Химический элемент никель (Ni) — строение, свойства и характеристика металла


Никель — это элемент десятой группы, четвертого периода таблицы Менделеева, 28 — атомный номер, обозначение — Ni. Внешний вид — серебристо-белый металл, пластичный, ковкий. На воздухе при обычной температуре покрывается тонкой оксидной пленкой, но не тускнеет. У него высокая коррозийная стойкость, но активно реагирует с азотной кислотой. Может гореть, если в виде порошка, самовоспламеняется на воздухе.
  • Температура плавления — 1726 К.
  • Температура кипения — 3005 К.
  • Структура решетки — кубическая гранецентрированная.
  • Химически малоактивен.

Название элемент получил в честь злого духа из немецкой мифологии (Nickel — озорник), потому что при выплавлении руды никеля, начинали выделяться мышьяковые газы, которые незаметно вдыхались горняками.

История открытия

Получение металла, который уже многие сотни лет с успехом используется человеком, не было связано с научными открытиями, впервые никель попал в руки людям случайно. После падения метеорита его куски были переплавлены на оружие и предметы культа, а использовавшие их воины и жрецы интуитивно поняли особые свойства металла, его удивительную прочность, сочетающуюся с ковкостью.

Интересно, что само название «никель» было презрительным наименованием, переводившимся как «ложная медь», однако постепенно характеристики элемента были по достоинству оценены.

Известно, что ученые древнего Китая еще в 235 году до н. э. писали об удивительном материале пафонге, который и представлял собой никелевый сплав с цинком и медью. Это позволяет сделать вывод о том, что металл начал использоваться человеком очень давно. Позднее сплав был завезен в Европу, где стал применяться для чеканки монет.

Использование металла в промышленности началось во второй половине XVIII столетия, различные его сплавы стали активно использоваться в производстве шпор, оружия и даже в ювелирной отрасли.

Честь открытия никеля в сплаве принадлежит исследователю из Швеции Кронштеду, который установил, что никель — это новый и доселе неизвестный науке металл, а не сплав ранее известных элементов. После смерти шведа его выводы были подтверждены Т. Бергманом.

Выявить физико-химические специфики металла смог И. Рихтер. Он же и описал его пластичность и стойкость к коррозии за счет особой конфигурации.

Влияние никеля на здоровье

Содержание никеля в организме человека составляет около 10 мг. Поскольку никель необходим для некоторых организмов, это, возможно, применимо и к людям. Никель плохо всасывается в желудочно-кишечном тракте. В продуктах питания обычно мало никеля, за исключением шоколада и жиров. Употребление в пищу овощей, которые растут на загрязненной почве, также может быть опасным, поскольку никель легко накапливается в растениях. В небольших количествах никель не только безвреден, но и очень важен для организма. Однако, если концентрации становятся слишком высокими, могут возникнуть следующие симптомы:

  • Повышенный риск развития рака легких, носа, гортани и простаты;
  • Тошнота и головокружение;
  • Тромбоэмболия легочной артерии;
  • Заболевания дыхательных путей;
  • Астма и хронический бронхит;
  • Аллергические реакции, такие как кожная сыпь от ювелирных изделий, содержащих никель;
  • Сердечная недостаточность.

Канцерогенные эффекты никеля могут быть связаны с тем, что он занимает место атомов цинка и магния в ДНК-полимеразе. Однако наблюдения в основном проводились за рабочими, занятыми в переработке никеля. Обычно люди сталкиваются с этой проблемой из-за курения. При проглатывании большого количества никеля организм обычно реагирует тошнотой, которая выводит вещество из организма.

Специфика структуры

Особенностью минерала является принадлежность его к переходным металлам. Отличается он также серебристо-белым оттенком и незначительной химической активностью.

Исследователям удалось выявить следующие особенности структуры никеля:

  1. Наличие гранецентрированной кубической решетки, период которой составляет 0,35238 нм.
  2. Кристаллическая структура способна выдерживать на себе давление до 70 ГПа.
  3. Чаще всего металл существует в виде b-модификации с кубической решеткой с периодом 3,5236, а при катодном распылении в атмосфере H2 приобретает вид a-модификации с гексагональной решеткой. Она способна преобразиться в кубическую при нагревании.
  4. Радиус атома элемента — 1,24 а.
  5. Плотность — 8,9 г/см3.

Электронная формула никеля выглядит следующим образом: 1s2 2s2 2p6 3s2 3p6 4s2 3d8. Элемент имеет 28 электронов, на 1s, 2s, 3s, 4s-подуровнях размещены по 2 электрона, на 2p, 3p и 3d-подуровнях — по 6 электронов.

Степень окисления атомов в соединениях — 6, 4, 3, 2, 1, 0, -1. Строение атома никеля представляет собой положительно заряженное ядро, внутри которого размещены 28 протонов и 31 нейтрон.

Теплопроводность латуни и бронзы

В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.) в зависимости от температуры — в интервале от 4 до 1273 К.

Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).

Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90. Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы. Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.

Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).

Теплопроводность медных сплавов всегда ниже теплопроводности чистой меди при прочих равных условиях. Кроме того, теплопроводность медно-никелевых сплавов имеет особенно низкое значение. Самым теплопроводным из них при комнатной температуре является мельхиор МНЖМц 30-0,8-1 с теплопроводностью 30 Вт/(м·град).
Таблица теплопроводности латуни, бронзы и медно-никелевых сплавов

СплавТемпература, КТеплопроводность, Вт/(м·град)
Медно-никелевые сплавы
Бериллиевая медь300111
Константан зарубежного производства4…10…20…40…80…3000,8…3,5…8,8…13…18…23
Константан МНМц40-1,5273…473…573…67321…26…31…37
Копель МНМц43-0,5473…127325…58
Манганин зарубежного производства4…10…40…80…150…3000,5…2…7…13…16…22
Манганин МНМц 3-12273…57322…36
Мельхиор МНЖМц 30-0,8-130030
Нейзильбер300…400…500…600…70023…31…39…45…49
Латунь
Автоматная латунь UNS C36000300115
Л62300…600…900110…160…200
Л68 латунь деформированная80…150…300…90071…84…110…120
Л80 полутомпак300…600…900110…120…140
Л90273…373…473…573…673…773…873114…126…142…157…175…188…203
Л96 томпак волоченый300…400…500…600…700…800244…245…246…250…255…260
ЛАН59-3-2 латунь алюминиево-никелевая300…600…90084…120…150
ЛМЦ58-2 латунь марганцовистая300…600…90070…100…120
ЛО62-1 оловянистая30099
ЛО70-1 оловянистая300…60092…140
ЛС59-1 латунь отожженая4…10…20…40…80…3003,4…10…19…34…54…120
ЛС59-1В латунь свинцовистая300…600…900110…140…180
ЛТО90-1 томпак оловянистый300…400…500…600…700…800…900124…141…157…174…194…209…222
Бронза
БрА5300…400…500…600…700…800…900105…114…124…133…141…148…153
БрА7300…400…500…600…700…800…90097…105…114…122…129…135…141
БрАЖМЦ10-3-1,5300…600…80059…77…84
БрАЖН10-4-4300…400…50075…87…97
БрАЖН11-6-6300…400…500…600…700…80064…71…77…82…87…94
БрБ2, отожженая при 573К4…10…20…40…802,3…5…11…21…37
БрКд293340
БрКМЦ3-1300…400…500…600…70042…50…55…54…54
БрМЦ-5300…400…500…600…70094…103…112…122…127
БрМЦС8-20300…400…500…600…700…800…90032…37…43…46…49…51…53
БрО10300…400…50048…52…56
БрОС10-10300…400…600…80045…51…61…67
БрОС5-25300…400…500…600…700…800…90058…64…71…77…80…83…85
БрОФ10-1300…400…500…600…700…800…90034…38…43…46…49…51…52
БрОЦ10-2300…400…500…600…700…800…90055…56…63…68…72…75…77
БрОЦ4-3300…400…500…600…700…800…90084…93…101…108…114…120…124
БрОЦ6-6-3300…400…500…600…700…800…90064…71…77…82…87…91…93
БрОЦ8-4300…400…500…600…700…800…90068…77…83…88…93…96…100
Бронза алюминиевая30056
Бронза бериллиевая состаренная20…80…150…30018…65…110…170
Бронза марганцовистая3009,6
Бронза свинцовистая производственная30026
Бронза фосфористая 10%30050
Бронза фосфористая отожженая20…80…150…3006…20…77…190
Бронза хромистая UNS C18200300171

Примечание: Температура в таблице дана в градусах Кельвина!

Основные свойства

Применение никеля человеком основывается на комплексе свойств этого химического элемента. Первым делом следует назвать ковкость, тягучесть, благодаря которым становится возможным изготовление из металла трубок и очень тонких листов. Кроме того, можно выделить следующие особенности:

  • твердость по Бринеллю рассчитана и составляет 600—800 Мн/м2 ;
  • предел прочности при растяжении варьируется в интервале 400—500 Мн/м2 ;
  • предел текучести составляет 120 Мн/м2 ;
  • предел упругости равен 80 Мн/м2 .

Никель представляет собой металл желтовато- или бело-серебристого цвета. Свой оттенок он сохраняет при нахождении на открытом воздухе, не тускнеет даже при продолжительном взаимодействии с кислородом.

Металл довольно тверд, однако обладает особым свойством — хорошо поддается обработке (полировке, ковке), что и дает возможность его активного использования человеком.

Изделия получаются тонкими и деликатными, но при этом прочными и долговечными.

Медь – коротко про теплопроводность

Теплопроводностью называют процесс переноса энергии частиц (электронов, атомов, молекул) более нагретых участков тела к частицам менее нагретых его участков. Такой теплообмен приводит к выравниванию температуры. Вдоль тела переносится только энергия, вещество не перемещается. Характеристикой способности проводить тепло является коэффициент теплопроводности, численно равный количеству теплоты, которая проходит через материал площадью 1 м

2

, толщиной 1 м, за 1 секунду при единичном градиенте температуры.

Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:

  • алюминий;
  • железо;
  • кислород;
  • мышьяк;
  • сурьма;
  • сера;
  • селен;
  • фосфор.

Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.

Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.

Это интересно: Плотность и удельный вес меди – единицы измерения, расчет веса

Физико-химические характеристики

Магнитные особенности элемента сохраняются при весьма низких температурах, достигающих -340 °C. Кроме того, спецификой его является отсутствие предрасположенности к коррозии.

Можно выделить следующие физические характеристики металла:

  • атомный номер — 28;
  • молярная масса — 58,69 а. е. м.;
  • удельная теплоемкость — 0,443 Дж/(K· моль);
  • температура плавления — 1453 °C;
  • температура кипения — от 2730 до 2915 °C.

Особенность никеля — отсутствие негативных реакций при воздействии воздуха или воды. Это обусловлено тем, что на поверхности образуется оксид никеля NiO — защитная пленка, защищающая металл от последующего окисления.

При высоких температурах элемент способен реагировать с кислородом и всеми галогенами. Кроме того, реакция наблюдается при его взаимодействии с аммиаком и азотной кислотой.

При этом в фосфорной кислоте элемент нерастворим.

Немного о теплопроводности

Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом. Величина способности проводить тепло характеризуется коэффициентом теплопроводности. Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.

МатериалКоэффициент теплопроводности, Вт/(м*К)
Серебро428
Медь394
Алюминий220
Железо74
Сталь45
Свинец35
Кирпич0,77

Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу). Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов). Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:

  • железо;
  • мышьяк;
  • кислород;
  • селен;
  • алюминий;
  • сурьма;
  • фосфор;
  • сера.

Медная проволока

Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.

Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.

Медный радиатор отопления

Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.

Организация добычи

Никель относится к распространенным в земной коре металлам, хоть в чистом виде не представлен. Основным источником добычи считаются медно-никелевые руды, из которых удается добыть более 75% металла. Последовательность действий такова: сначала руда обогащается флотацией при помощи селективного метода, затем из нее выделяются концентраты, в том числе никелевый.

Чтобы добиться получения металла в чистом виде, концентрат переплавляют, для чего необходимы отражающие печи или электрические шахты.

Пустая порода при этом отделяется.

Перед плавлением концентрат зачастую обжигают и окусковывают.

Принято выделять три способа производства никеля:

  1. Восстановительный. Получение минерала из силикатной руды при участии угольной пыли. В результате образуются окатыши из железа и никеля, содержание последнего в которых составляет 5—8%. Полученные окатыши очищают от серы, прокаливают и погружают в аммиачный раствор.
  2. Карбонильный (метод Монда). Медно-никелевый штейн получают из сульфидной руды, после чего под воздействием высоких температур добывают чистый металл.
  3. Алюминотермический. Восстановление элемента из оксидных руд.

Получить наиболее чистый никель позволяет второй способ.

Воздействие никеля на окружающую среду

Никель выбрасывается в атмосферу электростанциями и мусоросжигательными заводами, откуда он попадает в почву и воду в результате процессов осаждения. Сточные воды, сбрасываемые неочищенными в поверхностные воды, также являются источником никеля. Большинство частиц поглощаются отложениями и частицами почвы.

К сожалению, информации о влиянии никеля на флору и фауну мало. Известно, что высокие концентрации никеля на песчаных почвах повреждают растущие там растения и сводят к минимуму скорость роста водорослей в водоемах. То же самое может происходить с различными микроорганизмами, если они не развивают устойчивость к никелю.

Классификация месторождений

Добыча металла ведется в нескольких месторождениях, которые принято классифицировать на четыре группы. Первая — медно-никелевые сульфидные, они располагаются на территории Австралии, Канады, стран СНГ. Следующая — никелевые силикатные и кобальт-никелевые силикатные, ферроникелевые оксидно-силикатные. Они имеются в Австралии, Кубе, Индонезии, а также на юге Урала и в Побужье.

Медно-колчеданные месторождения и жильные сульфидно-арсенидные бассейны не имеют столь широкого распространения и считаются второстепенными.

На территории Российской Федерации добыча минерала проводится в следующих основных месторождениях: Октябрьское, Ждановское, Талнахское, Буруктальное. Расположены они на территориях Таймырского АО, Мурманской и Оренбургской областей. Запасы минерала считаются достаточными, в ближайшие столетия его нехватка не ожидается.

Потенциальным источником добычи никелевых руд является океаническое дно, поскольку здесь очень много железомарганцевых руд.

Области применения

Благодаря выдающимся физико-химическим свойствам, в частности, устойчивости к коррозии, прочности в сочетании с пластичностью, никель стал широко применяться в различных сферах человеческой жизни. Изначально его использование было ограничено изготовлением ювелирных изделий и чеканкой монет, однако открытие чистого никеля с валентностью 2 существенно расширило область его применения.

Основные области:

  1. Никелирование прочих металлов. Никель устойчив к коррозии, поэтому его нанесение на поверхность изделий помогает избавиться от риска появления ржавчины.
  2. В сочетании с железом, кадмием, водородом или цинком используется для производства аккумуляторов.
  3. Применяется в качестве катализатора при проведении химических реакций.
  4. В медицине идет на изготовление брекетов и протезов.
  5. В музыкальной индустрии применяется для обмотки струн музыкальных инструментов.
  6. На основе никеля изготавливается большое количество жаропрочных суперсплавов, снарядов, экипировки, проволоки.
  7. Никелевая сталь активно используется в машиностроении, поскольку помогает получить небольшие по весу, но очень прочные детали. Это его существенный плюс, отличие недорогого в добыче металла от более трудоемких «сородичей».

Кроме того, никель — это элемент, необходимый для нормального функционирования человеческого организма, он влияет на нормальный рост и полноценное развитие. Его недостаток негативно сказывается на работе почек и печени, однако чаще всего к врачам обращаются с диагнозом избыток никеля. Важно помнить, что суточная норма элемента — не более 30—60 мкг. Он содержится в сое, горохе, нуте, фасоли, говяжьей печени, различных видах риса, овсяной крупе.

Хоть выглядит никель довольно скромно, напоминая блеклую копию серебра или стали, он очень полезен человечеству и используется в различных областях современной промышленности.

От чего зависит показатель теплопроводности

Теплопроводность – это физическая величина и по большей части зависит от параметров температуры, давления и типа вещества. Большая часть коэффициентов определяется опытным путем. Для этого разработано множество методов. Результаты сводятся в справочные таблицы, которые потом используются при проведении различных научных и инженерных расчетов. Тела обладают разной температурой и при тепловом обмене она (температура) будет распределяться неравномерно. Другими словами необходимо знать, как зависит коэффициент теплопроводности от температуры.

Многочисленные опыты показывают то, что у многих материалов связь между коэффициентом и самой теплопроводностью является линейной.

Коэффициент теплопроводности

Теплопроводность металлов обусловлена формой его кристаллической решетки.

Во многом коэффициент теплопроводности зависит от строения материала, размеров его пор и влажности.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]