Вредные и ценные примеси в рудах и комплексная переработка последних


Примеси: постоянные, скрытые и случайные

Марганец, кремний, алюминий, серу и фосфор
относят к
постоянным примесям
. Алюминий вместе с марганцем и кремнием применяется в качестве раскислителя и поэтому в малых количествах они всегда есть в раскисленных сталях. Руды железа, а также топливо и флюсы всегда содержат определенное количество фосфора и серы, которые остаются в чугуне, а затем переходят и в
сталь
.

Азот

называют
скрытой
примесью – он поступает в сталь в основном из воздуха.

К случайным

примесям относят
медь, мышьяк, олово, цинк, сурьму, свинец
и другие элементы. Они попадают в сталь с шихтой – с рудами из различных месторождений, а также из железного лома.

Все примеси – постоянные, скрытые и случайные – в разной степени являются неизбежными из-за технологии производства стали. Так, спокойная сталь обычно содержит эти примеси в следующих пределах: 0,3-0,7 % марганца; 0,2-0,4 % кремния; 0,01-0,02 % алюминия; 0,01-0,05 % фосфора, 0,01-0,04 % серы, 0,-0,2 % меди. В этих количествах эти элементы рассматривают как примеси, а в бóльших количествах, которые вносят в стали намеренно, их уже считают легирующими элементами.

Какие постоянные примеси имеют сталь

В углеродистой стали кроме основных компонентов (железа и углерода) присутствует ряд примесей: марганец, кремний, сера, фосфор и др. Присутствие разных примесей объясняется соответствующими причинами. Марганец и кремний в десятых долях процента переходят в сталь в процессе ее раскисления; сера и фосфор в сотых долях процента остаются в стали из-за трудности их полного удаления; хром и никель переходят в сталь из шихты, содержащей легированный металлический лом, и допускаются в количестве не более 0,3 % каждого. Таким образом, сталь фактически является многокомпонентным сплавом. Допустимые количества примесей в сталях регламентируются соответствующими стандартами. Примеси оказывают влияние на механические и технологические свойства стали. Так, например, марганец и кремний являются полезными примесями, они раскисляют сталь, повышают твердость и прочность. Фосфор придает стали хладноломкость – хрупкость при нормальной и пониженных температурах, а сера – горячеломкость (красноломкость) – хрупкость при температурах горячей обработки давлением. Таким образом, сера и фосфор являются вредными примесями. Поскольку в сталях допускаются небольшие количества примесей, то их влияние на свойства незначительно. Основным элементом, определяющим механические и технологические свойства стали, является углерод.

Каждой марке углеродистой стали соответствуют регламентированные стандартами определенные пределы содержания углерода.

Морской государственный университет имени адмирала Г.И. Невельского. Кафедра технологии материалов

Источник

Влияние фосфора на свойства сталей

Фосфор (Р) сегрегирует при затвердевании стали, но в меньшей степени, чем углерод и сера. Фосфор растворяется в феррите и за счет этого повышает прочность сталей. С увеличением содержания фосфора в сталях их пластичность и ударная вязкость снижается и повышается склонность к хладноломкости.

Растворимость фосфора при высокой температуре достигает 1,2 %. С понижением температуры растворимость фосфора в железе резко падает до 0,02-0,03 %. Такое количество фосфора характерно для для сталей, то есть весь фосфор обычно растворен в альфа-железе.

Фосфор имеет сильную тенденцию сегрегировать на границах зерен, что приводит к отпускной хрупкости легированных сталей, особенно в марганцевых, хромистых, магниево-кремниевых, хромоникелевых и хромомарганцевых сталях. Фосфор, кроме того, увеличивает упрочняемость сталей и замедляет, как и кремний, распад мартенсита в сталях.

Повышенное содержание фосфора часто задают в низколегированных сталях для улучшения их механической обработки, особенно автоматической.

В низколегированных конструкционных сталях с содержанием углерода около 0,1 % фосфор повышает прочность и сопротивление атмосферной коррозии.

В аустенитных хромоникелевых сталях добавки фосфора способствуют повышению предела текучести. В сильных окислителях наличие фосфора в аустенитных нержавеющих сталях может приводить к их коррозии по границам зерен. Это обусловлено явлением сегрегации фосфора по границам зерен.

Полезные и специальные примеси в стали

В стали встречаются вредные и полезные примеси. Сначала остановимся на полезных, к которым относят марганец и кремний:

  • Марганец – это химический элемент, благодаря которому возрастает прокаливаемость стали и снижается влияние серы, оказывающей вредное воздействие на металл.
  • Кремний – примесь данного элемента помогает раскислить сталь и, как следствие, повысить ее прочность. Его специально добавляют в металл в ходе его выплавки.

Углеродистая сталь содержит примесь кремния не более 0,35–0,4 % и марганец в количестве 0,5–0,8 %. Переход марганца и кремния в сталь происходит во время раскисления в ходе выплавки. Эти химические элементы соединяются с кислородом закиси железа FеO, а затем, превращаясь в окислы, переходят в шлак, то есть, иначе говоря, раскисляют сталь.

Данный процесс оказывает благоприятное воздействие на свойства стали. За счет дегазации металла кремнием увеличивается ее плотность. Часть химического элемента остается в феррите (твердом растворе) уже после раскисления, что приводит к значительному возрастанию предела текучести. При этом способность к холодной высадке и вытяжке у стали снижается.

Рекомендовано к прочтению

  • Резка меди лазером: преимущества и недостатки технологии
  • Виды резки металла: промышленное применение
  • Металлообработка по чертежам: удобно и выгодно

По этой причине производители снижают количество кремния в сталях, изготавливаемых для холодной штамповки и высадки. Прочность металла значительно повышается благодаря примеси марганца. Последний сильно уменьшает красноломкость стали, оставляя пластичность практически неизменной. Таким образом, резко падает хрупкость стали при воздействии высокой температуры, которая возникала из-за присутствия серы.

Для получения сталей, имеющих определенные свойства, в металл добавляют специальные примеси. Они носят название легирующих элементов. Стали же именуют легированными.

Остановимся подробно на назначении некоторых элементов:

  • Алюминий – его примесь помогает повысить окалино- и жаростойкость стали.
  • Медь – увеличивает стойкость стали к коррозии.
  • Хром – повышает прочность, твердость сталей, увеличивает стойкость к коррозии, при этом пластичность падает незначительно. Нержавеющей сталь делает большое содержание хрома.
  • Никель – повышает пластичность, прочность, делает сталь стойкой к коррозии.
  • Вольфрам – при добавлении в сталь создает корбиды (химические соединения повышенной твердости). Они значительно повышают красностойкость и твердость. Под воздействием вольфрама сталь перестает расширяться в процессе нагревания, а хрупкость при отпуске уходит.
  • Ванадий – способствует возрастанию плотности, прочности и твердости стали. Он признается прекрасным раскислителем.
  • Кобальт – под его воздействием увеличивается жаропрочность, стойкость к ударным нагрузкам, возрастают магнитные свойства.
  • Молибден – улучшается сопротивляемость стали к окислению в ходе воздействия на нее высоких температур, возрастает упругость, красностойкость, увеличивается стойкость к коррозии, повышается предел прочности к растяжению.
  • Титан – являясь прекрасным раскислителем, он повышает стойкость к коррозии, увеличивает плотность и прочность металла, делает лучше его обрабатываемость.
  • Церий – способствует возрастанию пластичности и прочности стали.
  • Цирконий (Ц) – воздействует на зернистость стали, давая возможность изготовить металл с установленным размером зерна, делает его мельче.
  • Лантан, неодим и цезий – уменьшают пористость стали, сокращают количество серы, делают качество поверхности лучше, а зерно мельче.

Влияние серы на свойства сталей

Содержание серы (S) в высококачественных сталях не превышает 0,02-0,03 %. В сталях общего назначения допустимое содержание серы выше – 0,03-0,04 %. Специальной обработкой жидкой стали содержание серы в стали доводят до 0,005 %.

Сера не растворяется в железе, поэтому любое ее количество образует с железом сульфид железа FeS. Этот сульфид входит в состав эвтектики, которая образуется при 988 °С.

Повышенное содержание серы в сталях приводит к их красноломкости из-за низкоплавких сульфидных эвтектик, которые возникают по границам зерен. Явление красно

ломкости происходит при температуре 800 °С, то есть при температуре
красного
каления стали.

Сера оказывает вредное влияние на пластичность, ударную вязкость, свариваемость и качество поверхности сталей (особенно в сталях с низким содержанием углерода и марганца).

Сера имеет очень сильную склонность к сегрегации по границам зерен. Это приводит к снижению пластичности сталей в горячем состоянии. Однако серу в количестве от 0,08 до 0,33 % намеренно добавляют в стали для автоматической механической обработки. Известно, что присутствие серы повышает усталостную прочность подшипниковых сталей.

Присутствие в стали марганца уменьшает вредное влияние серы. В жидкой стали протекает реакция образования сульфида марганца. Этот сульфид плавится при 1620 °С – при температурах значительно более высоких, чем температура горячей обработки сталей. Сульфиды марганца пластичны при температурах горячей обработки сталей (800-1200°С) и поэтому легко деформируются.

Металлолом

Согласно классификации Н. Т. Гудцова, примеси в стали подразделяют на постоянные (обыкновенные), случайные некрытые (вредные).

Постоянными примесями в стали являются марганец и кремний, которые как примеси имеются практически во всех промышленных сталях. Содержание марганца в конструк­ционных сталях обычно находится в пределах 0,3—0,8 % (если марганец не является легирующим элементом), в ин­струментальных сталях его содержание несколько меньше /q 15 0,40 %). Введение марганца как технологической до­бавки в таких количествах необходимо для перевода серы из сульфида железа в сульфид марганца. Кремний в хоро­шо раскисленных (спокойных) сталях обычно содержится в пределах 0,17—0,37 >%. В неполной мере раскисленных низкоуглеродистых (^0,2 % С) сталях его содержится меньше: в полуспокойных 0,05—0,017 %, в кипящих <0,07 %. В нержавеющих и жаропрочных, нелегированных кремни­ем сталях его может содержаться до 0,8 %.

Случайными примесями в стали могут быть практичес­ки любые элементы, случайно попавшие в сталь из скрапа, природно-легированной руды или раскислителей. Чаще все­го это Cr, Ni, Cu, Mo, W, Al, Ti и др. в количествах, ограни­ченных для примесей.

Скрытыми примесями в стали являются сера, фосфор, мышьяк и газы водород, азот и кислород. Однако в послед­нее время азот, серу, фосфор иногда используют в качестве легирующих добавок для обеспечения ряда особых свойств сталей. N

По марочному химическому составу стали можно опре­делить, какие элементы являются легирующими добавка­ми, а какие — примесями. Если в марочном химическом составе стали устанавливают нижний (не менее) и верх­ний (не более) пределы содержания в стали данного эле­мента, то он будет легирующим. Как правило, для приме­сей устанавливается только верхний предел содержания. Исключение составляют лишь Марганец и кремний, коли­чество которых регламентируется нижним и верхним пре­делом как для примесей, так и для легирующих добавок.

Вредные примеси: сера, фосфор и газы присутствуют’ практически во всех сталях и в зависимости от типа стали они могут оказывать на свойства различное влияние. Рас­смотрим их роль в стали.

Сера

При комнатной температуре растворимость серы в а-желе – зе практически отсутствует. Поэтому вся сера в стали свя­зана в сульфиды железа и марганца и частично в сульфи­ды легирующих элементов. С повышением температуры се­ра растворяется в а – и у-железе, хотя и незначительно, но До вполне определенных концентраций (0,02 % в а-железе при 913°С и 0,05 % S в v-дселезе при 1365°С). Поэтому сер­нистые включения могут видоизменяться при термической обработке стали.

Если сера связана в сульфид железа FeS при относи­тельно низких температурах горячей деформации стали вследствие расплавления эвтектики сульфида железа (988°С), наблюдается красноломкость стали. При более высоких температурах горячей пластической дефор­мации возможна горячеломкость стали, обусловлен­ная расплавлением находящегося по границам первичных зерен аустенита, собственно сульфида железа (1188 °С). Введение в сталь марганца в отношении Mn:S>8—10 приводит практически к полному связыванию серы в туго-

Рис. 9. Зависимость ударной вязкости нормализованной ста­ли типа 45 от содержания в ией серы (В. Кнорр)

O, iz о,/J 0,01 о, ог O1OJ

S, (по массе]

Рнс. 10. Зависимость ударной вязкости KCV (а) и температуры перехода Ту, (б) стали 08Г2МБ от содержания серы (Е. Н. Жукова) овМП а:

Эффекта или сульфидного парадокса (рис. 10). Оно объясняется тем, что повышение содержания се­ры снижает ударную вязкость на поперечных образцах с острым надрезом (KCV), т. е. сопротивление стали вязко­му разрушению (рис. 10,а). Увеличение прочности стали приводит к более существенному влиянию серы на сниже­ние вязкости. Наиболее интенсивно понижается сопротив­ление вязкому разрушению при содержаниях серы до 0,010%. В то же время влияние серы на температуру пе­рехода из вязкого в хрупкое состояние, определяемое по наличию 50 % вязкой составляющей в изломе ударных об­разцов— T5о, т. е. на сопротивление стали хрупкому разру­шению, имеет экстремальный характер. Как показывают данные, представленные на рис. 10,6, наиболее склонна к хрупкому разрушению сталь при концентрации серы ~0,010%. При меньших и больших концентрациях серы температура перехода T50 понижается. Экстремальное со­держание серы в различных сталях может быть разным. Таким образом, сульфидный эффект заключается в повы­шении сопротивления стали хрупкому разрушению при од­новременном уменьшении сопротивления вязкому разруше­нию с увеличением содержания серы выше определенного предела. Можно полагать, что сульфидный эффект обуслов­лен различным взаимодействием движущейся трещины с сульфидами в зависимости от вязкости матрицы.

В жаропрочных аустенитных сталях повышение содер­жания серы заметно уменьшает пределы ползучести и дли­тельной прочности, т. е. S снижает жаропрочные свойства.

Фосфор

Растворимость фосфора в а – и у-железе значительно выше, чем содержание фосфора в стали, как примеси. Поэтому фосфор в стали целиком находится в твердом растворе, и его влияние на свойства сказывается посредством измене­ния свойств феррцта и аустенита. Вредное действие фосфо­ра на свойства может усугубляться из-за сильной склонно­сти его к ликвации (степень ликвации достигает 2—3).

Действие фосфора на свойства феррита проявляется в его упрочняющем влиянии и особенно в усилении хладно­ломкости стали, т. е. повышении температуры перехода из вязкого в хрупкое состояние (рис. 11). \

Фосфор относится к сильным упрочнителям (см. гл. IV, п – 4). Несмотря на то что содержание его в стали обычно

Не превышает 0,030—0,040 %, он увеличивает предел теку­чести феррита на 20—30 МПа. В то же время увеличение содержания фосфора В пределах сотых долей процента мо­жет вызывать повышение порога хладноломкости на не-

•м

?,% (по массе)

Рис. 11. Влияние фосфора на Oa и ат (М. С. Михалев, М. И. Гольдштейи) и ударную вязкость KCU (А. П. Гуляев) низкоуглероднстой феррнто-перлнтной стали (0,2 % С, 1 % Mn)

Сколько десятков градусов ( ~ 20—25 cC на 0,01 % Р) бла­годаря сильному уменьшению работы распространения тре­щины.

В конструкционных улучшаемых сталях фосфор ответ­ственен за проявление обратимой отпускной хрупкости (см.

Гл. IX, п. 6). В этом случае’ влияние его на порог хладно­ломкости особенно сильно (0,010 % P повышает темпера­туру перехода на ~40°С).

Аналогично фосфор влияет на порог хладноломкости аус – тенитных марганцовистых ста­лей, при этом его вредное вли­яние проявляется менее, резко (рис. 12). Влияние фосфора в допустимых пределах на меха­нические и жаропрочные свой­ства хромоникелевых аустенит – ных нержавеющих и жаропроч­ных сталей заметно не прояв­ляется.

Рнс. 12. Влияние фосфора на порог хладноломкости Tso аусте – нитной марганцовистой стали г 110Г13 (А. П. Гуляев):

1 — литая; 2 — кованая

В сталях, выплавленных на базе керченских руд, содер­жится мышьяк. Его влияние на свойства стали аналогично фосфору, но вредное действие мышьяка значительно сла­бее, чем фосфора. Поэтому в качественной стали такого производства допускается до 0,08 % As.

Газы в стали

R сталях в определенных количествах обычно присутствуют водород, ислород, азот. Содержание их в сталях зависит прежде всего от спо­соба выплавки. Примерное содержание, %, газов в стали при разных способах выплавки по данным А. П. Гуляева:

Электропечной Мартеновский Кислородно-

Основной конверторный

Водород • • • Кислород • • • Азот. . . •

. 0,0004—0,0006 0,002—0,004 0,007—0,010

0,0003—0,0007 0,005—0,008 0,004—0,006 0,0001—0,0008 0,005—0,003 0,002—0,005

Водород может входить в состав твердого раствора стали и выде­ляться в газообразном состоянии, скапливаясь в порах металла, при этом в стали образуются флокены. Кислород обычно связан в неметал­лические включения. Азот отрицательно влияет на свойства стали, если он находится в твердом растворе или образует нитриды железа, вызы­вая старение стали. Положительное влияние азота на свойства стали проявляется при связывании его в прочные нитриды AlN, VN1 NbN или карбонитриды V (С, N), Nb (С, N) и др., что используется в сталях с карбоннтридным упрочнением. Кроме того, азот широко используется в качестве аустеннтообразующего элемента в коррозионностойкнх и жаропрочных сталях.

В заключение необходимо отметить, что борьбу с вредными при­месями в стали в основном проводят при выплавке стали. Уменьшение содержания вредных примесей в стали требует зачастую немалых за­трат для осуществления определенных технологических приемов и при­менения специальных методов выплавки.

Влияние алюминия на свойства сталей

Алюминий (Al) широко применяется для раскисления жидкой стали, а также для измельчения зерна стальных слитков. К вредному влиянию алюминия относят то, что он способствует графитизации сталей. Хотя алюминий часто считают примесью, его активно применяют и как легирующий элемент. Поскольку алюминий образует с азотом твердые нитриды, он обычно бывает легирующим элементом в азотируемых сталях. Алюминий повышает стойкость сталей к окалинообразованию, и поэтому его добавляют в теплостойкие стали и сплавы. В дисперсионно упрочняемых нержавеющих сталях алюминий применяют как легирующий элемент, ускоряющий реакцию дисперсионного выделения. Алюминий повышает коррозионную стойкость низкоуглеродистых сталей. Из всех легирующих элементов алюминий является наиболее эффективным для контроля роста зерна при нагреве сталей под закалку.

Влияние азота на свойства сталей

Вредное влияние азота (N) заключается в том, что образуемые им довольно крупные, хрупкие неметаллические включения – нитриды – ухудшают свойства стали. Положительным свойством азота считают то, что он способен расширять аустенитную область диаграммы состояния сталей. Азот стабилизирует аустенитную структуру и частично заменяет никель в аустенитных сталях. В низколегированные стали добавляют нитридообразующие элементы ванадий, ниобий и титан. При контролируемой горячей обработке и охлаждении они образуют мелкие нитриды и карбонитриды, которые значительно повышают прочность стали.

Влияние меди на свойства сталей

Медь (Cu) имеет умеренную склонность к сегрегации. К вредному влиянию меди относят снижение хладноломкости стали. При повышенном содержании меди она отрицательно влияет качество поверхности стали при ее горячей обработке. Однако при содержании более 0,20 % медь повышает ее стойкость к атмосферной коррозии, а также прочностные свойства легированных и низколегированных сталей. Медь в количестве более 1 % повышает стойкость аустенитных нержавеющих сталей к воздействию серной и соляной кислот, а также их стойкость к коррозии под напряжением.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]