Тиристоры (тринисторы) ку201 (2у201) ку (2у) 201 ку202 (2у202) 202. характеристики. справочные параметры. справочник. даташит (datasheet)


Характеристики КУ202Н

  • максимальная разность потенциалов на закрытом тиристоре – 400 В;
  • предельно допустимое обратное напряжение на тиристоре – 400 В;
  • обратная управляющая разность потенциалов – 10 В;
  • прямая управляющая разность потенциалов – 10 В;
  • скорость увеличения напряжения – 5 В/мкс;
  • наибольший допустимый ток открытого тиристора (при ТК ≤ +70°С) – 10 А;
  • кратковременный ток в через открытый тиристор (tи ≤ 10 мс, I оо,ср ≤ 5 А, ТК ≤ +70°С) – 30 А;
  • кратковременный ток через открытый тиристор при единичных кратковременных импульсах (при tи ≤ 50 мс, f = 50 Гц, ТК ≤ +70°С) – 50 А;
  • максимальный кратковременный ток управления: при ТК = +70°С – 300 мА;
  • при tи ≤ мкс и ТК ≤ +70°С – 500 мА.
  • предельно допустимый ток управления – 5 мА;
  • мощность: при ТК ≤ +70°С – 20 Вт;
  • при ТК = ТК.МАКС – 1,5 Вт;
  • импульсная мощность: при tи ≤ 10 мс, U у,от,и ≤ 20 В, ТК ≤ +70°С – 20 Вт;
  • при tи ≤ 50 мс, ТК ≤ +70°С – 2,5 Вт;
  • наибольшая температура тиристора +85°С;
  • диапазон температур, пр которых тиристор может нормально работать -60 … +75°С.

В технической документации производители приводят два вида характеристик, это электрические и предельные эксплуатационные данные. Выше мы рассмотрели вторые — максимальные. Дальше в таблице приведём электрические. Все измерение производилось при температуре 25°С (если не указано иного в разделе «Условия тестирования»).

Электрические характеристики тиристора КУ202Н (при Т = +25 оC)
ПараметрыРежимы измеренияmintypmaxЕд. изм
Напряжение открытого тиристораIОС = 10 А, Т = +25°C1,5В
IОС = 10 А, Т = -60°C2В
Отпирающее тиристор управляющее напряжениеIу,от = 200 мА, Uэс = 10 В Т = -60°C7В
Неотпирающая тиристор управляющая разность потенциаловUэс = Uэс макс , ТК = ТК.МАКС0,2В
Ток через закрытый тиристорUэс = Uэс макс , Т = +25°C ТК = ТК.МАКС4мА
Обратный токUэс = Uэс макс , Т = +25°C ТК = ТК.МАКС4мА
Ток удержанияUэс = 10 В300мА
Отпирающий тиристор токUэс = 10 В, IОС = 10 А,
Т = -60°C
300мА
Неотпирающий тиристор токUэс = Uэс макс , ТК = ТК.МАКС2,5мА
Время включенияUэс = 50 В, tи = 50 мкс,
Iу,от = 200мА, tу= 50 мкс,

f = 50 Гц, tуф= 1 мкс,

IОС = 10 А

10мкс
Время выключенияUэс = Uэс макс, IОС = 10 А, tи = 50 мкс, f = 50 Гц,
tу,сп= 5 мкс
150мкс
Емкость800пФ

На данном устройстве можно сделать регулятор мощности паяльника:

Что такое тиристор и их виды

Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же – это считается аналог выпрямителя.


Фото – Cхема гирлянды бегущий огонь

Бывают:

  • ABB запираемые тиристоры (GTO),
  • стандартные SEMIKRON,
  • мощные лавинные типа ТЛ-171,
  • оптронные (скажем, ТО 142-12,5-600 или модуль МТОТО 80),
  • симметричные ТС-106-10,
  • низкочастотные МТТ,
  • симистор BTA 16-600B или ВТ для стиральных машин,
  • частотные ТБЧ,
  • зарубежные TPS 08,
  • TYN 208.

Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.

Фото – Тиристор

Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).

Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.

Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.

Проверка тиристора

Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:

Фото – тестер тиристоров

Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.

Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.


Фото – схема тестера для тиристоров

Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.

Видео: принцип работы тиристора

Тиристор в цепи переменного тока. Импульсно — фазовый метод

Share

Тиристор в цепи переменного тока. Импульсно — фазовый метод.

style=»display:inline-block;width:728px;height:90px» data-ad-client=»ca-pub-5076466341839286″ data-ad-slot=»1544101189″>

Система управления тиристорами в цепях переменного и пульсирующего тока использует, синхронизированную с сетью, бесконечную серию управляющих импульсов и осуществляет сдвиг фазы фронтов управляющих импульсов относительно перехода напряжения сети через ноль. Сформированный специальным устройством управляющий импульс подается на переход управляющий электрод – катод тиристора, которым и подключает электрическую сеть в нагрузку. Разберем работу такой системы на примере регулятора температуры жала электрического паяльника мощностью до 100 ватт и напряжением 220 вольт. Схема этого устройства изображена на рис 1.

Регулятор температуры электрического паяльника в сети переменного тока 220 вольт, состоит из диодного мостика на КЦ405А, тиристора КУ202Н, стабилитрона , узла формирования импульсов управления. С помощью мостика переменное напряжение превращается в пульсирующее напряжение (Umax = 310 B) положительной полярности (точка Т1).

Узел формирования состоит : — стабилитрон, формирует за каждый полупериод трапецевидное напряжение (точка Т2); — временная зарядно-разрядная цепочка R2, R3, C; — аналог динистора Тр1, Тр2.

С резистора R4 снимается напряжение импульса для запуска тиристора (точка 4).

На графиках (рис 2) показан процесс формирования напряжений в точках Т1 – Т5 при изменении переменного резистора R2 от нуля до максимума.

Через резистор R1 пульсирующее напряжение сети поступает на стабилитрон КС510. На стабилитроне формируется напряжение трапецевидной формы величиной 10 вольт (точка Т2). Оно определяет начало и конец участка регулирования.

Параметры временной цепочки (R2, R3, C) подобраны так, чтобы за время одного полупериода конденсатор С успел зарядиться полностью. С началом перехода напряжения сети Uc через ноль, с появлением трапецеидального напряжения, начинает расти напряжение на конденсаторе С. При достижении напряжения на конденсаторе Uк = 10 вольт, пробивается аналог тиристора (Тр1, Тр2). Конденсатор С через аналог разряжается на резистор R4 и, включенный параллельно ему, переход Уэ – К тиристора (точка Т3) и включает тиристор. Тиристор КУ202 пропускает основной ток нагрузи по цепи: сеть – КЦ405 – спираль паяльника – анод – катод тиристора – КЦ405 – предохранитель — сеть. Резисторы R5 — R6 служат для устойчивой работы устройства.

Запуск управляющего узла автоматически синхронизирован с напряжением Uc сети. Стабилитрон может быть Д814В,Г,Д. или КС510,КС210 на напряжение 9 – 12 вольт. Переменный резистор R2 – 47 — 56 Ком мощностью не менее 0,5 ватт. Конденсатор С – 0,15 — 0,22 мкФ, не более. Резистор R1 – желательно набрать из трех резисторов по 8,2 Ком, двух ваттных, чтобы не сильно нагревались. Транзисторы Тр1, Тр2 – пары КТ814А, КТ815А; КТ503А, КТ502А и др.

Если регулируемая мощность не превысит 100 ватт, можно использовать тиристор без радиатора. Если мощность нагрузки больше 100 ватт необходим радиатор площадью 10 – 20 см.кв. В данном импульсно – фазовом методе импульс запуска для тиристора вырабатывается в пределах всего полупериода. Т.е. происходит регулировка мощности почти от ноля до 100%, при регулировании фазового угла от а=0 до а=180 градусов. На графиках в точке №5 показаны формы напряжений на нагрузке при выборочных фазовых углах: а = 160, а = 116, а = 85, а = 18 градусов. При значении а = 160 градусов, тиристор закрыт почти во все время прохождения полупериода сетевого напряжения (мощность в нагрузке очень мала). При значении а = 18 градусов, тиристор открыт почти во все время действия полупериода (мощность в нагрузке равна почти 100%). В графиках в точке №4 во время открытия тиристора, вместе с появлением запускающего импульса, добавляется падение напряжения на открытом тиристоре (Uп на графике в точке №4).

Все показанные эпюры напряжений в точках Т1 — Т5, относительно точки Т6, можно посмотреть на осциллографе.

style=»display:inline-block;width:728px;height:90px» data-ad-client=»ca-pub-5076466341839286″ data-ad-slot=»1544101189″>

Share

Описание конструкции и принцип действия

Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.

Фото – Тиристор КУ221ИМ

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.

Типичные тиристорные ВАХ

Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:


Фото – характеристика тиристора ВАХ

  1. Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
  2. В участке Vво осуществляется положение «ВКЛ» тиристора;
  3. Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
  4. В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
  5. Точки 0 и Vbr – это участок с запиранием тиристора;
  6. После этого следует отрезок Vbr — он обозначает режим обратного пробоя.

Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.


Фото – ВАХ тиристора

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]