования в некоторых случаях (например, в соплах современных ракетных двигателей) может превышать 70 %. М – число Маха (скорость звука).

На сужающемся, докритическом участке сопла движение газа происходит с дозвуковыми скоростями (М газа достигает звуковой (М = 1). На расширяющемся, закритическом участке, газовый поток движется со сверхзвуковыми скоростями (М > 1).

Суживающая часть сопла называется конфузором, а расширяющая – диффузором. Диффузор по длине всегда больше конфузора. Иногда длина диффузора превышает длину конфузора в 250 раз. Удлинение диффузора способствует увеличению скорости истечения газа из сопла, а соответственно и тяги.

© Фото //www.pexels.com, //pixabay.com, //ru.wikipedia.org/wiki/Сопло_Лаваля

скорость истечения расчет работа истечение из сопла лаваля сопло лаваля принцип работы чертеж купить температура для воздуха своими руками формулы для воды калькулятор википедия размеры

Источник

Большая семья, или Разнообразие сопловой газодинамики

Принцип наличия критического сечения реализуется в огромном множестве форм. Классические две воронки, передающие поток одна другой через слияние вершин, могут меняться до неузнаваемости. Щелевое сопло – плоский канал с сужением и расширением. Сопла с центральным телом могут почти не менять внешний диаметр; геометрию канала задает внутреннее центральное тело. Оно бывает конической или пулевидной формы, и к срезу сопла заканчивается, а критическая часть получается кольцевой. Центральное тело может меняться в широких пределах, полностью меняя облик сопла.

Сопло может состоять из одного центрального тела, охватываемого вдоль основания кольцевой щелью. Сжатый поток из щели течет по центральному телу, расширяясь на нем. Такое сопло имеет вид направленного назад вогнутого конуса. Вогнутость работает так же, как чашевидная выпуклость стенки обычного сопла. Только сопло своей стенкой обжимает края расходящегося потока в ровное течение, а центральное тело формирует спрямленную сердцевину потока.

Клиновоздушный двигатель работает именно так. Его сопло линейное – центральное тело вытянуто горизонтально и образует перевернутый вниз клин, подобный клинку сабли c двумя сторонами, сходящимися к лезвию. На этих рабочих вогнутых сторонах происходит расширение сверхзвукового потока, создающее тягу. Функционально стороны – это развернутая в линию стенка обычного сопла, точно так же создающая тягу.


Огневые испытания клиновоздушного двигателя XRS-2200, созданного по программе разработки многоразового космоплана X-33. Фото: ru.wikipedia.org.

Это клин обтекается сверху вниз сверхзвуковым потоком из небольших камер сгорания, тесным рядом установленных вверху. Каждая сторона клина становится для потока из камер одной стенкой сопла. Другой стенкой является атмосфера, обжимающая поток сбоку и своим давлением регулирующая его расширение. Поэтому поток на поверхностях клиновоздушно-клиновидного сопла расширяется оптимально, адаптируясь к изменению давления атмосферы.

Центральное тело может стать плоским, как тарелка, и расположиться в глубине сопла, в начале его расширения. Словно шляпка гвоздя, не до конца забитого в середину критического сечения. Пространство под шляпкой будет дозвуковой частью сопла. А края тарельчатого тела станут внутренней частью критического сечения. Поток растекается радиально из-под тарелки и разворачивается вокруг ее краев в сторону среза сопла, обжимаясь стенками и разгоняясь в сверхзвуковую струю. Тарельчатое сопло намного короче обычного, и поэтому легче. Его своеобразная газодинамика полностью соответствует соплу Лаваля.

Принцип работы сопла Лаваля

По мере движения газа по соплу его абсолютная температура Т и давление Р снижаются, а скорость V возрастает.

Внутренняя энергия газа преобразуется в кинетическую энергию его направленного движения.

КПД этого преобразования в некоторых случаях (например, в соплах современных ракетных двигателей) может превышать 70 %. М – число Маха (скорость звука).

На сужающемся, докритическом участке сопла движение газа происходит с дозвуковыми скоростями (М 1).

Суживающая часть сопла называется конфузором, а расширяющая – диффузором. Диффузор по длине всегда больше конфузора. Иногда длина диффузора превышает длину конфузора в 250 раз. Удлинение диффузора способствует увеличению скорости истечения газа из сопла, а соответственно и тяги.

Элементарная теория сопла Лаваля

Влияние сжимаемости на форму трубок тока.

Рассмотрим, как влияет сжимаемость на форму трубок тока при установившемся движении газа. Предположим, что трубка тока тонкая, и характеристики движения в разных точках каждого сечения одинаковы. Пусть – площадь произвольного поперечного сечения трубки тока, причем сечение перпендикулярно к скорости движения частиц газа.

Если жидкость однородная и несжимаемая, то из уравнения неразрывности следует, что массовый и объемный расходы через трубку тока постоянны, т.е. ; и

т.е. чем больше скорость, тем меньше сечение.

Для сжимаемой жидкости плотность зависит от скорости. Для обратимых адиабатических течений совершенного газа

Подставляя это выражение в (7.39), можно получить зависимость и найти форму трубок тока. График приведен на рис. 7.15.

Спроектируем уравнение движения Эйлера на линию тока и при установившемся движении

где вдоль линии тока. Для адиабатических движений, как было указано ранее, совпадает со скоростью звука, определяемой как (в общем случае величина отлична от скорости звука, но в последующем для неадиабатических движений играет роль скорости звука). Таким образом, вдоль линии тока имеем

Таким образом, в дозвуковом потоке поперечное сечение трубки тока с ростом скорости уменьшается. Максимальная скорость, которая может быть достигнута при дозвуковом потоке в сужающейся трубке тока, равна скорости звука.

Насадок, состоящий только лишь из сужающегося участка (рис. 7.17), называется простым соплом. Наибольшая скорость, которую можно получить, выпуская адиабатически газ через простое сопло, равна скорости звука, которая достигается в наиболее узком сечении (на срезе сопла).

Рассмотрим, как зависит массовый расход газа через сопло от отношения давлений при постоянных значениях температуры и давления в сосуде, когда отсутствует теплообмен между газом и окружающей средой.

При на основе (7.43) получим, что (точка на рис. 7.19).

Критический расход, согласно (7.30) и (7.42), будет равен

При дальнейшем понижении противодавления течение внутри сопла перестает меняться, и расход также остается неизменным и равным критическому. Неизменность расхода объясняется тем, что слабые возмущения (а значит, и небольшие изменения противодавления) распространяются по частицам среды со скоростью звука. Поэтому при достижении критического режима (когда сами частицы на срезе сопла имеют скорость, равную скорости звука) частицы, находящиеся внутри сопла, “не знают” о том, что происходит вне сопла (возмущения сносятся потоком частиц газа, и поток как бы запирает сопло).

Замечание. Изменение противодавления будет сказываться на течении газа вне сопла: в свободной струе вне сопла скорость при понижении может стать сверхзвуковой, но поток в свободной струе не будет однородным (скорость в потоке существенно меняется по сечению струи).

При истечении сжимаемого газа из тонкого отверстия скорость потока, как было показано выше, не может быть больше скорости звука. Достижение сверхзвуковой скорости истечения, как показали опыты Г. Лаваля (1845 – 1913), получается только при изменении конфигурации отверстия. В его экспериментах скорость истечения превышала скорость звука тогда, когда на выходе из сосуда устанавливалась специальная насадка, которая впоследствии была названа соплом Лаваля.

Сопло для пескоструйного аппарата. Как найти самое долговечное?

Качественная поверхностная очистка металлических поверхностей концентрированной струёй песка невозможна, если неверно определены параметры сопла – выходной части устройства.

Сопло для пескоструйного аппарата – самая быстроизнашивающийся его деталь, долговечность которой, в зависимости от материала и расхода воздушно-песчаной смеси, не превышает 800…1000 часов, если учесть что оно правильно подобрано.

О выборе, сегодня, и пойдёт речь в нашей статье.

Конструкция типового сопла

Простейшее сопло для пескоструйного аппарата представляет собой полую трубку с резьбовой частью на одном из концов, которая предназначена для присоединения детали к соплодержателю.

Основные геометрические характеристики сменных сопел промышленного производства:

  1. Диаметр присоединительной резьбы (зависит от технической характеристики пескоструйного аппарата, но обычно используется трубная цилиндрическая резьба 2” или 1¼”). Возможен также вариант соединения сопла с соплодержателем при помощи накидной гайки и герметизирующей шайбы. Сопла, изготовленные своими руками, присоединяют к шлангу рабочей установки при помощи обычных хомутов.
  2. Длина детали, которая варьируется в диапазоне 7…23 мм (более короткие используются для очистки менее загрязнённых поверхностей).
  3. Диаметр внутреннего отверстия в его минимальном поперечном сечении. Выпускаются сменные наконечники с диаметрами 6, 8, 10 и 12 мм.
  4. Заходный диаметр сопла, определяемый диаметром присоединительного шланга (он может быть 25 или 32 мм).

Главным параметром рассматриваемой детали является профиль внутреннего отверстия, который определяет потери расхода воздушно-песчаной смеси, скорость её на входе и выходе из сопла, а также величину суммарного гидравлического сопротивления, которое в итоге и определяет долговечность сопла.

Наиболее простым вариантом (пригодным для изготовления своими руками) является сопло с цилиндрическим внутренним отверстием постоянного диаметра. Но для улучшения аэродинамических характеристик на таких деталях иногда изготавливают два конических участка:

  • Входной конфузор, наличие которого позволяет увеличить энергию потока смеси, входящей в сопло;
  • Выходной диффузор, наличие которого способствует увеличению площади поверхности, обрабатывающейся одновременно. Энергия потока при этом падает, поэтому при необходимости более качественной очистки, диффузорный профиль окончания сопла предусматривают не всегда.

Наиболее эффективным профилем внутреннего отверстия для обеспечения минимальных потерь потока является сопло для пескоструйного аппарата с профилем Вентури.

В этом случае отверстие состоит из трёх взаимосвязанных участков, каждый из которых выполняет определённые функции:

  1. На входе сопла с профилем Вентури имеется конфузорное расширение, угол которого, однако, меньше, чем у конфузора обычного сопла (не более 20…22º). Конфузорная часть занимает до 30% от общей длины детали.
  2. Цилиндрическая часть, длиной не более 15%.
  3. Диффузорная часть с достаточно малым углом расширения (7…15º), длина которого определяется размером самого сопла в плане.

С целью снижения гидродинамического сопротивления рабочей смеси, которая движется в канале сопла, все переходы от одной части к следующей выполняются с радиусными закруглениями, величина которых принимается в пределах r = (0,02…0,03) d, где d — диаметр средней, цилиндрической части сопла.

Как выбирать сопло для пескоструйного аппарата?

Сопло с профилем Вентури позволяет увеличить скорость перемещения песчано-воздушной смеси в 2,5…3 раза по сравнению с соплами иной конфигурации внутреннего отверстия.

Современное сопло для пескоструйного аппарата с профилем Вентури способно обеспечить движение частиц на выходе до 700…720 км/ч.

При этом производительность очистки при тех же расходах смеси и давлениях увеличивается примерно в 2 раза.

Ориентировочно выбор параметров сопла можно производить по следующим критериям:

  • По производительности. При требуемой производительности установки до 10…12 м3/ч внутренний диаметр сопла не превышает 8 мм, при 12…22 м3/ч – 10 мм, при более высоких значениях производительности диаметр внутреннего канала должен быть 12 мм;
  • По наибольшему давлению воздуха. Если оно не превышает 5 ат, то диаметр канала может приниматься 6…8 мм, при давлениях до 7 ат – 8…10 мм, при более высоких давлениях – 12 мм;
  • В зависимости от удельного расхода абразива. Если данный параметр не превышает 200…250 кг/ч, то пригодно сопло диаметром 6 мм, при 350…400 кг/ч – 8 мм, при 600…900 кг/ч — 10 мм, в остальных случаях – 12 мм.

Данные рекомендации касаются сопел с цилиндрическими внутренними отверстиями. Для пересчёта приведённых данных на сопло для пескоструйного аппарата с профилем Вентури данные по производительности обработки следует увеличить на 35…50%, по расходу – на 60…75%, а по давлению – на 15…20%.

Важным элементом выбора считают материал сопла. Обычные высокоуглеродистые стали с повышенной абразивной стойкостью (например, стали типа 75 или 65Г) для этих целей подходят мало, поскольку при состоянии закалки на максимальную твёрдость отличаются повышенной чувствительностью к ударным нагрузкам, которые неизбежно возникают в начальный момент подачи в сопло абразивной смеси.

Ещё меньшую стойкость имеют керамические композиции. Например, при изготовлении сопла своими руками часто используют в качестве исходной заготовки отработанную свечу от автомобильного двигателя, удаляя из неё металлический корпус.

При этом не учитывают, что керамика в конструкции свечи рассчитана на работу с газовым потоком, в котором отсутствуют твёрдые абразивные частицы.

Поэтому стойкость таких керамических сопел, изготовленных своими руками, не превышает нескольких часов.

Более работоспособным является вариант с твердосплавными соплами, которые изготавливаются из карбида вольфрама. Поверхностная твёрдость таких изделий достигает 85…90 HRA, при поверхностной прочности по изгибу до 1400…1600 МПа.

Недостаток таких решений – высокая чувствительность карбидов вольфрама к температуре. При повышении температуры до 80…100ºС (что вполне вероятно при длительной пескоструйной обработке) на поверхности сопла могут появиться температурные трещины.

Стойкость сопел из твёрдых сплавов достигает 750…800 ч.

Наилучший вариант – изготовить сопло из карбида бора. При примерно такой же твёрдости и прочности, карбиды бора выгодно отличаются своей высокой устойчивостью от температурных перепадов, поэтому сохраняют свою работоспособность при температурах 600…750ºС.

Небезынтересно сравнить и цены на сопла пескоструйных установок. Промышленные изделия из карбида бора в зависимости от длины, профиля и диаметра внутреннего отверстия можно приобрести за 1200…1600 руб., а твердосплавные сопла – за 2500…7000 руб.

Кавитационный теплогенератор: обзор моделей и изготовление своими руками

Разнообразные способы экономии энергии или получения дарового электричества сохраняют свою популярность.

Благодаря развитию Интернета информация о всевозможных «чудо-изобретениях» становится все доступнее.

Одна конструкция, потеряв популярность, сменяется другой.

Сегодня мы рассмотрим так называемый вихревой кавитационный генератор — устройство, изобретатели которого обещают нам высокоэффективный обогрев помещения, в котором оно установлено.

Что это такое? Данное устройство использует эффект нагрева жидкости при кавитации — специфическом эффекте образования микропузырьков пара в зонах локального снижения давления в жидкости, происходящем либо при вращении крыльчатки насоса, либо при воздействии на жидкость звуковых колебаний. Если Вам когда-либо доводилось пользоваться ультразвуковой ванной, то Вы могли заметить, как ее содержимое ощутимо нагревается.

Реальность использования кавитации для нагревания

В Интернете распространены статьи о вихревых генераторах роторного типа, принцип действия которых состоит в создании областей кавитации при вращении в жидкости крыльчатки специфической формы. Жизнеспособно ли данное решение?

Начнем с теоретических выкладок.

В данном случае мы расходуем электроэнергию на работу электродвигателя (средний КПД — 88%), полученную механическую энергию же частично тратим на трение в уплотнениях кавитационного насоса, частично — на нагрев жидкости вследствие кавитации.

То есть в любом случае в тепло будет преобразована лишь часть потраченной электроэнергии.

Но если вспомнить, что КПД обычного ТЭНа составляет от 95 до 97 процентов, становится понятным, что чуда не будет: гораздо более дорогой и сложный вихревой насос окажется менее эффективен, чем простая нихромовая спираль.

Сопло Лаваля

Сопло́ Лава́ля

— техническое приспособление, разгоняющее проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей.

Сопло представляет собой канал, суженный в середине. В простейшем случае такое сопло может состоять из пары усечённых конусов, сопряжённых узкими концами. Эффективные сопла современных ракетных двигателей профилируются на основании газодинамических расчётов.

Сопло было предложено в 1890 г. шведским изобретателем Густафом де Лавалем для паровых турбин.

Приоритет Годдарда на применение сопла Лаваля для ракет подтверждается рисунком в описании изобретения в патенте США U.S. Patent 1 102 653 от 7 июля 1914 г., на двухступенчатую твердотопливную ракету, заявленном в октябре 1913 г.

История

Продольный разрез РД-107 ракетный двигатель (Государственный музей истории космонавтики им. Циолковского)
Джованни Баттиста Вентури сконструированные сходящиеся-расходящиеся трубы, известные как Трубки Вентури для экспериментов с эффектами снижения давления жидкости при прохождении через штуцеры (Эффект Вентури). Немецкий инженер и изобретатель Эрнст Кёртинг якобы перешел на сходящееся-расходящееся сопло в своем пароструйные насосы к 1878 г. после использования конвергентных сопел, но эти сопла оставались секретом компании.[2] Позже шведский инженер Густав де Лаваль применил свою собственную конструкцию сужающегося расходящегося сопла для использования на своем импульсная турбина в 1888 году.[3][4][5][6]

Сопло Лаваля было впервые применено в ракетный двигатель к Роберт Годдард. В большинстве современных ракетных двигателей, использующих сжигание горячего газа, используются сопла Лаваля.

Скорость истечения газа из сопла

Из уравнения состояния идеального газа, и баланса энергии в газовом потоке выводится формула расчёта линейной скорости истечения газа из сопла Лаваля: [1]
(4)
— Скорость газа на выходе из сопла, м/с, — Абсолютная температура газа на входе, — Универсальная газовая постоянная Дж/(киломоль·К), — молярная масса газа, кг/киломоль, — Показатель адиабаты , — Удельная теплоёмкость при постоянном давлении, Дж/(киломоль·К), — Удельная теплоёмкость при постоянном объеме, Дж/(киломоль·К),

Функционирование в среде

При работе сопла Лаваля в непустой среде (чаще всего речь идет об атмосфере) сверхзвуковое течение может возникнуть только при достаточно большом избыточном давлении газа на входе в сопло по сравнению с давлением окружающей среды.

При возникновении сверхзвукового течения давление газа на выходном срезе сопла может оказаться даже меньше давления окружающей среды (вследствие перерасширения

газа при движении по соплу). Такой поток может оставаться стабильным, поскольку давление окружающей среды (пока оно ненамного превышает давление газа на срезе сопла) не может распространяться против сверхзвукового потока. [
источник не указан 980 дней
]

В общем случае удельный импульс сопла Лаваля (при работе как в среде, так и в пустоте) определяется выражением:
(5)
Здесь

— скорость истечения газа из сопла, определяемая по формуле (4); — площадь среза сопла; — давление газа на срезе сопла; — давление окружающей среды; — секундный массовый расход газа через сопло.

Из выражения (5) следует, что удельный импульс и, соответственно, тяга ракетного двигателя в пустоте (при

) всегда выше, чем в атмосфере. Это находит отражение в характеристиках реальных ракетных двигателей: обычно для двигателей, работающих в атмосфере, указываются по два значения для удельного импульса и тяги —
в пустоте
и
на уровне моря
(например, РД-107).

Зависимость характеристик двигателя от давления газа на срезе сопла

носит более сложный характер: как следует из уравнения (4), растёт с убыванием , а добавка — убывает, и при становится отрицательной.

При фиксированном расходе газа и давлении на входе в сопло величина

зависит только от площади среза сопла, которую обычно характеризуют относительной величиной —
степенью расширения
сопла — отношением площади конечного среза к площади критического сечения. Чем больше степень расширения сопла, тем меньше давление , и тем больше скорость истечения газа .

Рассматривая соотношение давления на срезе сопла и давления окружающей среды, выделяют следующие случаи. [2]

Вышесказанное объясняет то обстоятельство, что ракетные двигатели, работающие в плотных слоях атмосферы, как правило, имеют степень расширения меньшую, чем двигатели, работающие в пустоте. Например, у двигателя F-1 первой ступени носителя Сатурн-5 степень расширения составляет 16:1, а RL 10B-2 — двигатель, используемый NASA на ускорителях межпланетных зондов, имеет степень расширения равную 250:1.

Стремление добиться эффективной работы двигателя как на Земле, так и на высоте заставляет конструкторов искать технические решения, позволяющие достигнуть эту цель. Одним из таких решений явился подвижный сопловой насадок

— «продолжение» сопла, которое пристыковывается к нему по достижении ракетой разреженных слоёв атмосферы, увеличивая, таким образом, степень расширения сопла. Схема действия насадка изображена на рисунке справа. Эта схема была практически реализована, в частности, в конструкции двигателя НК-33-1.

Проблема оптимизации степени расширения сопла очень актуальна и при разработке авиационных реактивных двигателей, поскольку самолёт предназначен для полётов в широком диапазоне высот, а от удельного импульса его двигателей в сильной мере зависит экономичность и, следовательно, дальность полёта. В современных турбореактивных двигателях применяются регулируемые сопла

Лаваля. Такие сопла состоят из продольных пластин, имеющих возможность перемещения друг относительно друга, со специальным механизмом с гидравлическим или пневматическим приводом, позволяющим в полёте изменять площадь выходного и/или критического сечений, и, таким образом, добиваться оптимальной степени расширения сопла при полёте на любой высоте. Регулирование площади проходных сечений выполняется, как правило, автоматически специальной системой управления. Этот же механизм позволяет по команде пилота изменять в некоторых пределах и направление реактивной струи, а следовательно, направление
вектора тяги
, что существенно повышает маневренность самолёта.

Сопло для пескоструя: правила выбора и изготовление своими руками

Сопло, которое используется для оснащения пескоструйного аппарата, является важнейшим элементом конструкции такого устройства.

Только правильно подобранное сопло позволит вам наиболее эффективно использовать пескоструйный аппарат по его прямому назначению: для очистки различных поверхностей от загрязнений, старых покрытий, следов коррозии, их обезжиривания и подготовке к дальнейшей обработке.

Для каждого применения можно подобрать сопло определенного диаметра, в зависимости от фракции используемого песка

Задачи, которые решает сопло пескоструйное, заключаются в сжатии и разгоне до требуемой скорости смеси, состоящей из воздуха и абразивного материала, а также в формировании рабочего пятна и его насыщении абразивом, воздействующим на поверхность обрабатываемого изделия.

В зависимости от размеров поверхности, которую необходимо подвергнуть пескоструйной обработке, в соплах могут быть выполнены отверстия различных типов.

Так, для обработки узких поверхностей применяют сопла с одинаковым диаметром по всей длине, а для очистки поверхностей большой площади используют изделия, отверстия в которых имеют больший диаметр на входе и выходе (тип «Вентури», разработанный в середине прошлого века).

Сущность пескоструйной обработки

Пескоструйная обработка предполагает воздействие на различные поверхности абразивным материалом. В качестве последнего используются песок, дробь, карбид кремния, мелкие шарики из стекла и т.д.

Пескоструйная обработка – это механическое воздействие на поверхность мелких твердых частиц

Перед началом обработки абразив помещают в герметичный бункер. По основному шлангу аппарата под большим давлением подается воздух, поступающий от отдельного компрессора.

Проходя мимо отверстия заборного рукава, поток воздуха создает в нем вакуум, что и способствует всасыванию в основной шланг абразива.

Уже смешанный с абразивом воздух поступает к пистолету, основным элементом которого является сопло пескоструйное, через которое абразивная смесь подается на обрабатываемую поверхность.

Схема участка пескоструйной обработки

Как уже говорилось выше, для выполнения пескоструйной обработки могут использоваться различные типы абразивных материалов. Выбор здесь зависит от типа поверхности, которую необходимо очистить.

Так, обработка с использованием песка эффективна в тех случаях, когда необходимо удалить слой старой краски с бетонной поверхности, очистить кирпичные стены от остатков цемента, подготовить металлические детали к дальнейшей покраске.

Такие абразивы, как пластик или пшеничный крахмал, успешно применяют в судостроительной, автомобильной и авиастроительной отраслях, с их помощью эффективно удаляют старые покрытия с композиционных материалов.

Конструктивные особенности сопла для пескоструйного аппарата

Основными параметрами сопла, устанавливаемого на пескоструйный аппарат, являются:

  • диаметр и тип отверстия;
  • длина;
  • материал изготовления.

Абразивоструйные сопла различных конфигураций

Диаметр отверстия в сопле, которое фиксируется на пескоструйном аппарате посредством специального соплодержателя, выбирается в зависимости от того, какой производительностью должно обладать устройство.

Производительность любого пескоструйного аппарата – как серийного, так и сделанного своими руками – зависит от мощности струи или объема воздуха, который в состоянии пропускать сопло в единицу времени.

Мощность струи, которую формирует сопло, прямо пропорциональна объему воздуха, который проходит через него в единицу времени. Соответственно, чтобы увеличить мощность пескоструйного аппарата, необходимо сделать в его сопле отверстие большего диаметра.

Например, можно оценить мощность сопел, отверстия в которых имеют разные диаметры.

Если сопло, диаметр которого соответствует 6 мм (1/4 дюйма), имеет мощность, равную 100%, то изделия с отверстиями больших диаметров будут отличаться следующей величиной данного параметра:

  • 8 мм (5/16 дюйма) – 157%;
  • 9,5 мм (3/8 дюйма) – 220%;
  • 11 мм (7/16 дюйма) – 320%;
  • 12,5 мм (1/2 дюйма) – 400%.

Чтобы еще лучше ориентироваться в мощности сопла с тем или иным диаметром внутреннего отверстия, можно принять во внимание, что изделия, диаметр в которых составляет 6 мм (1/4 дюйма), способны обеспечить среднюю мощность струи, равную 30 м3/час.

Таблица позволяет примерно оценить влияние диаметра сопла и давления воздуха на производительность и расход абразива

Если вы не собираетесь изготавливать сопло для аппарата пескоструйной обработки своими руками, то следует иметь в виду, что изделия, выпускаемые серийно, имеют стандартные диаметры отверстий, равные 6, 8, 10 и 12 мм.

На выбор такого параметра сопла, как его длина, оказывает влияние степень загрязненности очищаемой поверхности. Для пескоструйной обработки поверхностей, которые имеют незначительные загрязнения, выбираются более короткие сопла (7–8 см).

Если же необходимо обработать поверхность, на которой имеются сложные загрязнения, длина сопла должна быть значительной (до 23 см).

Более короткие сопла, устанавливаемые в стандартный соплодержатель, используются и в тех случаях, когда обработке требуется подвергнуть труднодоступные места.

Сопла, диаметр которых не изменяется по всей их длине, позволяют обеспечить скорость выхода абразивного материала 320 км/час, при этом давление смеси из воздуха и абразива, поступающей из такого сопла, составляет 6 атм.

Сопла с каналом «Вентури» формируют струю абразивной смеси, скорость движения которой может доходить до 720 км/час. Понятно, что сопла с внутренними отверстиями такого типа повышают эффективность пескоструйной обработки.

Очевидно, что площадь потока у сопла типа VENTURI значительно больше, чем у обычного прямолинейного

Использование сопел с внутренними отверстиями, выполненными по типу «Вентури», позволяет предприятиям и специализированным компаниям не только увеличить производительность своего труда, но и значительно повысить качество выполняемой обработки. Что важно, применение изделий с такими каналами не требует приобретения специальных абразивов и не приводит к увеличению расхода сжатого воздуха.

Если сопла с отверстиями обычного типа для пескоструйных аппаратов можно сделать своими руками (хотя это и сложно), то изделия с каналом «Вентури» качественно изготовить в домашних условиях, не располагая специальным оборудованием, практически невозможно.

Устройство сопла пескоструйного с каналом Вентури: d — внутренний диаметр; D — заходной диаметр; Т — присоединительная резьба; L — длина сопла

Для изготовления сопел, в том числе и своими руками, могут быть использованы различные материалы, от выбора которых зависит долговечность изделия. Так, в зависимости от материала изготовления сопла для аппаратов пескоструйной обработки обладают следующей долговечностью:

  • керамические изделия, которые в домашних условиях делают из обычных свечей зажигания, – 1–2 часа;
  • сопла из чугуна – 6–8 часов;
  • изделия, для производства которых был использован карбид вольфрама, – 300 часов;
  • сопла, изготовленные из карбида бора, – 750–1000 часов.

Если в качестве абразивного материала в пескоструйном аппарате используется не песок, а стальная дробь, то долговечность сопел любого типа увеличивается в 2–2,5 раза.

Как правильно выбрать сопло для пескоструйной обработки

Выбирая сопло для своего пескоструйного аппарата, учитывайте тот факт, что самые недорогие изделия являются и самыми недолговечными. Такие сопла в итоге обойдутся вам дороже качественной продукции, особенно если вам предстоит выполнить большой объем работ.

Пескоструйные износостойкие сопла из карбида вольфрама

Для бытовых целей подходят сопла из чугуна и керамики. Многие домашние умельцы даже самостоятельно изготавливают керамические сопла, используя для этого отработанные свечи зажигания. Для того чтобы из такой свечи сделать сопло, достаточно удалить из ее керамической оболочки металлический электрод.

Используя для пескоструйного аппарата чугунные и керамические сопла, следует иметь в виду, что из-за своего ускоренного износа они увеличивают расход как воздуха, так и абразива, поэтому их не рекомендуется применять при выполнении масштабных работ.

Дорогостоящие сопла из карбида бора и карбида вольфрама отличаются не только высочайшей долговечностью, но также и тем, что их можно использовать практически с любым абразивным материалом, за исключением карборунда и окиси алюминия.

Этим, собственно, и объясняется достаточно высокая стоимость таких сопел для пескоструйного аппарата, которые способны прослужить очень долго, не теряя своих характеристик, не увеличивая расход абразивного материала и воздуха. Применение таких изделий целесообразно во всех ситуациях, когда требуется выполнить большой объем работ по очистке различных поверхностей.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]