Отличия от инверторного аппарата
Такое оборудование отличается от трансформаторного следующими характеристиками:
- Небольшой вес. Если масса трансформатора составляет около 35 кг, то у инвертора она не превышает 15 кг. Это помогает легко перемещать аппарат во время работы.
- Отсутствие трансформатора в конструкции. Это исключает расход энергии на нагрев обмоток и перемагничивание магнитопровода. Коэффициент полезного действия увеличивается. При использовании электрода диаметром 3 мм расход энергии не превышает 4 кВт. При тех же условиях этот параметр у трансформатора составляет 7 кВт.
- Возможность получения тока с любыми вольт-амперными показателями. Аппараты инверторного типа применяют при сварке всех металлов. Они работают с нержавеющей, легированной сталью, медью, алюминием.
- Режимы функционирования. Инвертор не требует частых перерывов, необходимых для охлаждения.
- Возможность тонкой настройки. Сварщик выбирает показатели силы тока и напряжения в широком диапазоне. С помощью инвертора можно варить в разных пространственных положениях. При этом образуется наименьшее количество брызг расплавленного металла.
Конструкция сварочного трансформатора
Такой аппарат включает несколько узлов, которые создают электрическую дугу, способную расплавлять сталь. Компоненты изменяют параметры токов, поступающих от сети.
Агрегат понижает напряжение, увеличивая ампераж.
Сварка металлов становится возможной благодаря узлам, входящим в конструкцию аппарата:
- магнитопроводу;
- первичной обмотке из изолированного кабеля;
- винту;
- подвижной вторичной обмотке из неизолированного провода;
- ходовой гайке;
- рукоятке, вращающей винт;
- зажимам для фиксации кабелей;
- охлаждающей системе.
Рекомендуем к прочтению Как выбрать сварочный бензиновый генератор
Магнитопровод не влияет на параметры тока, он лишь формирует магнитное поле. Для этого применяется набор стальных пластин, покрытых оксидным составом. Некоторые трансформаторы включают дополнительные компоненты, улучшающие работу оборудования.
Ремонт сварочных трансформаторов – что мы сможем сами?
Основной проблемой, как правило, бывает самопроизвольное отключение аппарата, причиной которого может быть замыкание в цепи или между винтиками катушек. Починить довольно просто – отключить от сети, найти неисправность и заменить нужный элемент (конденсат, изоляцию или прочие детали). Если трансформатор сильно гудит, то это может стать причиной перегрева в дальнейшем. Причиной такого громкого шума могут стать слабые болты, стянутые листовые элементы. Исправить эту проблему довольно просто – необходимо подтянуть все виды болтов и гайки, посмотреть ситуацию с сердечником и при необходимости ее исправить.
Еще один недуг – чрезмерный нагрев. Причиной может быть неверная установка значений сварочного тока. Если вовремя не устранить эту проблему, то может сгореть вся изоляция, и аппарат придет в негодность, а также потребуется его достаточно продолжительный ремонт. Лучше всего соблюдать оптимальные значения сварочного тока, тогда перегрев не страшен. Произошел обрыв сварочной дуги и не получается зажечь ее снова – эта проблема известна большинству тех, кто занимается сваркой. В этот момент дуга представляет собой лишь искорки. Скорей всего, произошел пробой обмотки высокого напряжения.
- Автор: Михаил Малофеев
- Распечатать
Оцените статью:
- 5
- 4
- 3
- 2
- 1
(3 голоса, среднее: 3.7 из 5)
Поделитесь с друзьями!
Разновидности и классификация устройств
Классификация сварочных агрегатов осуществляется по следующим характеристикам:
- Размерам и весу. Приборы бывают компактными переносными или стационарными, перемещаемыми с помощью колес или тельфера (подвесного грузоподъемного устройства).
- Напряжению холостого хода сварочного трансформатора. В разных моделях приборов этот параметр составляет от 48 до 70 В.
- Максимальной силе тока. У промышленных моделей этот параметр достигает 1000 А, у бытовых – 50-400 А.
- Напряжению потребляемого тока, числу фаз. Выделяют одно- или трехфазные виды.
- Характеру подачи. Аппарат может вырабатывать ток непрерывно или импульсно.
- Диаметру подключаемых электродов.
Принцип действия
Чтобы понять принцип работы СТ, давайте, хотя бы в самых общих чертах, рассмотрим физические процессы, происходящие в однофазном двухобмоточном трансформаторе. Для иллюстрации этих процессов воспользуемся рисунком.
Физические процессы в трансформаторе. Ист. https://moiinstrumenty.ru/svarochnyj/svarochnyi-transformator-svoimi-rukami.html.
Электромагнитная схема такого трансформатора состоит из двух обмоток (первичная и вторичная), размещенных на замкнутом магнитопроводе. Последний выполнен из ферромагнитного материала, что позволяет усилить электромагнитную связь между этими обмотками. Происходит это за счёт уменьшения магнитного сопротивления контура (замкнутой цепи), по которому проходит магнитный поток трансформатора (Ф).
Первичную обмотку подключают к источнику переменного тока, вторичную – к нагрузке. При подключении к источнику электропитания, в первичной обмотке появляется переменный ток i1. Этот электрический ток создаёт переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные электродвижущие силы (далее – ЭДС): е1 и е2.
Эти ЭДС, согласно закону Максвелла, пропорциональны числам витков N1 и N2 соответствующей обмотки и скорости изменения потока dФ/dt. Если пренебречь падением напряжения в обмотках трансформатора (они обычно не превышают 3…5 % от номинальных значений U1 и U2), то можно считать: e1≈U1 и e2≈U2. Тогда, путём несложных математических преобразований, можно получить связь между напряжениями и количеством витков обмоток: U1/U2 = N1/N2.
Таким образом, подбирая числа витков обмоток (при заданном напряжении U1) можно получить желаемое напряжение U2:
- при необходимости повысить вторичное напряжение – число витков N2 берут больше числа N1. Такой трансформатор называют повышающим;
- при необходимости уменьшить напряжение U2 – число витков N2 берут меньшим N1. Такой трансформатор называют понижающим.
Теперь мы можем, непосредственно, рассмотреть принцип действия СТ. Как сказано выше, он заключается в преобразовании входного напряжения (220В или 380В) в более низкое, которое в режиме холостого хода равно примерно 60В. Когда мы рассматриваем сварочный трансформатор, принцип работы будет очевиден после знакомства с компоновкой и функциональной схемой СТ.
Компоновка узлов СТ (в качестве примера предлагается агрегат серии «ТДМ») представлена на рисунке.
Устройство сварочного трансформатора. Ист. https://stroysvarka.ru/kak-ustroen-svarochnyj-transformator-dlya-poluavtomata/.
Пояснения к схематическому изображению сварочного трансформатора:
- 1 – первичная обмотка трансформатора. Выполнена из изолированного провода;
- 2 – вторичная обмотка не изолирована («голая» проволока) для улучшения теплопередачи. Кроме того, для улучшения охлаждения имеются воздушные каналы;
- 3 – подвижная часть магнитопровода;
- 4 – система подвеса трансформатора внутри корпуса агрегата;
- 5 – механизм управления воздушным зазором;
- 6 – ходовой винт. Основной элемент управления воздушным зазором;
- 7 – рукоятка привода ходового винта.
Функциональная схема такого СТ представлена на рисунке.
Функциональная схема сварочного трансформатора с зазором магнитопровода. Ист. https://www.studfiles.ru/preview/3997689/.
Трансформатор состоит из:
- магнитопровода с зазором б;
- первичной обмотки I;
- вторичной обмотки II;
- обмотки реактивной катушки IIк.
Регулировка величины сварочного тока осуществляется изменением величины зазора в магнитопроводе. Размер зазора влияет на изменение магнитного сопротивления контура и, соответственно, величину магнитного потока, который и создаёт в обмотках электрический ток:
- при необходимости уменьшить величину сварочного тока – величину зазора увеличивают;
- при необходимости увеличить величину сварочного тока – величину зазора уменьшают.
Полезное видео
Посмотрите небольшой обучающий ролик об устройстве и принципе действия трансформатора:
Магнитопровод
Магнитопровод сварочного трансформатора представляет собой пакет пластин из трансформаторной стали. Вызвано это тем, что под воздействием магнитного потока в нём наводятся вихревые замкнутые электрические токи (в честь французского физика, их открывшего, названы: токи Фуко). В соответствии с правилом Ленца, магнитное поле этих токов стремиться уменьшить индукцию поля его создавшего, т. е. полезного. В результате:
- уменьшается КПД СТ;
- токи Фуко нагревают материал сердечника.
Для уменьшения этого влияния принимаются меры по уменьшению этих токов. Поэтому, как было сказано выше, магнитопровод и представляет собой пакет пластин. Поверхности пластины имеют хорошую электроизоляцию (они имеют оксидное изоляционное покрытие) и, кроме этого, часто дополнительно покрываются электроизолирующим лаком. Благодаря этому, они не представляют собой сплошной проводник, что существенно уменьшает величину токов Фуко.
Пластины между собой стягиваются шпильками в плотный пакет. Если этого не сделать (или стянуть неплотно), то они вибрируют с частотой колебаний тока в источнике питания: 50 Гц. В результате, СТ «гудит» с такой частотой.
Ограничитель холостого хода
Ограничитель напряжения холостого хода СТ применяется, в соответствии со своим наименованием, для автоматического ограничения этого параметра. Он уменьшает индуцированную при размыкании вторичной обмотки ЭДС до безопасного значения не позже, чем через одну секунду после разрыва сварочной цепи. На картинке изображена популярная модель ограничителя напряжения холостого хода однофазных сварочных трансформаторов «ОНТ-1».
Ограничитель напряжения холостого хода СТ «ОНТ-1». Ист. https://kiev.kv.besplatka.ua/obyavlenie/ont-1-ogranichitel-napryazheniya-holostogo-hoda-f1bc31.
Принцип действия ограничителя следующий. Мы уже знаем, что в случае разрыва сварочной цепи, резко изменяется величина магнитного потока в магнитопроводе. Это, в свою очередь, приводит к резком скачку ЭДС самоиндукции. Резкий рост величины электрического напряжения может стать причиной аварии СТ или поражения током сварщика. Ограничитель напряжения холостого хода сварочного трансформатора уменьшает эту ЭДС до безопасного значения – не более 12 В.
Принцип работы с характеристиками
Приборы для трансформаторной сварки функционируют следующим образом:
- Ток из электрической сети попадает на первичную обмотку. Здесь появляется магнитный поток, направляющийся в сторону сердечника.
- Напряжение передается на вторичную обмотку.
- Ферромагнитный сердечник генерируют магнитное поле. В 2 обмотках образуются электродвижущие силы переменного характера.
- Разница в числе витков катушек помогает менять параметры тока на необходимые для сварки вольт-амперные показатели. По этим значениям выполняют расчет характеристик трансформаторного агрегата.
Число витков обмотки напрямую связано с выдаваемым напряжением. Намотанная в большем количестве вторичная катушка повышает силу тока. Трансформаторный сварочный аппарат относится к приборам понижающего вида. Число витков первичной обмотки в нем больше, чем вторичной. Регулировать силу выходного тока можно, меняя величину зазора между катушками.
Холостой ход
Принцип работы сварочного трансформатора включает 2 режима: холостой и с нагрузкой. Во время сварки вторичная катушка создает замыкание между деталью и электродом. Мощная дуга плавит материал, образуя шов. После завершения сварки вторичная цепь разрывается. Аппарат начинает работать на холостом ходу.
Рекомендуем к прочтению Выбор маски «хамелеон»
Такой режим функционирования должен быть безопасным для пользователя. Максимальная величина напряжения – 48 В. Если показатель превышает допустимые значения, срабатывает автоматический ограничитель. Заземление корпуса агрегата обеспечивает дополнительную защиту сварщика от поражения током.
Принцип работы
Принцип работы сварочного трансформатора заключается в снижении напряжения сети до необходимого значения в 60-80 В и повышении силы тока до 40-500 А. Чаще всего такие устройства поддерживают переменный ток. Тем не менее существуют и другие варианты, выдающие постоянный ток. Их называют выпрямителями.
Конструкция трансформатора для сварки.
Устройство и принцип действия сварочного трансформатора основаны на едином принципе. После подключения к сети по первичному контуру проходит переменный ток, создающий магнитный поток. В обмотках индуцируется ЭДС, зависящая от количества витков провода.
Так, если намотать на первую обмотку сто витков, а на вторую – 5, то коэффициент трансформации в таком случае будет равен двадцати. В результате после подключения прибора в обычную бытовую сеть, он на выходе будет выдавать одиннадцать вольт, т.е. значение в двадцать раз меньшее, чем в сети.
Изменить нагрузку можно путем изменения зазора магнитопровода. Если зазор будет больше, сила тока уменьшится и наоборот. Количество витков будет определять напряжение вторичной обмотки. Таким образом, такая характеристика сварочного трансформатора, как количество витков, является очень важной.
Схемы модификаций
В конструкцию стандартного аппарата нередко вносят изменения, помогающие улучшить эксплуатационные характеристики.
С шунтом
Рассеиванию магнитного поля способствует смена пространственного положения компонентов магнитопровода.
При смещении стальных элементов повышается сопротивление потока, идущего по воздуху.
При полном введении шунта параметр начинает зависеть от расстояния между деталью и компонентами магнитопровода. Аппараты, имеющие такой принцип действия, предназначены для использования в промышленных условиях.
С обмоткой по секциям
Такая схема сварочного аппарата считается устаревшей. Ранее это оборудование использовалось в бытовых и промышленных условиях. Имеется несколько вариантов выбора числа витков в первичной и вторичной обмотках.
Тиристорные аппараты
Для изменения напряжения и силы тока применяется фазовый сдвиг тиристоров. При сборке однофазного аппарата используют 2 детали, устанавливаемые друг напротив друга. Тиристоры настраивают симметрично и синхронно.
В полупроводниковых трансформаторах эти элементы размещают на первичной обмотке, что объясняется следующими причинами:
- Сила вторичного тока в таких устройствах выше, чем в тиристорах.
- При установке последних на первичной катушке повышается КПД. Это объясняется снижением потерь напряжения.
Виды сварочных трансформаторов – постараемся не запутаться
Разделяют виды сварочных трансформаторов по типам сварки, а также по фазовому регулированию. По первому признаку можно выделить трансформаторы для ручной дуговой сварки и для автоматической сварки под флюсом. По второму признаку классификация шире. Они разделяются на:
- сварочные трансформаторы с нормальным магнитным рассеянием амплитудного регулирования (в нем есть либо дроссель с воздушным зазором, либо дроссель насыщения);
- с увеличенным магнитным рассеянием амплитудного регулирования (в нем есть подвижные, разнесенные, реактивные обмотки, подвижные магнитные или подмагниченные при помощи шунта, конденсатор или импульсивный стабилизатор);
- тиристорные сварочные трансформаторы (они могут быть с импульсивной стабилизацией или подпиткой).
Это общая классификация. Но стоит разобраться в видах сварочных трансформаторов, основным различием которых является фазовое регулирование. Сварочные трансформаторы переменного тока с амплитудным регулированием режима сварки делают это при помощи изменения сопротивления или перемены напряжения холостого хода. При этом синусоидальная форма переменного тока передается без искажения.
Трансформаторы с тиристорным регулированием состоят из двух частей: силового трансформатора и тиристорного регулятора фаз. Они размещены или в первичной, или во вторичной цепи вместе со встречными и параллельными тиристорами, а также с системой управления. Основной принцип регулирования фаз заключается в преобразовании тока, из синусоидального в знакопеременные импульсы. Их длительность определяется при помощи того самого тиристора. При регулировании дуга начинает неустойчиво гореть. Для того чтобы ее горение было устойчивым, используют импульсивную стабилизацию или дополнительную подпитку.
Плюсы и минусы
К положительным качествам трансформаторного оборудования относятся:
- Высокий коэффициент полезного действия, простота эксплуатации и обслуживания. Ремонт устройства не сопряжен с большими тратами, что позволяет использовать его в домашних условиях.
- Низкая стоимость.
Из недостатков выделяют:
- Нестабильность дуги. Это связано с параметрами переменного тока. Для работы с такими аппаратами используются специализированные электроды.
- Перепады выходного напряжения, негативно отражающиеся на качестве сварного шва.
- Невозможность применения для соединения деталей из цветных металлов или нержавеющей стали.
- Габариты и большой вес, вызывающие трудности при перемещении.
Рекомендуем к прочтению Как выбрать сварочный светофильтр
Разновидности трансформаторной сварки
Сегодня существуют разные виды сварочных трансформаторов, которые отличаются конструктивно, принципом работы. Самым востребованным на рынке среди них, который можно сделать самостоятельно считается трансформатор сварочный для дуговой и контактной сварки.
Трансформатор дуговой сварки
Широкое распространение среди домашних умельцев имеют трансформаторы для дуговой сварки. Этому есть несколько причин:
- надежная и довольно простая конструкция инструмента;
- мобильность;
- довольно обширный рабочий диапазон;
- простота управления;
- хорошая производительность.
Конечно же, кроме многочисленных достоинст, в дуговая ручная сварка постоянного тока обладает и рядом недочетов:
- низкий показатель КПД;
- качество сварного шва полностью зависит от уровня профессионализма самого сварщика.
Трансформатор для ручной сварки обычно используется в процессе проведения разноплановых строительных или ремонтных работ, производства конструкций из металла, соединения отдельных металлических образцов, а также соединения трубопроводных коммуникаций. При помощи дуговой ручной сварки можно осуществлять и резку металла, и его сварку, при этом разной толщины.
Подобного типа инструменты имеют довольно простую конструкцию. Сварочный агрегат включает:
- непосредственно сам трансформатор;
- электродный держатель;
- регулятор тока;
- зажим для массы.
Нужно выделить основной элемент аппарата – трансформатор, который может иметь разную конструкцию. Самыми популярными на сегодняшний день являются самодельные инструменты, оснащенные магнитопроводом П-образной, тороидальной конфигурации.
Вокруг магнитопровода размещаются две обмотки проволоки из алюминия или меди. Толщина проволоки на обмотках зависит от рабочих характеристик агрегата, и количества выполненных витков.
Трансформатор точечной сварки
Подобный тип сварки также называется контактной сваркой. Трансформатор ТС имеет характерные отличия от инструмента, предназначенного под дуговую сварку. Ключевое из них – это технология сваривания металлических образцов. К примеру, плавление дуговой сваркой осуществляется электрической дугой, которая формируется между электродом и свариваемым изделием, то в случае с контактной сваркой производится точечный нагрев свариваемого участка электричеством (для чего используются два заточенных электрода из меди), соединение деталей происходит под воздействием высокого давления (таким образом, металл свариваемых образцов плавится в точке соединения, после чего сливается в одно целое).
Точечная сварка широко используется в автомобилестроении, строительной сфере, для соединения тонких алюминиевых листов, медных образцов, нержавеющей стали, для сварки скруток, создания из арматура каркаса ЖБ конструкций, прочих металлов, для соединения которых необходимо создавать специальные условия.
Особенности выбора сварочного трансформатора
Решая, какой аппарат купить, учитывают следующие критерии:
- Типы свариваемых металлов, параметры будущих швов. Для работы со сталью достаточно ручного оборудования с постоянным или переменным током. Эксплуатационные качества трансформатора позволяют варить изделия из любых черных металлов.
- Силу тока. В бытовых условиях достаточно агрегата, выдающего 200 А.
- Принцип действия. Полуавтоматические приборы надежны и просты в применении, однако отличаются высокой стоимостью. При использовании ручных агрегатов сварщику придется самостоятельно контролировать все параметры.
- Надежность фирмы-производителя.
Основные требования к источникам тока для сварки
Чтобы отвечать своему предназначению, источники тока должны удовлетворять определенным требованиям, к основным из которых относятся следующие:
- напряжение холостого хода должно обеспечивать зажигание дуги, но не быть выше значений, которые являются безопасными для сварщика;
- источники питания должны иметь устройства, регулирующие сварочный ток в необходимых пределах;
- сварочные аппараты должны иметь заданную внешнюю вольт-амперную характеристику, согласующуюся со статической вольт-амперной характеристикой сварочной дуги.
Дуга может возникать либо в случае пробоя газа (воздуха), либо в результате соприкосновения электродов с последующим их отведением на расстояние нескольких миллиметров. Первый способ (пробой воздуха) возможен только при больших напряжениях, например, при напряжении 1000В и зазоре между электродами в 1 мм. Такой способ возбуждения дуги обычно не применяется из-за опасности высокого напряжения. При питании дуги током высокого напряжения (более 3000В) и высокой частоты (150-250 кГц) можно получить пробой воздуха при зазоре между электродом и деталью до 10 мм. Такой способ зажигания дуги менее опасен для сварщика и его нередко используют.
Второй способ зажигания дуги требует разности потенциалов между электродом и изделием 40-60В, поэтому применяется чаще всего. Когда электрод соприкасается с изделием, создается замкнутая сварочная цепь. В момент, когда электрод отводится от изделия, электроны, которые находятся на нагретом от короткого замыкания катодном пятне, отрываются от атомов и электростатическим притяжением двигаются к аноду, образуя электрическую дугу. Дуга быстро стабилизируется (в течение микросекунды). Электроны, которые выходят из катодного пятна, ионизируют газовый промежуток и в нем появляется ток.
Скорость зажигания дуги зависит от характеристик источника питания, от силы тока в момент соприкосновения электрода с изделием, от времени их соприкосновения, от состава газового промежутка. На скорость возбуждения дуги влияет, в первую очередь, величина сварочного тока. Чем больше величина тока (при одном и том же диаметре электрода), тем большим становится величина сечения катодного пятна и тем большим будет ток в начале зажигания дуги. Большой электронный ток вызовет быструю ионизацию и переход к устойчивому дуговому разряду.
При уменьшении диаметра электрода (т.е. при увеличении плотности тока) время перехода к устойчивому дуговому разряду еще больше сокращается.
На скорость зажигания дуги влияют также полярность и род тока. При постоянном токе и обратной полярности (т.е. плюс источника тока подключается к электроду) скорость возбуждения дуги выше, чем при переменном токе. Для переменного тока напряжение зажигания должно быть не менее 50-55В, для постоянного тока — не менее 30-35В. Для трансформаторов, которые рассчитаны на сварочный ток 2000А, напряжение холостого хода не должно превышать 80В.
Повторные зажигания сварочной дуги после ее угасания из-за коротких замыканий каплями электродного металла будут возникать самопроизвольно, если температура торца электрода будет достаточно высокой.
Внешняя вольт-амперная характеристика источника представляет собой зависимость напряжения на клеммах и тока.
Схема системы источник-дуга
На схеме источник имеет постоянную электродвижущую силу (Еи) и внутреннее сопротивление (Zи), состоящее из активной (Rи) и индуктивной (Xи) составляющих. На внешних зажимах источника имеем напряжение (Uи). В цепи «источник-дуга» идет сварочный ток (Iд), одинаковый для дуги и источника. Нагрузкой источника является дуга с активным сопротивлением (Rд), падение напряжения на ней Uд=I•Rд.
Уравнение для напряжения на внешних зажимах источника получается следующее: Uи = Eи — Iд•Zи.
Источник может работать в одном из трех режимов: холостой ход, нагрузка, короткое замыкание. При холостом ходе дуга не горит, ток отсутствует (Iд=0). В этом случае напряжение источника, называемое напряжением холостого хода, имеет максимальное значение: Uи = Eи.
При нагрузке по дуге и источнику идет ток (Iд), а напряжение (Uи) ниже, чем при холостом ходе, на величину падения напряжения внутри источника (Iд•Zи).
При коротком замыкании Uд=0, поэтому и напряжение на клеммах источника Uи=0. Ток короткого замыкания Iк=Eи/Zи.
Экспериментально внешняя характеристика источника снимается измерением напряжения (Uи) и тока (Iд) при плавном изменении сопротивления нагрузки (Rд), при этом дуга имитируется линейным активным сопротивлением — балластным реостатом.
Графическое представление полученной зависимости и есть внешняя статическая вольт-амперная характеристика источника. При уменьшении сопротивления нагрузки увеличивается ток и снижается напряжение источника. Таким образом, в общем случае внешняя статическая характеристика источника — падающая.
Внешняя вольт-амперная характеристика источника
Бывают сварочные аппараты с крутопадающими, пологопадающими, жесткими и даже возрастающими вольт-амперными характеристиками. Есть и универсальные сварочные аппараты, характеристики которых могут быть крутопадающими и жесткими.
Внешние вольт-амперные характеристики сварочных аппаратов: 1 — крутопадающая, 2 — пологопадающая, 3 — жесткая, 4 — возрастающая.
Например, обычный трансформатор (с нормальным рассеянием) имеет жесткую характеристику, а возрастающая характеристика достигается путем обратной связи, когда с ростом тока электроника увеличивает напряжение источника.
При ручной дуговой сварке применяются сварочные аппараты с крутопадающей характеристикой.
Сварочная дуга тоже имеет вольт-амперную характеристику.
Вольт-амперная характеристика дуги
Сперва с увеличением тока напряжение резко падает, так как увеличивается площадь сечения столба дуги и его электропроводность. Затем с увеличением тока напряжение почти не изменяется, так как площадь сечения столба дуги увеличивается пропорционально току. Потом с увеличением тока напряжение возрастает, так как площадь катодного пятна не увеличивается из-за ограниченного сечения электрода.
При увеличении длины дуги вольт-амперная характеристика смещается вверх. Изменение диаметра электрода отражается на положении границы между жестким и возрастающим участками характеристики. Чем больше диаметр, тем при большем токе произойдет заполнение торца электрода катодным пятном, при этом возрастающий участок сместится вправо (на рисунке ниже показано пунктирной линией).
Зависимость вольт-амперной характеристики дуги от её длины и диаметра электрода
Стабильное горение дуги возможно при условии, если напряжение дуги равно напряжению на внешних зажимах источника питания. Графически это выражается в том, что характеристика сварочной дуги пересекается с характеристикой источника питания. На рисунке ниже показаны три характеристики дуги различной длины — L1, L2, L3 (L2>L1>L3) и крутопадающая характеристика источника питания.
Пересечение вольт-амперных характеристик источника и дуги (L2>L1>L3).
Точки (A), (B), (C) выражают зоны устойчивого горения дуги при разной её длине. Видно, что чем больше будет наклон характеристики источника, тем меньше будет изменение сварочного тока при колебании длины дуги. А ведь длина дуги поддерживается в процессе горения вручную, потому не может быть стабильной. Вот почему только при крутопадающей характеристике трансформатора колебания кончика электрода в руках сварщика будут не сильно сказываться на стабильности горения дуги и качестве сварки.
Чтобы отвечать своему предназначению, источники тока должны удовлетворять определенным требованиям, к основным из которых относятся следующие:
- напряжение холостого хода должно обеспечивать зажигание дуги, но не быть выше значений, которые являются безопасными для сварщика;
- источники питания должны иметь устройства, регулирующие сварочный ток в необходимых пределах;
- сварочные аппараты должны иметь заданную внешнюю вольт-амперную характеристику, согласующуюся со статической вольт-амперной характеристикой сварочной дуги.
Дуга может возникать либо в случае пробоя газа (воздуха), либо в результате соприкосновения электродов с последующим их отведением на расстояние нескольких миллиметров. Первый способ (пробой воздуха) возможен только при больших напряжениях, например, при напряжении 1000В и зазоре между электродами в 1 мм. Такой способ возбуждения дуги обычно не применяется из-за опасности высокого напряжения. При питании дуги током высокого напряжения (более 3000В) и высокой частоты (150-250 кГц) можно получить пробой воздуха при зазоре между электродом и деталью до 10 мм. Такой способ зажигания дуги менее опасен для сварщика и его нередко используют.
Второй способ зажигания дуги требует разности потенциалов между электродом и изделием 40-60В, поэтому применяется чаще всего. Когда электрод соприкасается с изделием, создается замкнутая сварочная цепь. В момент, когда электрод отводится от изделия, электроны, которые находятся на нагретом от короткого замыкания катодном пятне, отрываются от атомов и электростатическим притяжением двигаются к аноду, образуя электрическую дугу. Дуга быстро стабилизируется (в течение микросекунды). Электроны, которые выходят из катодного пятна, ионизируют газовый промежуток и в нем появляется ток.
Скорость зажигания дуги зависит от характеристик источника питания, от силы тока в момент соприкосновения электрода с изделием, от времени их соприкосновения, от состава газового промежутка. На скорость возбуждения дуги влияет, в первую очередь, величина сварочного тока. Чем больше величина тока (при одном и том же диаметре электрода), тем большим становится величина сечения катодного пятна и тем большим будет ток в начале зажигания дуги. Большой электронный ток вызовет быструю ионизацию и переход к устойчивому дуговому разряду.
При уменьшении диаметра электрода (т.е. при увеличении плотности тока) время перехода к устойчивому дуговому разряду еще больше сокращается.
На скорость зажигания дуги влияют также полярность и род тока. При постоянном токе и обратной полярности (т.е. плюс источника тока подключается к электроду) скорость возбуждения дуги выше, чем при переменном токе. Для переменного тока напряжение зажигания должно быть не менее 50-55В, для постоянного тока — не менее 30-35В. Для трансформаторов, которые рассчитаны на сварочный ток 2000А, напряжение холостого хода не должно превышать 80В.
Повторные зажигания сварочной дуги после ее угасания из-за коротких замыканий каплями электродного металла будут возникать самопроизвольно, если температура торца электрода будет достаточно высокой.
Внешняя вольт-амперная характеристика источника представляет собой зависимость напряжения на клеммах и тока.
Схема системы источник-дуга
На схеме источник имеет постоянную электродвижущую силу (Еи) и внутреннее сопротивление (Zи), состоящее из активной (Rи) и индуктивной (Xи) составляющих. На внешних зажимах источника имеем напряжение (Uи). В цепи «источник-дуга» идет сварочный ток (Iд), одинаковый для дуги и источника. Нагрузкой источника является дуга с активным сопротивлением (Rд), падение напряжения на ней Uд=I•Rд.
Уравнение для напряжения на внешних зажимах источника получается следующее: Uи = Eи — Iд•Zи.
Источник может работать в одном из трех режимов: холостой ход, нагрузка, короткое замыкание. При холостом ходе дуга не горит, ток отсутствует (Iд=0). В этом случае напряжение источника, называемое напряжением холостого хода, имеет максимальное значение: Uи = Eи.
При нагрузке по дуге и источнику идет ток (Iд), а напряжение (Uи) ниже, чем при холостом ходе, на величину падения напряжения внутри источника (Iд•Zи).
При коротком замыкании Uд=0, поэтому и напряжение на клеммах источника Uи=0. Ток короткого замыкания Iк=Eи/Zи.
Экспериментально внешняя характеристика источника снимается измерением напряжения (Uи) и тока (Iд) при плавном изменении сопротивления нагрузки (Rд), при этом дуга имитируется линейным активным сопротивлением — балластным реостатом.
Графическое представление полученной зависимости и есть внешняя статическая вольт-амперная характеристика источника. При уменьшении сопротивления нагрузки увеличивается ток и снижается напряжение источника. Таким образом, в общем случае внешняя статическая характеристика источника — падающая.
Внешняя вольт-амперная характеристика источника
Бывают сварочные аппараты с крутопадающими, пологопадающими, жесткими и даже возрастающими вольт-амперными характеристиками. Есть и универсальные сварочные аппараты, характеристики которых могут быть крутопадающими и жесткими.
Внешние вольт-амперные характеристики сварочных аппаратов: 1 — крутопадающая, 2 — пологопадающая, 3 — жесткая, 4 — возрастающая.
Например, обычный трансформатор (с нормальным рассеянием) имеет жесткую характеристику, а возрастающая характеристика достигается путем обратной связи, когда с ростом тока электроника увеличивает напряжение источника.
При ручной дуговой сварке применяются сварочные аппараты с крутопадающей характеристикой.
Сварочная дуга тоже имеет вольт-амперную характеристику.
Вольт-амперная характеристика дуги
Сперва с увеличением тока напряжение резко падает, так как увеличивается площадь сечения столба дуги и его электропроводность. Затем с увеличением тока напряжение почти не изменяется, так как площадь сечения столба дуги увеличивается пропорционально току. Потом с увеличением тока напряжение возрастает, так как площадь катодного пятна не увеличивается из-за ограниченного сечения электрода.
При увеличении длины дуги вольт-амперная характеристика смещается вверх. Изменение диаметра электрода отражается на положении границы между жестким и возрастающим участками характеристики. Чем больше диаметр, тем при большем токе произойдет заполнение торца электрода катодным пятном, при этом возрастающий участок сместится вправо (на рисунке ниже показано пунктирной линией).
Зависимость вольт-амперной характеристики дуги от её длины и диаметра электрода
Стабильное горение дуги возможно при условии, если напряжение дуги равно напряжению на внешних зажимах источника питания. Графически это выражается в том, что характеристика сварочной дуги пересекается с характеристикой источника питания. На рисунке ниже показаны три характеристики дуги различной длины — L1, L2, L3 (L2>L1>L3) и крутопадающая характеристика источника питания.
Пересечение вольт-амперных характеристик источника и дуги (L2>L1>L3).
Точки (A), (B), (C) выражают зоны устойчивого горения дуги при разной её длине. Видно, что чем больше будет наклон характеристики источника, тем меньше будет изменение сварочного тока при колебании длины дуги. А ведь длина дуги поддерживается в процессе горения вручную, потому не может быть стабильной. Вот почему только при крутопадающей характеристике трансформатора колебания кончика электрода в руках сварщика будут не сильно сказываться на стабильности горения дуги и качестве сварки.
Какие неисправности могут быть
При работе со сварочным трансформатором нередко возникают следующие проблемы:
- Отсутствие электрической дуги, отказ запуска охлаждающего вентилятора. Главная причина – нарушение целостности питающего кабеля. Реже обнаруживается повреждение других компонентов оборудования или активация защиты от перегрева.
- Отсутствие сварочной дуги при работающем вентиляторе. Наблюдается при нарушении связи между внутренними компонентами системы.
- Отсутствие электрической дуги при работающей сигнальной лампе. Такая проблема возникает при срабатывании защитного режима.
- Образование большого количества брызг. Качество шва сохраняется на низком уровне. Стоит проверить правильность подключения проводов, изменить полярность.
Как самому смонтировать аппарат
Главная часть самодельного агрегата – сердечник. Его изготавливают из трансформаторной стали, купить которую достаточно сложно. Полученная конструкция имеет вид прямоугольника с сечением более 55 см². При формировании первичной и вторичной катушек устанавливают регулирующий винт. С его помощью перемещают подвижную обмотку.
Сечение провода первой катушки должно составлять более 5 мм². Для сборки трансформатора используют кабели с жаропрочной изоляцией.
Вторичная обмотка формируется из медного проводника сечением 30 мм². На последнем этапе собирают текстолитовый корпус, который служит защитой сварщика от поражения током.