Никель и его сплавы: характеристика, свойства, применение


Никель — высокопрочный пластичный металл серебристо-белого цвета. Был открыт в 1751 году шведским химиком Акселем Кронстедтом. В периодической системе Д. И. Менделеева имеет номер 28 и символ Ni, атомная масса равна 58,71.

Никель — твердый и вязкий металл с ферромагнитными свойствами. Он хорошо поддается сварке, ковке, штамповке и прокатке. Отличается устойчивостью в химически активных средах, в том числе в щелочах. В атмосферных условиях покрывается защитной оксидной пленкой и не окисляется даже при температуре 800 ⁰С.

Физические свойства никеля:

  • Температура плавления — 1455 ⁰С.
  • Скрытая теплота плавления — 73 кал/г.
  • Температура кипения — 2913 ⁰С.
  • Скрытая теплота испарения — 1450 кал/г.
  • Плотность — 8800 кг/м3.
  • Предел прочности при растяжении отожженного никеля — 4000−5000 МПа.
  • Предел прочности при растяжении деформированного никеля — 7500−9000 МПа.
  • Предел текучести отожженного никеля — кГ/мм2.
  • Предел текучести деформированного никеля — 70 кГ/мм2.
  • Теплопроводность — 90,9 Вт/(м*К).
  • Удельное электросопротивление — 0,0684 мкОм*м.
  • Модуль упругости — 196−210 ГПа.
  • Модуль нормальной упругости — 20000 кГ/мм2.
  • Модуль сдвига — 7300 кГ/мм2.
  • Твердость литого никеля — 60−70 кГ/мм2.
  • Твердость отожженного никеля 70−90 кГ/мм2.
  • Твердость деформированного никеля — 200 кГ/мм2.

Благодаря своим свойствам никель в чистом виде и особенно в сплавах широко применяется в различных областях промышленности. Металл образует твердые растворы со многими элементами.

Марки и химический состав никеля

Согласно ГОСТ 849-2008, выпускается 7 марок никеля — Н0, Н1Ау, Н1у, Н1, Н2, Н3 и Н4. В их составе содержится от 97,6 до 99,99 % никеля в сумме с небольшим процентом кобальта (Co) — от 0,005 до 0,7 %. Остальную массу занимают примеси:

  • Углерод (C) — есть во всех марках никеля.
  • Магний (Mg).
  • Алюминий (Al).
  • Кремний (Si).
  • Фосфор (P).
  • Сера (S) — есть во всех марках.
  • Марганец (Mn).
  • Железо (Fe).
  • Медь (Cu) — есть во всех марках.
  • Цинк (Zn).
  • Мышьяк (As)
  • Кадмий Cd).
  • Олово (Sn).
  • Сурьма (Sb).
  • Свинец (Pb).
  • Висмут (Bi).

Подробный химический состав никеля разных марок представлен в таблице ниже.

МаркаХимический состав, %
Ni и co, не менееВ том числе Co, не болееПримеси, не более
CMgAlSiPSMnFeCuZnAsCdSnSbPbBi
H099,990,0050,0050,0010,0010,0010,0010,0010,0010,0020,0010,00050,00050,00030,00030,00030,00030,0001
H1Ay99,950,10,0010,0010,0020,0010,0010,010,10,0010,0010,00060,00050,00050,00050,0001
H1y99,950,10,010,0010,0020,0010,0010,010,0150,0010,0010,00050,00050,00050,00050,0003
H199,930,10,010,0010,0020,0010,0010,020,020,0010,0010,0010,0010,00010,0010,0006
H299,80,150,020,0020,0030,040,040,0050,1
H398,60,70,10,030,6
H497,60,70,150,041,0

Влияние примесей на свойства металла

Сера является одной из наиболее вредных примесей. Она придает никелю краcноломкость, из-за которой ухудшаются свойства металла при обработке давлением. Чтобы нейтрализовать действие серы, добавляют марганец и/или магний.

Углерод в количестве до 0,1 % никак не влияет на свойства металла, однако при большем содержании этого элемента он выпадает из твердого раствора при отжиге и снижает пластичность холодного никеля.

При содержании висмута и свинца в количестве от 0,002 % становится невозможной горячая обработка металла: так как эти элементы почти не растворяютися в твердом состоянии, из-за них разрушается слиток. Поэтому во всех марках никеля количество свинца и висмута ограничено 0,001 и 0,0006 % соответственно.

Алюминий увеличивает электросопротивление никеля. Данный элемент содержится в самой чистой марке — Н0. Кроме того, широко применяются сплавы никеля и алюминия: у них высокая жаропрочность и устойчивость к коррозии.

Железо не оказывает ощутимого влияния на свойства никеля. Кремний раскисляет основной металл, благодаря чему благоприятно влияет на его литейные свойства, химическую стойкость и прочность.

Кобальт повышает жаростойкость, жаропрочность и прочность никеля, а марганец оказывает положительные влияние на технологические и механические свойства металла, улучшает его электросопротивление.

Формы нахождения металла

Никелевый сплав создается для замещения железа или магния. В виде самородков металл присутствует в метеоритах, в естественных условиях извлекается из руды. Концентрация этого вещества в живых организмах обуславливается воздействием окружающей среды.

Главные месторождения расположены в таких странах:

  • Китай.
  • Россия.
  • Албания.
  • Куба.
  • Греция.

Разновидность руды определяет технологию извлечения никеля. Гидрометаллургический способ используется для переработки латеритового сырья. Если руда содержит меньше целевого материала, проводится электрическая выплавка или обжиг. Такой процесс позволяет одновременно добывать соли кобальта. Много никеля содержится в продуктах горения каменного угля, добываемого в Англии. Это обусловлено существованием микроорганизмов, в которых содержится минерал. Чистота добытого вещества определяет его физические характеристики.

Легирование с помощью магния помогает получить чистый металл.

Применение никеля в чистом виде

Для защиты металлов от коррозии

Для этого используются покрытия, которые наносятся гальванопластикой или плакированием. Первый способ применяют для алюминия, чугуна, магния и цинка, второй — для нелегированных сталей и железа.

Для производства металлических изделий, которые имеют постоянные формы и высокую коррозионную устойчивость

Никель в чистом виде стоит дороже, чем железо и сталь, поэтому используется в тех случаях, когда невозможно обойтись другим металлом с никелевым покрытием. Из никеля производят тигли и котлы, цистерны для перевозки и плавления щелочей, хранения реагентов, пищевых продуктов и др. В никелевых трубах изготавливают конденсаты. Инструменты их этого металла устойчивы при взаимодействии с агрессивными элементами, поэтому они практически незаменимы в химических лабораториях и медицинских центрах. Различные приборы из никеля применяются для телевидения, радиолокации и атомной техники.

В качестве катализаторов и фильтров в химической промышленности

Никель обладает такими же каталитическими свойствами, что и палладий, но стоит значительно меньше, поэтому широко используется в виде порошка в реакциях гидрирования спиртов, непредельных и ароматических углеводородов, циклических альдегидов.

Порошок чистого никеля также подходит для создания пористых фильтров, которые используются для фильтрования различных продуктов: топлива, газов и др.

Для механических прерывателей нейтронного пучка.

Свойства никеля позволяют получать нейтронные импульсы с большой энергией, в результате чего пластины из этого металла применяются в ядерной физике.

Также никель используют при изготовлении электродов в щелочных аккумуляторах.

Свойства никеля

Никель – ферромагнетик, точка Кюри – 358°C, температура плавления – 1455°C, температура кипения – 2730-2915°C. Плотность – 8,9 г/см3 , коэффициент теплового расширения -13,5∙10−6 K−1. На воздухе компактный никель – стабилен, а высокодисперсный – пирофорен.

Никель обладает такими свойствами, как:

  • пластичность и ковкость;
  • прочность при высоких температурных режимах;
  • устойчивость к окислению в воде и на воздухе;
  • твердость и достаточная вязкость;
  • высокая коррозионная стойкость;
  • ферромагнетик;
  • хороший катализатор;
  • хорошо полируется.

Поверхность никеля покрыта тонким слоем оксида NiO, защищающим металл от окисления.

Никелевые сплавы

В сплавах никель (вместе с кобальтом) соединяется с алюминием, кремнием, марганцем, железом и хромом. Согласно ГОСТ 492-73, в них допускается не более 1,4 % примесей. В составе примесей содержится незначительная доля магния, свинца, серы, углерода, висмута, мышьяка, сурьмы, кадмия, олова. Отдельной группой выступают медно-никелевые сплавы.

Все сплавы никеля разделяются на четыре большие группы:

  • Конструкционные. Особенность этих сплавов — высокие механические свойства и повышенная устойчивость к коррозии. К этой группе относятся прежде всего сплавы на медно-никелевой основе, такие как мельхиор, монель, ней­зильбер. Они хорошо свариваются и поддаются обработке в холодном и горячем виде.
  • Жаростойкие. Основными элементами этих сплавов являются никель и железо. Они отличаются высокой жаростойкостью и жаропрочностью, применяются преимущественно для производства электронагревательных приборов. Их также используют для изготовления малогабаритных тензорезисторов и потенциометрических обмоток.
  • Термоэлектродные. Это сплавы с высоким удельным сопротивлением и большой электродвижущей силой. Их используют для производства компенсационных проводов, термопар, пре­цизионных приборов. К данной группе относятся некоторые никелевые (хромель, алюмель) и медно-никелевые (константан, копель, манганин) сплавы.
  • Сплавы с особыми свойствами. В эту группу входят сплавы, которые находят особое применение благодаря своим уникальным свойствам. Инвар — сплав никеля и железа, который отличается повышенной упругостью. Он применяется для изготовления эталонов длины, мерных геодезических проволок, несущих конструкций лазеров, деталей часовых механизмов и др. Пермаллой — также сплав никеля и железа, обладающий высокой проницаемостью в магнитных полях. Его используют для производства магнитопроводов, деталей реле, сердечников трансформаторов и др.

Сплав с кремнием

Кремнистый никель НК 0,2 содержит 99,4 % никеля (с кобальтом), 0,15 — 0,25 % кремния и до 0,45 % примесей. Из этого сплава изготавливаются ленты и полосы, которые находят применения в электротехнике: из них делают детали приборов и устройств.

Сплавы никеля и марганца

Марганцевый никель выпускается четырех марок — НМц1, НМц2, НМц2,5 и НМц5. Из сплава НМц1 производят сетки управления ртутных выпрямителей. НМц2 находит применение в электронных лампах повышенной прочности, используется для держателей сеток и др. Проволока из сплавов НМц2,5 и НМц5 используется в свечах двигателей — автомобильных, авиационных и тракторных. НМц5 также применяется для радиоламп.

Алюмель

Алюмель (НМцАК 2-2-1) — сплав никеля, алюминия, марганца и кремния. Он содержит 1,60−2,40 % алюминия, 1,80−2,70 % марганца, 0,85−1,50 кремния, до 0,7 % примесей, остальная часть — никель с кобальтом (кобальта — до 1,2 %). Алюмель применяется для изготовления термопар, которые используются для измерения температуры в различных областях промышленности, системах автоматики, а также в медицине и научных исследованиях.

Хромели

Хромель Т (НХ 9,5) — сплав никеля и 9-10 % хрома с содержанием примесей в количестве не более 1,4 %. Из этого сплава изготавливают проволоку для термопар.

Хромель К (НХ 9) содержит 8,5−10 % хрома и до 1,4 % примесей. Проволока из данного сплава используется для компенсационных проводов.

В состав хромеля ТМ (НХМ 9,5) входит 9−10 % хрома, 0,1−0,6 % кремния и до 0,15 % примесей. Сплав используется для изготовления термопар.

Хромель КМ (НХМ 9) — это сплав никеля, 8,5−10 % хрома, 0,1−0,6 % кремния с содержанием не более 0,15 % примесей. Применяется для изготовления проволоки компенсационных проводов.

Технология сварки и свойства соединений

Подготовка под сварку

При сварке Ni и его сплавов необходима тщательная зачистка кромок и прилегающих к ним участков на ширине 20—25 мм механическим путем, так как на них образуется налет, содержащий серу, с последующим обезжириванием в ацетоне, уайт-спирите или бензине. Химическое травление, как правило, не применяется, однако при наличии пленки окислов на поверхности металла рекомендуется обработка в растворе следующего состава: 1 л Н2O, 1,5 л H2SO4, 2,25 л HNO3, 30 г NaCl в течение 5—10 с с последующей промывкой в воде, нейтрализацией в 1 %-ном водном растворе аммиака и сушкой.

Металл в сварочной ванне при сварке никеля и его сплавов более вязок, чем при сварке сталей, и поэтому проплавляется на меньшую глубину, что требует значительной разделки кромок и увеличения их притупления. При сварке кислотостойкой аппаратуры следует избегать стыковых соединений с отбортовкой кромок, так как образующиеся в этом случае «карманы» могут вызвать появление щелевой коррозии при эксплуатации.

Газовая сварка

Газовую сварку преимущественно применяют при малой толщине (до 3—4 мм) Ni или его сплавов. В основном используется ацетилено-кислородное пламя нормальное или слегка восстановительное, β = 0,97÷1,0, так как избыток ацетилена может вызвать пористость металла шва. Электродную проволоку используют марок Н-1, НП-1, НП-2, а также применяют комплексно-легированные проволоки, содержащие Ti, Al, Mn, Si, марок НМцАТ3-1,5-0,6 и НМцТК1-1,5-2-0,15 (ТУ48-21-284—73).

В качестве присадочного материала используют проволоку из сплава НМц2,5, нихрома Х20Н80.

При газовой сварке Ni используют многокомпонентные флюсы: керамические типа ЖН-1 и плавленые фторидные и высокоосновные марок АН-Ф5, АН-Ф7, АН8, АН-29, 49-ОФ-6.

Для сварки никеля и его сплавов применяют «левый» и «правый» способы. При «левом» способе сварочная ванна более интенсивно взаимодействует с кислородом окружающей атмосферы, его следует применять для сварки тонких листов (1— 2 мм). При «правом» способе охлаждение сварочной ванны происходит медленнее, при этом уменьшается окисление расплавленного металла и пористость.

Сварку Ni следует выполнять без задержек и возврата на сваренный участок во избежание перегрева околошовной зоны, сопровождающегося образованием трещин. Следует также избегать многослойной газовой сварки. Металл толщиной 1 — 2 мм сваривают в один проход без скоса кромок. Для стыковых швов металла больших толщин делается V-образная разделка.

Сварные соединения из никеля, выполненные газовой сваркой, имеют σв = 274÷314 МПа, α = 90÷120°. Нормализация соединений при температуре 825—900 °С повышает их пластичность и вязкость.

Сварка нихрома затруднена образованием на поверхности ванны тугоплавкой пленки оксида хрома, которую удаляют механическим путем. Сварка нихрома выполняется с максимальной скоростью и без перерывов за один проход, так как повторное расплавление металла может привести к образованию трещин. Применяется пламя с небольшим избытком ацетилена при мощности 50—70 л/ч на 1 мм толщины. В качестве присадочного прутка используется проволока, близкая по составу к основному металлу, с пониженным содержанием С и содержанием Сг по верхнему пределу. Применяется флюс состава, % (по массе): 40 буры, 50 борной кислоты, 10 хлористого натрия или фтористого калия. После отжига предел прочности сварных соединений из нихрома составляет 343—441 МПа.

Ручная дуговая сварка

Для ручной дуговой сварки Ni и его сплавов применяют электроды с качественными покрытиями. Наиболее качественные швы обеспечивают электроды с покрытием «Прогресс-50», которые применяют для сварки никеля марок Н-1, НП-1, НП-2. Электроды с покрытием ЭНХД-10 предназначаются для сварки никелевокремнистых сплавов, с покрытием ЭНХМ-100 — для нихрома и никелевомолибденовых сплавов. Для сварки сплавов типа ХН80ТБЮ, ХН80ТБЮА, ХН70ВМТЮ и ХН75МВТЮ используют электроды с покрытием типа ИМЕТ и ВИ-2-6. Процесс ведут на постоянном токе обратной полярности, при этом значение тока назначают пониженным по сравнению с токами, применяемыми при сварке стали. Скорость сварки также понижена на 15%. Рекомендуется вести сварку в нижнем положении короткой дугой для уменьшения угара стабилизирующих и раскисляющих элементов, содержащихся в электродной проволоке. При сварке производят продольные небольшие колебания конца электрода, что способствует газоудалению и получению более плотных швов, чем при поперечных колебаниях. Электрод держат примерно перпендикулярно плоскости шва с наклоном не более 15° в сторону свариваемых кромок.

При сварке Ni и его сплавов толщиной более 15 мм используется многопроходная сварка с предварительным подогревом кромок до 200—250 °С, при этом требуется тщательная зачистка поверхности промежуточных слоев.

Механические свойства сварных швов на некоторых никелевых сплавах, выполненных ручной дуговой сваркой покрытыми электродами, приведены в табл. 28.2.

Сварка под флюсом и электрошлаковая сварка

Сварку под флюсом и электрошлаковую сварку Ni и его сплавов выполняют на постоянном токе обратной полярности. Для сварки используют низкокремнистые основные или бескислородные фторидные флюсы типа АНФ-5, АНФ-22, АНФ-23 и др. Электродную проволоку выбирают по составу близкой к основному металлу. Диаметр проволоки практически не зависит от толщины металла и выбирается в зависимости от подготовки кромок в пределах от 3 до 5 мм.

При сварке металла малых толщин (5—6 мм) используется проволока диаметром 3 мм, сварка стыковых соединений выполняется без скоса кромок и без зазора; при больших толщинах производится V- или Х-образная разделка кромок. При сварке с полным проплавлением кромок используют медные или флюсовые подкладки.

Сварные соединения Ni и его сплавы, выполненные сваркой под флюсом, имеют достаточно стабильные и высокие механические свойства: σв = 516÷780 МПа, KCU = 912÷2380 кДж/м2, δ = 6÷36 %.

Аргоно-дуговая сварка

Преимуществом аргоно-дуговой сварки является возможность обеспечения качественной защиты инертным газом сварочной ванны от взаимодействия с компонентами воздуха O2, N2, Н2, в результате чего предупреждается порообразование, трещино-образование и другие дефекты. При недостаточной защите поверхность шва становится складчатой, и на рентгенограммах сварных соединений оксидные плены в складках шва могут расшифровываться как трещины.

Сборку деталей рекомендуется выполнять в зажимных приспособлениях без прихваток. Сборку с прихватками следует производить в тех случаях, когда невозможно предупредить нежелательные деформации при сварке в приспособлении. Размеры прихваток, расстояние между ними и способ выполнения устанавливают при отработке технологического процесса. В местах пересечений сварных швов ставить прихватки не допускается. Прихватки рекомендуется выполнять без присадочной проволоки. Присадочный металл следует применять в случае, если без присадки в прихватках образуются трещины. При выполнении прихваток и последующей сварке особое внимание следует обращать на заделку кратеров для предупреждения образований усадочной пористости и трещин. Кратеры швов должны быть тщательно заплавлены или выведены на удаляемый припуск детали или выходную планку. Не допускается выведение кратера на основной металл. Возбуждение дуги также рекомендуется выполнять на входной пластине, на стыке деталей, в разделке или на ранее наплавленном металле, но не на основном металле. Для возбуждения дуги следует использовать осциллятор. Заканчивая процесс сварки, следует уменьшать сварочный ток для предотвращения образования трещин в кратере. Сварку следует выполнять с минимальным количеством перерывов.

Одним из способов предупреждения горячих трещин при сварке может стать обеспечение преимущественной доли присадочного металла в шве (до 70—85 %). Для этого предусматривается зазор в корне разделки кромок или расширение разделки в корневой части (OСT 92-1186—80).

При сварке никелевых сплавов применяют сварочную проволоку с повышенным содержанием марганца и молибдена с целью обеспечения высокой стойкости металла шва против образования горячих трещин. Составы присадочных материалов приведены в табл. 28.3.

При сварке никелевых сплавов с нержавеющей сталью 12Х18Н10Т в ряде случаев целесообразно смещать вольфрамовый или плавящийся электрод от стыка свариваемых кромок в сторону стали на величину, указанную в табл. 28.4, для симметричного формирования шва относительно стыка изделий.

Для повышения стойкости сварных соединений жаропрочных дисперсионно-твердеющих: никелевых сплавов против растрескивания при нагревах необходимо заготовки деталей, подлежащих сварке, подвергать стабилизирующей термической обработке. Режимы стабилизации устанавливают в каждом конкретном случае при отработке технологии.

Сварные соединения, не подвергаемые упрочнению после сварки, а также соединения монтажные и другие, не допускающие термической обработки по своей конструкции, следует преимущественно выполнять с присадкой Св-06Х15Н60М15 по ГОСТ 2246—70.

С учетом склонности никелевых сплавов к образованию горячих трещин при сварке следует применять стыковые соединения или угловые и тавровые с полным проваром, как не имеющие концентратора напряжений в сравнении с другими типами соединений.

Для повышения стойкости против горячих трещин предусматривают гарантированный зазор между свариваемыми кромками стыковых соединений для обеспечения свободной усадки металла. Величину зазора выбирают при отработке технологии.

Для получения сварных швов с гарантированным проваром и с целью уменьшения пористости в сварных соединениях никелевых сплавов применяют способ аргонодуговой сварки с использованием активирующих флюсов (АФ). Способ обеспечивает получение более широкого проплава и более узкой лицевой стороны шва по сравнению с обычной аргонодуговой сваркой. В табл. 28.5 приведен химический состав флюса, рекомендуемый при сварке никелевых сплавов.

С целью предупреждения образования пор в металле шва наносить АФ рекомендуется непосредственно перед сваркой. Оставшийся на поверхности швов налет шлака АФ не оказывает отрицательного влияния на механические свойства и коррозионную стойкость соединений.

Электронно-лучевая сварка

Электронно-лучевой сваркой можно сваривать практически все марки никелевых сплавов, при этом удается получать соединения больших толщин за один проход и с большой скоростью. Следует применять рекомендации такие же, как при аргонодуговой сварке.

Высокая чистота атмосферы (вакуум) и особенности термического цикла позволяют получать соединения с механическими свойствами на уровне основного металла.

Медно-никелевые сплавы

Это сплавы на медной основе, при этом никель является в них основным легирующим элементом. Смешение никеля и меди гарантирует высокую прочность, электросопротивление и устойчивость к коррозии.

В качестве элементов медно-никелевых сплавов могут также выступать алюминий, железо, марганец, цинк, титан, свинец, кремний. Согласно ГОСТ 492-73, допускается не более 2 % примесей, для некоторых сплавов — не более 0,15 %. Наиболее распространенные медно-никелевые сплавы — это копель, константан, мельхиор, нейзильбер, куниаль, манганин, монель.

Копель

Копель (МНМц43-0,5) содержит 0,1−1 % марганца, 42,5−44 % никеля, до 0,6 % примесей, остальная масса приходится на медь. Сплав имеет большую термоэлектродвижущую силу, выпускается в виде проволоки, которая применяется для компенсационных проводов, а также для изготовления термопар.

Константан

Константан (МНМц40-1,5) — термостабильный сплав с высоким удельным электросопротивлением. Он состоит из 1-2 % марганца, 39-41 % никеля, примерно 59 % меди и не более 0,9 % примесей. Константан выпускается в виде проволоки, полос и лент. Используется для изготовления приборов высокого класса точности, реостатов и электронагревательных элементов, компенсационных проводов и термопар.

Мельхиор

Мельхиор (МНЖМц30-1-1) — конструкционный медно-никелевый сплав с содержанием 18-22 % никеля, примерно 80 % меди и не боле 0,6 % примесей. Некоторые разновидности мельхиора содержат железо и марганец. Он обладает высокой пластичностью и коррозионной стойкостью. Хорошо поддается обработке давлением в холодном и горячем виде — штампуется, режется, чеканится. Его легко паять и полировать. Мельхиор имеет серебристый оттенок, выпускается в виде труб, полос и ленты. Применяется для изготовления монет, недорогих ювелирных украшений и посуды. Из него делают трубные доски кондиционеров, конденсаторные трубы. Сплав также используется в приборостроении.

Нейзильбер

Название нейзильбер (МНЦ15-20) переводится с немецкого как «новое серебро». Такое название он получил из-за того, что напоминает драгоценный металл, но при этом он стоит намного дешевле. Из него делают столовые приборы, которые серебрятся после отливки. В промышленности нейзильбер применяется для производства паровой и водяной арматуры, медицинских инструментов и деталей точных приборов. Из него производят ордены и медали, ювелирные изделия, гитарные лады. Нейзильбер также используется для изготовления финифти и филиграни. Сплав содержит 18-22 % цинка, 13,5-16,5 % никеля, около 38 % меди и не более 0,9 % примесей. Выпускается в виде ленты, труб, полос, проволоки и прутков.

Куниаль

Куниаль — дисперсионно-твердеющий сплав меди, никеля и алюминия. Куниаль А (МНА13-3) содержит 2,3-3 % алюминия, 12-15 % никеля, около 80 % меди и не более 1,9% примесей. Куниаль Б (МНА6-1,5) — 1,2-1,8 % алюминия, 5,5-6,5 % никеля, около 90 % меди и не более 1,1 % примесей.

Куниаль А выпускается в виде прутков, применяется в машиностроении для изделий повышенной прочности. Из куниаля Б изготавливают полосы, которые используются в электротехнике для пружин и других изделий.

Манганин

Манганин (МНМц3-12) — термостабильный сплав, содержащий 11,5-13,5 % марганца, 2,5-3,5 % никеля, около 85 % меди и не более 0,9 % примесей. Он выпускается в виде листов и проволоки, находит применение в измерительной технике: из манганина делают шунты, катушки, добавочные сопротивления, магазины сопротивлений и др.

Преимущества и недостатки

Главные плюсы никеля и сплавов — жаропрочность, жаростойкость и повышенная механическая прочность (давление до 440 МПа). К достоинствам также можно отнести эксплуатацию в раскаленных концентрированных щелочных и кислотных растворах. Помимо этого никель способен сохранять магнитные свойства при пониженных температурах.

Главным недостатком никеля является значительное снижение показателей термоЭДС при быстром охлаждении после отжига (до 600°C). Также к минусам никеля можно отнести тот факт, что в природе чистый никель не встречается. Его получают путем дорогих технологий, что сказывается на его стоимости.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]