Макетная плата для монтажа без пайки для Ардуино


Макетная плата в электронных схемах

Редко какой реальный проект Arduino содержит менее 5-10 элементов схемы, соединенных между собой. Даже в простой хорошо всем известной схеме маячка применяются 2 элемента, светодиод и резистор, которые надо как-то соединять друг с другом. И тут как раз и встает вопрос о том, каким способом это сделать.


Макетная плата без пайки

На сегодняшний момент существуют следующие основные способы монтажа, которыми используются в электронике и робототехнике на этапе создания прототипов:

  • Пайка. Для этого применяют специальные платы с отверстиями, в которые вставляются детали и соединяются друг с другом пайкой (с использованием паяльника) и перемычками.
  • Cкрутка. По данной технологии контактные соединения устройств объединяются с макетной платой при помощи обмотки чистого провода к штыревому контакту.
  • Плата для монтажа без пайки. Английский вариант названия беспаечной макетной платы – breadboard.
  • Можно еще деражть контакты руками или зубами, склеивать клеем-пистолетом, скреплять изолентой или скотчем. В этой статье мы такие экзотические варианты не рассматриваем.


Макетная плата для монтажа с пайкой
Самым современным вариантом для создания прототипов является беспаечная макетная плата, которая обладает несомненными преимуществами:

  • Возможность проводить отладочные работы большое количество раз, изменяя модификацию схем и способы подключения устройств;
  • Возможность соединения нескольких плат в одну большую, что позволяет работать с более сложными и большими проектами;
  • Простота и быстрота создания прототипов;
  • Долговечность и надежность.


Макетная плата
Конечно, есть у этого варианта монтажа и недостатки:

  • В реальных проектах соединения у платы не будут столь же надежны, как при пайке. Любая вибрация будет потихоньку ослаблять контакты и это обязательно со временем приведет к неожиданным проблемам. Поэтому в реальных проектах используют другие виды монтажа элементов.
  • Внешний вид проектов с лапшой в виде проводов над бескрайними белыми пространствами платы нельзя назвать профессиональным и эстетичным. Хотят такой вид всегда завораживает зрителей и формирует у проекта имидж чего-то “жутко сложного, раз столько проводов”.
  • Плата с таким видом монтажа всегда будет занимать больше места за счет нависающих проводов. Значит, для нее нужен корпус больших объемов с фиксацией и защитой от вибрации.
  • Стоимость макетной платы. Пусть платы и не являются дорогими устройствами, но все равно вам нужно будет их приобрести дополнительно к микроконтроллеру и другим элементам. К счастью, сегодня на рынке есть большое количество недорогих вариантов и готовых наборов с монтажными платами в комплекте. Некоторые варианты можно найти в следующем разделе нашей статьи.

Не смотря на некоторые недостатки, альтернативных вариантов по простоте и доступности для монтажа первых схем у начинающих практически нет. Сегодня можно встретить огромное количество проектов, в которых все элементы размещены именно на макетной плате. Почти все примеры из учебников по основам робототехники и Ардуино используют этот вариант монтажа. Поэтому рекомендуем вам обязательно познакомиться с этим конструктивным элементом поближе.

Дополнение: программа Fritzing, прототипированием схем.

Для создания иллюстраций к инструкции по работе с макетной платой мы использовали программу Fritzing https://fritzing.org/home/ . С ее помощью можно наметить, как будут располагаться элементы на макетной плате, нарисовать принципиальную схему и даже перейти от схемы к созданию собственной печатной платы, которую можно изготовить самостоятельно или заказать на заводе. Хотя программа давно не обновлялась и в ней нет самых современных электронных компонентов, она достаточно удобна для новичков, рекомендуем!

Купить макетную плату

Мы традиционно сделали подборку самых популярных плат, которые можно купить в интернет-магазинах и привели ссылки на наиболее надежных поставщиков на Алиэкспрессе.

Набор 3 в одном: макетная плата MB102 с блоком питания 3.3V/5V и комплектов 65 проводовМакетная плата MB102 Breadboard 830 контактовНабор из 6 мини макетных плат 170 контактов Mini Breadboard kit for Arduino
Макетная плата 4 в одном – 700 разъемов от известного бренда WAVGATСтандартная макетная плата 8.5CM x 5.5CM 400 разъемовStarter Kit – набор из макетной платы, Ардуино и проводов

Схема макетной платы

Чтобы знать, как пользоваться макетной платой, следует понять принцип ее устройства. Он достаточно прост.


Схема макетной платы

Макетная плата имеет пластиковое основание с множеством отверстий (стандартное расстояние между ними составляет 2,54 мм). Внутри конструкции расположены ряды металлических пластин. На каждой пластине имеются клипсы, которые спрятаны в пластиковой части установки.

Включение проводов выполняется именно в эти клипсы. При подключении проводника к одному из отдельных отверстий, контакт одновременно подключается и ко всем остальным контактам отдельного ряда. Следовательно, подключая контакты других устройств к остальным клипсам, мы связываем их проводником – рельсом с клипсами.

Стоит обратить внимание, что одна рельса содержит 5 клипс. Это общий стандарт для всех макетных плат. То есть, к каждому рельсу можно подсоединить до пяти элементов, и они будут соединены между собой.

Следует отметить, что хотя в каждом ряду расположены десять отверстий, они все-таки разделены на две изолированные части, по пять в каждой. Между ними расположен рельс без пинов. Такая конструкция необходима для изоляции пластин друг от друга, и позволяет просто подключать микросхемы, выполненные в DIP-корпусах.


Подключение микросхемы к макетной плате

Для упрощения ориентации на макетную плату также нанесены цифровые и буквенные обозначения, которыми можно руководствоваться, создавая, например, инструкцию для подключения.

Некоторые макетные платы включают также по две линии питания с каждой из сторон. Обычно «красная линия» используется для подачи «+» напряжения, «синяя» – для «-». За счет наличия двух шин питания на плату могут подаваться два различных уровня напряжения.

Внимание! Макетные платы абсолютно недопустимо использовать с напряжением 220В!

Если плата большая, то линии питания “разрываются” посередине. Это позволяет использовать большее количество вариантов подключения. Например, вы сможете собрать на одной плате устройства с питанием 3 и 5 Вольт.

Назначение и устройство

Макетная плата для сборки без пайки позволяет произвести монтаж электрической схемы и запустить ее без использования паяльника. При этом можно проверить все параметры и характеристики будущего устройства, подключив к плате измерительные и контрольные приборы.

Макетная плата представляет собой пластину из полимерного материала, являющегося диэлектриком. На пластине в определенном порядке просверлены монтажные отверстия, в которые должны вставляться выводы деталей – компонентов будущего устройства.

Отверстия допускают подключение выводов диаметром 0,4-0,7 мм. Расположены они на плате, как правило, с шагом 2,54 мм.


Чтобы смоделировать соединения выводов компонентов между собой, макетка имеет специальные токопроводящие пластины, в определенном порядке соединяющие отверстия.

Как правило, эти соединения осуществляются группами вдоль платы по ее длинным сторонам. Таких рядов может быть два-три. Эти контактные группы используются как шины для подключения питания.

Между продольными рядами отверстия соединяются пластинами в группы по пять. Эти пластины расположены в направлении поперек платы.

Около отверстий в местах будущих контактов токопроводящие пластины имеют конструктивные особенности, позволяющие зажимать и прочно удерживать выводы деталей, обеспечивая при этом наличие электрического контакта. В этом и есть смысл монтажа без пайки.

Качественные макетные платы допускают монтаж и разборку при сохранении прочного и надежного соединения между деталями до 50 000 раз.

Макетные платы, выпускаемые промышленным способом и приобретенные в торговой сети, как правило, имеют схему расположения контактов и токопроводящих связей между отверстиями.

Основные виды макетных плат для Arduino

Макетные платы различаются по количеству выводов, расположенных на панели, числом шин и конфигурацией. Бывают платы, в которых контактные соединения выполняются посредством пайки, однако работать с ними сложнее, чем с беспаечными устройствами и мы их рассмотрим в другой статье.


Большая макетная плата


Цветные макетные платы


Макетная плата с клеймами

В зависимости от характеристик наиболее распространены такие виды:

  • Для сборки больших микросхем в основном используются беспаечные платы на 830 или 400 отверстий. Для соединения нескольких компонентов и подвода проводов к необходимым точкам – на 8, 10, 16 отверстий;
  • С наличием пазов для сцепления плат, которые позволяют реализовывать достаточно большие проекты;
  • С наличием самоклейки на основании для надежного закрепления на устройстве;
  • С нанесенными на плату обозначениями для подключения устройств.

В зависимости о стоимости и производителя в комплектацию могут входить и дополнительные аксессуары – провода-джамперы, разнообразные разъемы. Но главным критерием качества всегда остается количество контактных разъемов и их технические характеристики.

Как пользоваться макетной платой

Пользоваться макетной платой достаточно просто. При создании схемы в отверстия на пластиковом корпусе вставляются необходимые элементы – конденсаторы, резисторы, различные индикаторы, светодиоды и т.д. Ширина разъемов позволяет подключать к контактам проводники с сечением от 0,4 до 0,7 мм.


Схема подключения светодиода к монтажной плате

Например, вам нужно соединить между собой два элемента – светодиод и резистор. Для этого вы берете ножку первого элементам (светодиода) и вставляете ее, например, в ряд номер 2. Вторую ножку вы вставляете в другой ряд. Например, 3. Если вставите ножку в тот же ряд, схема работать не будет, т.к. обе ножки через общую рельсу будут соединены железным проводником. Будет короткое замыкание. Ток пойдет через место соединения напрямую, минуя светодиод. Никакой пользы от этого не будет.


Подключение светодиода к макетной плате. Размещаем светодиод в удобном месте. Главное, для каждой ножки – свой ряд

Если вы воткнете контакт в соседний ряд, то между ними не будет замыкания, т.к. соседние ряды не связаны между собой проводниками (ведь связаны только 5 контактов в одном ряду). В какой именно ряд вы воткнете ножку – не важно. Главное, что не в тот же, что у первой ножки.

Для удобства в реальных схемах вторую ножку размещают не в соседнем ряду, а в любом другом, чуть подальше от первого. Нужно выбирать место монтажа с учетом размеров самого светодиода, чтобы не выгибать сильно контакты.

Итак, светодиод мы закрепили – он устойчиво стоит двумя ногами в рядах 2 и 3. Давайте теперь подключим к этой схеме резистор. Мы возьмем одну ножку резистора и вставим в тот же ряд, что одна из ножек светодиода. Например, в ряд номер 3 – в любое место. В одном ряду 5 контактов, не важно, в какой из контактов мы попадем, главное, что в этом же ряду! Затем вторую ножку резистора вставим в другой ряд, например, в седьмой .


Подключение светодиода и резистора к макетной плате. Соединяем одни ножки элементов

Получится, что ножки в 3 ряду встретятся друг с другом через внутренне соединение и будут связаны, как будто мы спаяли или скрутили их. И между ними с удовольствием пойдет ток, ведь он любит металлическое соединение.

У нас остались одна ножка у светодиода и одна ножка у резистора. Ножку светодиода мы должны соединить с платой ардуино. Если это длинная ножка, то соединяем ее с 13 пином. Если короткая, то с пином GND. В нашем случае, мы соединим короткую ножку во втором ряду с разъемом GND на плате Ардуино. Для этого мы берем провод “папа-папа” и втыкаем его в ряд, где находится наша свободная ножка. У нас это ряд 2 (вторая ножка светодиода уже связана в ряду 3 с резистором). Опять-таки не важно, куда именно мы воткнем провод, главное, что во втором ряду – в том, где уже ждет ножка светодиода. Вторую часть провода мы соединяем с платой Arduino.


Пример подключения светодиода и резистора к макетной плате. Идем к GND

Точно так же мы соединяем оставшуюся часть схемы – вторую часть резистора через проводник ведем к другому разъему Ардуино. В нашем случае с ряда 7 мы тянем проводник к 13 пину ардуино. Получится, что длинная ножка светодиода идет к плюсу – к 13 пину. А короткая у нас уже давно соединена с землей – GND.

Все, схема собрана. И после включения питания ток пойдет так (схематически): через источник внутри Ардуино дойдет до 13 пина, через красный проводник дойдет до макетной платы, пройдет через сопротивление, потом через светодиод, потом через черный провод вернется в ардуино. Схема в итоге получилась без разрывов, рабочая.

Соберите и проверьте эту схему. Если вдруг что-то не заработает, проверьте контакты – не всегда провода и макетные платы из китайских интернет-магазинов имеют безупречное качество.

Еще одним примером создания прототипа схемы с использованием макетной платы может стать такой вариант реализации:

Для ее сборки необходимо взять:

  • Макетную плату (breadboard);
  • провода для соединения;
  • 1 светодиод;
  • тактовую кнопку;
  • резистор с номинальным сопротивлением 330 Ом;
  • батарейку типа «Крона» на 9В.

Плюс батарейки подключается к плюсовой шине, а минус к отрицательной. Если схема собрана правильно, то при нажатии на кнопку будет обеспечиваться загорание светодиода.

Еще несколько примеров:


Пример схемы с макетной платой


Пример схемы с макетной платой

↑ Без единого гвоздя

1. Берётся подходящий по размерам кусок гетинакса или текстолита.


Естественно, нефольгированного. В противом случае можно было бы сделать намного быстрее. И получилось бы красивее, но в долговечности такого изделия сильно сомневаюсь. Фольга имеет дурную привычку отслаиваться от основы при нагревании. Размеры определяются «требованиями заказчика» и имеющимися в наличии кусками материала. Когда-то у меня был «монстр» примерно 20×40 см. Жаль потерял. Это сейчас маленькие делал. На большие масштабы пока не замахиваюсь. Спаять блок на паре-тройке транзисторов можно. Или даже что-нибудь звуковое на микросхеме, благо у них сейчас выводов не так много, да и обвески тоже.
2. Шилом, ножом, или ещё каким подходящим инструментом на поверхности материала «процарапывается» разметка под будущие контактные площадки. Указанные на рисунке размеры срисовал со своего изделия. Если кому нужно — могут сделать другие.

3. По разметке, на месте будущих контактных площадок сверлятся отверстия диаметром 2 — 3 мм (для площадок шириной 5 мм, как в моём случае).

4. А потом отверстиям на плате придаётся вот такая форма.

Для этой цели мне пришлось изготовить инструмент из обломка ножовочного полотна по металлу. Обломок был обточен на наждаке примерно так.


Вместо такого самопального «лобзика» вполне можно воспользоваться треугольным надфилем. Форма отверстий будет малость не такая, но свою задачу (препятствовать вращению лепестков) они выполнят так же. Только не было надфилей под рукой в то время. Да и сверло нашлось только на 1,5 мм. Поэтому получились абсолютно ровные сквозные пазы.

6 А потом из подходящей жести вырезаются полосы шириной 5 мм. В моём случае это была знаменитая жесть от банок из под сгущёнки.

7. Полосы режутся на куски длиной примерно 24 мм (для площадок 8×5 мм.). Заготовки сгибаются примерно так:

Полученные изделия вставляются в вышеописанные отверстия:

И фиксируются.

В результате получается что-то вот такое.

Теперь можно спокойно паять свою конструкцию (если она не превышает размеры платы или не собирается на сверхминиатюрных компонентах). Замерять и гонять режимы, вносить в схему изменения. А когда заработает как надо — разрабатывать печатку, корпус и т. д.

Из-за торчащих с обратной стороны платы жестянок работать нужно, естесственно на диэлектрической поверхности. Ну и не допускать попадания под плату металла. В этом смысле доска с жестянками выгодно отличается, если гвозди не слишком длинные: smile: Для большей гарантии можно прикрепить к плате снизу кусок текстолита (гетинакса) такого же размера. Или ножки приспособить как на картинке из «ЮТ», если плата достаточно большая.

Согласен, что всё можно сделать слегка проще. Например «конструкцию» контактных площадок. (Сам когда-то делал вариант где жестяная заготовка просто сгибалась пополам.) Да и саму плату можно делать хоть из картона, если что-то новое делается не так уж часто и нет риска перегреть его во время работы. В нём и пазы под площадки режутся куда легче. (Когда-то и его использовал, правда для несколько других целей.)

А можно и вообще не делать. Но, возможно пригодится кому-нибудь. Мало ли.

И в завершении — фото платы «в деле». То есть во время проверки блока для очередного изделия.

Дело было вдали от цивилизации, нормальных приборов инструментов и радиодеталей.

Так что сильно не удивляйтесь «музейным экспонатам» из которых всё собрано. Делалось всё только для подбора катушки, так что тип остальных элементов роли не играл. К тому же, поблизости у знакомых водился осциллограф, позволяющий контролировать сигнал на радиочастотах, который для меня до сих пор остаётся в планах и мечтах. Стоящий на заднем плане приёмник в данном случае выполняет роль частотомера.

На данный момент сделано две такие платы. Надеюсь, что пригодятся для подготовки следующих статей.

Выводы

Макетные платы breadboard оптимальны для создания прототипов и цифровых схем не очень высокой сложности. В своей практике их часто используют как новички, познающие основы схемотехники, так и опытные профессионалы ввиду простоты монтажа и достаточно высокого качества соединения рабочих контактов. С помощью таких плат можно быстро и без лишней пайки создать прототип, протестировать его и затем уже собрать устройство с более надежным вариантом соединения.

Несмотря на большое количество плюсов, у макетных плат есть и минусы. Они не позволяют сделать надежное устройство, эксплуатируемое в сложных условиях. Они не предназначены для сборки аналоговых схем, с высокой чувствительностью к величине сопротивления, т.к. сопротивление в месте контакта завсит от многих факторов и может меняться. Платы нельзя подключать к линии с высоким напряжением. Наконец, такие платы тоже стоят денег – монтажные платы с пайкой обойдутся дешевле.

В любом случае, для первых проектов у ардуинщика каких-то альтернатив нет. Кроме того, подключение макетной платы способствует развитию абстрактного мышления – а это никогда не бывает лишним.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]