Образцы документов и технологических карт сварки для сварочного производства

Технологическая карта

Совокупность всех необходимых сварщику спецификаций оформляется как карта технологического процесса сварки (КТПС) (welding procedure specification (WPS)).

В ней подробно изложены технологии для сварки каждого вида соединения, которое будет использовано в общем объеме работ. Описаны все базовые технологические моменты и параметры сварных швов.

Такой вид инструкции по работе сварщиков официально утвержден и принят к обязательному исполнению с 1984 года.

Для подготовки сварочных работ готовится спецификация, которая является неотъемлемым руководством для сварщиков и сварочных операторов. Такая спецификация называется технологической картой и является официально утвержденным документом.

Спецификация – это маршрутная карта, поэтапно описывающая технологический процесс требуемого сборочного и сварочного производства.

Она — неотъемлемая и унифицированная часть всего комплекта документов технологического процесса в целом. Маршрутные карты используются независимо от вида и характера производства и детализации технологии.

Цель документа – целенаправленно направлять сварщиков по принятым процедурам, использующим повторяющиеся и надежные способы сварки с целью создания качественных сварных швов в соответствии с требованиями действующих ГОСТов. КТПС разработана для каждого сплава, материала и вида сварки. Все технологии многократно проработаны и апробированы. Согласно спецификации, к работе допускаются сварщики, прошедшие аттестацию.

Комитет по стандартизации в Европе (CEN) утвердил новые квалификационные стандарты для сварочных процедур (ISO15607 — ISO15614), заменившие прежние (EN288). В ENISO15607 зафиксировано, что WPS предоставляет совокупность необходимых переменных для процедуры сварки с целью обеспечения повторяемости результатов.

Гостированный технологический процесс использует тестовый сварной шов, занесенный в квалификационное действие. Обычно для ГОСТов процедуры такого типа выполняются специализированными промышленными организациями.

В конечном итоге технологическая карта сварки – это результат огромного производственного опыта и мер безопасности на производстве. Она необходима для определения необходимых сварочных процедур для создания прочных и качественных сварных швов. Карта выступает гарантом безопасности и единообразия сварочных процедур.

Для допуска к работе сварщик должен быть подвергнут процедуре аттестации на необходимую квалификацию для данного вида работ, что затем документируется и заносится в специальный реестр.

Карта включает информацию по типам используемых металлов. В основной форме технологической карты процесса сварки обязательно должны быть:

  • шифр, присвоенный каждой процедуре;
  • описание процесса для тестового шва;
  • совокупность процедур, приводящая к повторяемости тестового результата;
  • параметры используемого металла;
  • какого вида сварка, и какие процессы применяются для испытательных швов;
  • вид энергии, применяемый при сварке;
  • температурные режимы;
  • какие виды сварки могут быть использованы.

Также очень важно задать спецификации сварных швов, которые играют основную роль для конструкции, в целом. Необходимо знать:

  • в каком порядке собираются детали;
  • режимы термических обработок деталей;
  • предельные параметры энергии для дугового разряда.

Дополнительной информацией служит:

  • эскизы и шаблоны для швов;
  • подготовка к сварке необходимых соединения;
  • последовательность операций.

Результатом подробной проработки маршрута является несомненная возможность получить тестовый образец сварки в соответствие со стандартами любым компетентным сварщиком.

Стандарты для отрасли разрабатываются по каждому виду сварочных работ. Например, стандарт ОСТ36-79-83 утверждает типовую технологическую карту, предназначенную для сварки трубопроводов. Используемая сталь является низколегированной или углеродистой. Сварка полуавтоматическая, с применением плавящихся электродов. Атмосфера — из углекислого газа.

Стандарт ОСТ36-79-83 на сварочные работы имеет вид технологической карты для сварки трубопроводов, введен в действие 1 января 1984 г., причем действует до сих пор.

Стандарт состоит из 4 разделов:

  • Технические требования, относящиеся к материалам труб, сварочным материалам, оборудованию, квалификации сварщиков.
  • Технология сварочного процесса – для всех элементов трубопровода, кромок и стыков труб, прихваток, режимов сварки, схем для электродов, флюс-пасты, порядка выполнения, температурные параметры.
  • Требования по контролю за качеством сварных соединений – на начальном этапе, в процессе работ и готовых изделий.
  • требования безопасности – физические, химические и психофизиологические.

А также ряд приложений:

  • материалы;
  • источники питания;
  • технические характеристики сварочных аппаратов;
  • шланговые держатели сварочных аппаратов;
  • шлифовальные машинки.

Функциональная схема технологического процесса сварки имеет вид.

В итоге, стандарты представляют собой документы, в которых собраны все необходимые данные для обеспечения повторяемости сварки при ее производстве. Также они определяют процедуру аттестации сварочной технологии, необходимую для подготовки технологической карты сварочного процесса для конкретного сварного изделия.

Данные для техкарты

Документ в обязательном порядке содержит данные о металлах, которые требуется соединять; информацию о разделке заготовок и очистке поверхности, размеры сварного соединения. Если требуется прогрев металла, то об этом тоже есть информация. Описана и последовательность формирования сварных швов. Подобные инструктивные материалы просто необходимы при выполнении сложных работ, например, при сварке трубопроводов.

Когда для выполнения работы можно использовать разное оборудование, то указывается конкретный вид сварочных аппаратов и расходных материалов. Дополнительно вносится информация о том, какие параметры нужно выставить на сварочном оборудовании: сила тока, напряжение, полярность. Задается скорость формирования шва и прочие важные данные. Здесь же определяется форма сварного шва и предполагаемые методы контроля качества.

Назначение документов при подготовке карты сварочных процессов

Единая система технической документации содержит требования и указания по подготовке технологических документов, к которым относятся документы специального назначения — карты маршрутов, операционные и технологических процессов. Руководящие документы готовятся для каждого направления промышленности. Например, такой документ для РАО Газпром расписывает сварочные, ремонтные и восстановительные процедуры на газопроводах. В него включены требования по выбору труб, их сборке, материалов, сварке стыков, обработке сварных соединений и т.п. Приводятся методы аттестации, отбраковки и контроля, технологий сварки, техники безопасности и т. д.

Рассмотрим в качестве примера типовой техпроцесс сварки фланцев к трубам.

Техника сварочных работ

Принцип электродуговой сварки.

После того как выполнены все требования по технике безопасности, подготовлены материалы и детали, можно приступать к выполнению сварочных работ.

На сварочном аппарате надо установить рабочее значение тока, при котором будет производиться сварка. Ее определяют исходя из марки электрода, типа стали, вида сварного шва, месте его расположения на металлической конструкции и в пространстве. Чтобы образовалась дуга, необходимо электрод поднести к начальному месту для сварки. При этом электрод и металл должны быть перпендикулярны. После того как они соприкоснутся, электрод приподнимают на 2-5 мм от металла, в результате чего образуется дуга.

Такой процесс получения дуги используется для начала шва. Когда необходимо зажечь дугу уже на этапе выполнения шва, когда сварная ванна уже образовалась, этот технологический процесс выглядит несколько иначе. Чтобы шов был непрерывным, дугу надо зажигать прикосновением к ней электрода, немного отступив от места, где дуга оборвалась по шву. Если сварщик обладает опытом, дуга обрывается редко, что позволяет обеспечить целостность сварного шва.

Виды сварных соединений.

От того как в пространстве будет располагаться будущий сварной шов, зависит способ размещения электрода и его позиция. Швы могут располагаться внизу, на вертикальной поверхности (вертикально, горизонтально), на потолке. Элементы, которые необходимо соединить в вертикальной плоскости, сваривают, двигаясь сверху вниз. При нижнем размещении сварного соединения электрод должен быть наклонен в направлении сварки в вертикальной плоскости, а варят при этом «к себе» или «от себя».

Движения электродом по свариваемой поверхности, которые выполняет сварщик, могут иметь различную траекторию. Она зависит от размера шва, типа стали свариваемых элементов, а также от мастерства сварщика. Движения могут способствовать прогреву корней шва, прогреву только одной из кромок шва или п двух кромок.

Устройство сварочного инвертора.

От того каким образом происходит движение электрода по свариваемой поверхности, будут зависеть деформации сварного соединения, и напряжения, которые в после окончания работы будет испытывать шов. Сами движения электродом должны быть поступательными и достаточно плавными. Однако остановки при сварке могут образовывать наплывы, а частое зажигание дуги лишние повреждения окружающей поверхности.

Кроме того, сами сварные швы могут быть длинными, средними и короткими. Размеры их составляют выше 1000 мм, более 350 мм и менее 1000 мм, менее 350 мм соответственно. Если шов должен быть значительных размеров, то его выполняют несколькими отрезками, чтобы не допустить значительного прогревания металла кромок и повреждения поверхности металлической детали (прожига). При этом необходимо учитывать, что шов должен оставаться без отверстий, быть целым и аккуратным. Количество и размер отрезков для длинного шва зависят от его размера и чаще всего делится на 4-5 равных частей, если это позволяет сделать конструктивные особенности детали. Если шов короткий, то началом для него может служить любая удобная для подступа сторона. При средней длине шва его выполнение начинают с середины и постепенно движутся к краям. При этом направление движения обусловлено только конструктивными особенностями детали.

Типовой техпроцесс сварки фланцев с концами труб

Часто используемым методом соединения являются фланцы. Они имеют вид плоских деталей разной формы, в которых сделаны специальные отверстия для крепления труб. С их помощью собираются трубопроводы разного назначения и длинные строительные конструкции. Они прочно и герметично соединяют трубы, обеспечивая гибкость в обслуживании различных стыков. Кроме этого, они соединяют трубу с различным оборудованием и клапанами.

В трубопроводной системе часто добавляют разгрузочные фланцы, позволяющие проводить регулярное техническое обслуживание системы во время ее работы. С этой целью на концы труб наваривают фланцы, которые затем соединяются между собой болтами с использованием герметизирующих прокладок. Такие дополнительные вставки в систему трубопровода позволяю подключать различную аппаратуру и устройства, делать дополнительные системы подключения.

Фланцы можно классифицировать разными способами, например:

  • по типу соединений;
  • по типу самих фланцев;
  • на основании температурных значений и давления;
  • по используемым материалам.

Для изготовления фланцев используют углеродистые, низколегированные, нержавеющие стали и комбинации экзотических материалов.

Использование фланцев весьма распространено. Поэтому разработан и ряд типовых техпроцессов, используемых в процедурах сварки фланцев к трубам.

Обычно технику сварки определяет требуемая величина люфта (зазора) в создаваемых стыках.

  • При отсутствии люфта используется техника глубокого проваривания кромки трубы (технический прием — в лодочку).
  • Люфт свыше 1.5 мм – технический прием поперечных колебательных движений самого электрода, выполняемых под определенным углом к осевой плоскости трубы.
  • Люфт составляет 4-5 мм – метод угловых швов.

Фланцы привариваются с двух сторон для получения надежного соединения. Здесь учитывается вид конструкции и требования к креплениям.

Отметим, что в подземных трубопроводах не используются фланцевые соединения, так как фланцы являются наиболее распространенным источником утечки и пожаров.

2.2. Общие сведения о сварочных соединениях

2.2.1. Сварным соединением называют элемент сварной конструкции, состоящий из двух или нескольких деталей конструкций и сварного шва, соединяющего эти детали (см. ГОСТ 5264-80. «Швы сварных соединений»).

2.2.2. При монтаже металлоконструкций встречаются следующие основные типы соединений: стыковые, нахлесточные, тавровые, угловые.

2.2.3. Стыковые соединения — самые типичные сварные соединения, в которых торцы или кромки соединяемых деталей располагаются так, чтобы между ними было расстояние 1 — 2 мм. Детали толщиной до 6 мм сваривают односторонним швом, а более 6 мм — двухсторонним швом.

2.2.4. Нахлесточные соединения осуществляются путем наложения одного элемента соединения на другой. Величина перекрытия должна быть не менее удвоенной суммы толщин свариваемых кромок изделия. Детали при сварке заваривают с обеих сторон.

2.2.5. Тавровые соединения — соединения, при которых торец одного элемента примыкает к поверхности другого элемента свариваемой конструкции под некоторым углом. Для получения прочного шва зазор между свариваемыми элементами должен составлять 2 ÷ 3 мм.

2.2.6. Угловые соединения осуществляются при расположении свариваемых элементов под прямым или произвольным углом и сварка выполняется по кромкам этих элементов с одной или с обеих сторон.

2.2.7. Все описанные выше сварные соединения выполняются швом, который представляет собой затвердевший наплавленный металл, соединяющий элементы сварной конструкции. Сварные швы подразделяются по следующим признакам: по положению относительно действующего усилия (см. рис. ), по положению в пространстве (см. рис. ), по внешней форме (см. рис. ).

Рис. 1. Положение сварных швов относительно действующего усилия:

а) фланговый, б) лобовой, в) косой

Рис. 2. Положение сварных швов в пространстве:

а) нижний, б) горизонтальный, в) вертикальный, г) потолочный

Рис. 3. Внешние формы сварных швов:

а) выпуклый, б) нормальный, в) вогнутый

2.2.8. Диаметр электрода для сварки устанавливают в зависимости от толщины свариваемых кромок, вида сварного соединения и размеров шва. Для стыковых соединений приняты практические рекомендации по выбору диаметра электрода в зависимости от толщины свариваемых кромок:

Толщина свариваемых кромок, мм2,3 — 56 — 89 — 1213 — 1516 — 20> 20
Диаметр электрода, мм2,3 — 44 — 55 — 66 — 77 — 88 — 10

2.2.9

При выполнении угловых и тавровых соединений принимают во внимание величину катета шва: при катете шва 3 ÷ 5 мм сварку производят электродом диаметром 3 ÷ 4 мм, а при катете 6 ÷ 8 мм применяют электроды диаметром 4 ÷ 5 мм

2.2.10. По выбранному диаметру электрода устанавливают величину сварочного тока, которая должна быть указана на заводской этикетке, приклеенной к пачке с электродами.

2.2.11. Величину сварочного тока для электродов 4 ÷ 6 мм можно определить по формуле:

Y = (40 ÷ 60) · Dэ,

где Y — величина сварочного тока, А;

Dэ — диаметр электрода, мм.

2.2.12. Величину сварочного тока для электродов диаметром менее 4 мм и более 6 мм можно определить по формуле:

Y = (20 + 6Dэ) · Dэ.

При этом следует вносить поправки, учитывающие толщину металла и положение сварного шва.

При толщине кромок от 1,3Dэ до 1,6Dэ расчетную величину сварочного тока уменьшают на 10 ÷ 15 %, а при толщине кромок более 3Dэ — увеличивают на 10 ÷ 15 %. Сварку вертикальных и потолочных швов выполняют током, на 10 ÷ 15 % меньше расчетного.

2.2.13. Металлические электроды для дуговой сварки изготавливают в соответствии с ГОСТ 9466-75. «Электроды покрытые металлические для ручной дуговой сварки и наплавки. Классификация, размеры и общие технические требования».

Установленные ГОСТом размеры:

Таблица 1

Диаметр электрода, ммДлина электрода, мм
из углеродистой и легированной проволокииз высоколегированной проволоки
1,6200; 250150; 200
2,0250200; 250
2,5250; 300250
3,0300; 350300; 350
4,0350; 450350
5,0450350; 450
6,0
8,0
10,0
12,0

2.2.14. Допустимые отклонения по длине электрода при ручном изготовлении до ±7 мм, а при машинном до ±3 мм. Допустимые отклонения по диаметру в пределах от -0,12 до +24 мм в зависимости от значения диаметра и установленной степени точности.

Сварка металлоконструкций и карты техпроцессов

Конструкции из металла – металлоконструкции — это общепринятое обозначение изделий из металлов и сплавов. Например, детали из профилированного металла в машиностроении, несущие стальные каркасы зданий – в строительстве.

Если вначале прошлого века обычно использовались детали, литые из чугуна, то современные создаются из стали или легких сплавов, например, алюминия. Их преимущество:

  • легкость;
  • коррозионная устойчивость (оцинкованные или алюминиевых сплавы);
  • удобство производства;
  • объемная прочность, жесткость;
  • декоративность;
  • скорость монтажа.

Сварка служит одним из наиболее важных и широко применяемых методов соединения металлоконструкций. Этот процесс значительно дешевле винтов и заклепок и более надежен по сравнению с пайкой или склеиванием.

Сварные детали приобретают свойства долговечности, являются надежными, легко ремонтируются и удобны в производстве.

В одной конструкции нельзя одновременно совмещать процедуры сварки и клепки из-за разного отношения к нагрузкам. Сварные конструкции предпочтительнее клепанных или склеенных из-за более низкой стоимости производства, экономии материала, большей надежности при создании герметичности швов и др.

Недостатки вызваны образованием дефектов в швах из-за возникновения внутренних напряжений при перепаде температур, некачественной сварке.

Существует множество видов соединения отдельных деталей методом сварки. В каждом конкретном случае выбирается свой вид и способ, для которых составляется технологическая карта сварки металлоконструкций.

Исходя из характера требований к сварному изделию, подбираются материалы, геометрия компонентов, вид сварного шва, техника.

Сваривание металлов регламентируется по ряду физических, технических и технологических параметров. В физический критерий включены три основных класса – механический, термомеханический, сварка дуговым разрядом.

Например, электродуговая ручная сварка – это часто используемый на практике вид электросварки, оптимальной при сваривании мягких и легированных сталей, нержавейки, чугуна, ряда цветных металлов. Очевидно, что любой вид дуговой сварки требует свою карту технологического процесса.

Особенности

На крупных производствах (например, если это сборочно-сварочный цех) разработкой техкарты занимаются отдельные специалисты, а на мелких заводах эту работу часто поручают сварщикам. Тем не менее, любая разработка техкарты должна начинаться с тщательного анализа металла, который нужно сварить. Именно от металла зависит выбор типа сварки, комплектующих и прочие параметры. Если вы с самого начала правильно проанализируете металл, то затем у вас не возникнет никаких ошибок. Режим сварки подбирается по нормативным документам, а не по опыту варщика

Это тоже важно понимать

Каждая технологическая карта по сварке металлоконструкций должна иметь свой индивидуальный номер (шифр), с помощью которого ее можно будет найти в архиве. Также этот номер будет указываться при разработке полной техдокументации и в характеристиках проекта на сварку. Также на техкарте должна стоять подпись специалиста, который эту кару составлял.

Функциональная схема сварочного процесса

Стержневой электрод (диаметр 1,5-10 мм) закреплен в электрододержателей. Соприкосновение электрода с поверхностью металла вызывает электрозамыкание цепи и разогрев торца электрода. При отодвигании электрода на 3-5 мм от металла возникает дуговой разряд, который поддерживает электрический ток. Происходит интенсивный локальный разогрев, вызывающий плавление детали. К этому расплаву добавляется металл с торца электрода. Образуется совместная «сварочная ванна». Метод сварки, форма электродов и сварного шва, а также все тонкости процесса фиксируются в заранее составленной карте технологического процесса сварки.

Аттестованный сварщик, строго следуя технологической карте, отслеживает неизменность дугового зазора при соединении свариваемых краев, а также создающийся при кристаллизации расплавленного металла валик-шов.

Здесь 1.Ориентация сварочного процесса; 2.Экранирующая оболочка электрода; 3.Проволока, добавляемая в качестве плавящегося материала; 4.Газ, защищающий от воздушной атмосферы; 5.Сварочная ванна; 6.Шов, возникающий в процессе работы; 7.Свариваемая деталь.

Работа с неплавящимся вольфрамовым электродом часто требует добавку присадки из проволоки. В рабочую область для защиты от примесей из воздуха вводится инертный газ. Этот метод характеризуется возможностью точного контроля и для ручной сварки, и для механизированного процесса.

Сварка металлоконструкций допускает различные виды соединений деталей: встык, угловое, с напуском и тавровое.

Группы из разных видов сварных швов различают:

  • По позиции в пространстве – снизу, горизонтально, вертикально и на потолке.
  • Касательно к прикладываемому напряжению – с флангов, с торцов, в комбинации, наклонное.
  • По протяженности – непрерывные или нет.
  • По степени округлости – ровные, выпуклые или вогнутые.
  • По типу сочленения – в стык или углом (валиком).

Все это многообразие учитывается при написании технологической карты для сварки металлоконструкций.

Карта начинается с описания возможной сферы применения. В ней подробно указываются типы металлоконструкций, по отношению к которым применима данная технология, расписывается расположение деталей и углы креплений. Определяется температурный режим.

Ядром техкарты выступает сварочный маршрут и его технические характеристики. Он подразделяется на разделы:

  • Начальная подготовка работ и правила их проведения.
  • Типы работ.
  • Последовательность этапов.
  • Схемы, конструкторские чертежи, их описание по каждому процессу.
  • Техника безопасности и условия труда.
  • Численность и квалификация аттестованных работников, длительность работы.
  • Расходные материалы, их количество.

Четко проработанный маршрут технологического процесса дает возможность заранее оценить технические и материальные расходы, сроки работ и экономическую эффективность.

Завершающим разделом техкарты является экономический расчет необходимых материальных и людских ресурсов.

Технологическая карта на сварку стальных труб идентична вышеприведенной карте по форме, но несколько отличается по информации.

В этот документ включены следующие данные:

  • Область применимости техкарты, для каких объектов она работает.
  • Общие положения и рекомендации по проведению работ.
  • Описание технологии и требования по организации рабочего процесса.
  • Контроль качества работ.
  • Условия для проведения работ и техника безопасности.
  • Перечень используемой нормативной документации и ГОСТов.
  • Техкарты по каждому виду сварки.

Инструкции готовятся по каждой операции в отдельности, по всей их совокупности и последовательности, по предварительному контролю свариваемых объектов на предмет неисправностей, чистоты и дефектов. Обязательно следование технике безопасности работ и противопожарным, требованиям охраны труда при подготовке рабочей площадки.

Все действия необходимо исполнять согласно операционным техкартам, входящим в технологическую карту процесса в целом. Качественность выполнения работ определяется по перечисленным там же методикам проверки швов.

В качестве примера приведем техкарту сварки трубопровода.

Разработка технологического процесса ручной дуговой сварки

Технология электродуговой сварки заключается в нагреве деталей подлежащих соединению электрической дугой, которая обычно создается между деталями и электродом.

Температура дуги способствует расплавлению электрода и поверхности соединяемых элементов, в результате чего образуется сварной шов.

При этом расплавленный шлак выступает на поверхности сварочной ванны, образуя защитный слой, предохраняющий шов от окисления во время остывания.

Описание процесса

Специальные источники питания, преобразующие ток, поступающий из электрической сети, создают дугу. При работе пользуются как переменным, так и постоянным током. При использовании переменного напряжение будет понижаться на трансформаторе, тогда как при работе постоянным током, последний выпрямляется на специальном выпрямителе.

Технологический процесс электродуговой сварки предполагает применение плавких и неплавких электродов. Плавкие электроды при создании шва расплавляются сами. При использовании неплавких электродов оплавляется присадочный материал, который подается в сварочную ванну в виде специальных прутков.

Часто в зону соединения подаются защитные газы, такие как аргон, гелий, углекислый газ и смеси. Вводятся они сварочной головкой для того, чтобы обеспечить защиту металла сварочной ванны от появления окислов.

Существует несколько видов электродуговой сварки, отличающихся основными параметрами исполнения:

  • автоматизацией процесса: ручная, полуавтоматическая, автоматизированная сварка;
  • способами защиты сварочной зоны: под флюсом, аргонно-дуговая и газовая;
  • режимом подачи тока: сварка под постоянным, переменным током, импульсная;
  • областью применения: соединение элементов из черного металла, цветного, в том числе алюминия, различных труб.

Устройство электродуговой сварки

В процессе электродуговой сварки задействован сварочный аппарат, соединяемые детали, электроды или присадочная проволока. Почти во всех случаях требуется специальное оборудование, обеспечивающее защиту сварочной зоны.

Сварочный аппарат состоит из мощного понижающего трансформатора, являющегося источником тока. Трансформатор сварочного устройства постоянного тока комплектуется выпрямителем, который служит для преобразования переменного тока, поступающего из электрической сети, в постоянный.

Не менее широкое распространение имеют инверторные источники, принцип действия которых основан на преобразовании переменного тока, поступающего из сети на выпрямитель, в постоянный ток. Посредством инвертора постоянный, превращается в переменный ток высокой частоты, который впоследствии преобразуется на понижающем трансформаторе.

Трансформатор стандартного переменного тока низкой частоты 50 Гц весит значительно больше сварочных трансформаторов тока высокой частоты. Преобразованный ток используется сразу или после выпрямления.

Помимо трансформатора аппараты для дуговой сварки оснащены множеством вспомогательных деталей и устройств: держатели электродов, провода и прочее.

Технологический процесс современной сварки

    Сварка применяется довольно широко как в коммерческих, производственных целей, так и для выполнения мелкого ремонта в частном строении или на даче. Оборудование, расходные материалы для сварочных работ предлагаются потребителю в специализированных магазинах и являются доступными.

Процесс выполнения сварочного соединения зависит от вида сварки. Но наибольшее распространение приобрела дуговая сварка. Именно ее чаще всего применяют в быту.

Но от правильного исполнения технологического процесса сварки зависит качество, надежность сварного соединения, а также безопасность самого работника.

Основные моменты технологии электродуговой сварки

Технология электродуговой сварки заключается в нагреве деталей подлежащих соединению электрической дугой, которая обычно создается между деталями и электродом.

Температура дуги способствует расплавлению электрода и поверхности соединяемых элементов, в результате чего образуется сварной шов.

При этом расплавленный шлак выступает на поверхности сварочной ванны, образуя защитный слой, предохраняющий шов от окисления во время остывания.

2.3. Последовательность и методы выполнения работ

2.3.1. Произведите сборку сварочного поста (см. рис. ), для чего:

Рис. 4. Схема соединения сварочного поста для ручной сварки

а) установите сварочный трансформатор в специально оборудованном, в соответствии с «Правилами техники безопасности и пожарной безопасности», месте. Марку сварочного трансформатора выбирайте по табл. .

Таблица 2

Марка трансформатора Сварочный ток, А Напряжение, В Номинальная мощность, кВ·А Габаритные размеры, мм Масса, кг
номинальное рабочее холостого хода
номинальный пределы регулирования
ТД-306У2 160 60 — 175 26,4 70 11,4 570×325×530 38
ТД-06У2 250 100 — 300 30 70 17,5 630×365×590 65
ТД-251У2 250 100 — 260 30 80 420×260×450 49
ТД-500-4У2 500 100 — 560 40 60 — 76 32 570×720×835 210
ТДМ-317У2 315 60 — 360 32,6 80/62 585×555×818 130
ТДМ-401У2 400 80 — 460 36 80/64 585×760×848 160
ТДМ-503У2 500 75 — 580 40 75/65 135 555×585×888 175
ТДМ-502У2 500 100 — 550 40 75 26,5 720×845×780 240

Примечание. В таблице приведены серийно выпускаемые трансформаторы для ручной дуговой сварки. Допускается замена трансформаторов другими, аналогичными по применению;

б) подсоедините установленный сварочный трансформатор к сети электропитания через рубильник или магнитный пускатель при помощи проводов ПРГ (ГОСТ 20520-80), АКРПТ или АКПРТН (ГОСТ 13497-77Е);

в) заземлите корпус сварочного трансформатора при помощи проводов, указанных в п. б;

г) подсоедините одну из клемм сварочного трансформатора к свариваемой детали при помощи зажима (см. рис. ) проводами ПРГ (ГОСТ 20520-80), АКРПТ или АКПРТН (ГОСТ 13497-77Е);

Рис. 5. Зажимы для присоединения сварочного провода к свариваемому изделию:

а) наружный, б) винтовой

д) подсоедините вторую клемму сварочного трансформатора к электродержателю (см. рис. ) проводами ПРГД или ПРГДО (ГОСТ 6731-77Е);

Рис. 6. Виды электрододержателей

е) выбирайте сечение проводов для сварочных работ при их длине не более 30 м по рекомендуемым нормам:

Наибольшее значение сварочного тока, А 200 300 450 600
Площадь сечения проводов, мм2:
одинарного 25 50 70 95
двойного 2×16 2×25 2×35

ж) при длине сварочных проводов до 100 — 150 м падение напряжения определяйте по формуле:

Ul = 1,73Jρl / s,

где Ul — падение напряжения, В;

J — сварочный ток, А;

ρ — удельное сопротивление проводов, Ом·м;

l — длина проводов, м;

s — площадь сечения проводов, мм2.

Если значение Ul превышает допустимое более чем на 5 %, необходимо увеличить площадь сечения проводов;

з) пользуйтесь для защиты глаз и кожи лица при выполнении сварочных работ щитками, масками или шлемами (ГОСТ 1361-69) (см. рис. ).

Рис. 7. Средства защиты от воздействия сварочной дуги и брызг металла

2.3.2. Произведите крепление в соответствии с проектной и инструктивной документацией всех необходимых настенных угольников, кронштейнов в помещениях автозала, кросса, шахты и электропитающих установок.

2.3.3. Уложите на прикрепленные к стенам кронштейны секции желобов открытого типа, придвиньте их друг к другу так, чтобы между ними остался зазор, равный 1 ÷ 2 мм, сварите отдельные секции желобов односторонним швом (см. рис. 8) и приварите полученную трассу желобов к кронштейнам с двух сторон (см. рис. 9) при ширине желобов 400 ÷ 600 мм или с одной стороны в шахматном порядке — при ширине желобов 150 ÷ 300 мм.

Рис. 8. Сварка желобов в стык

К настенным угольникам концы магистральных желобов привариваются с двух сторон так, как указано на рис. .

Рис. 9. Крепление желоба к кронштейну или угольнику вдоль стены

2.3.4. Пропустите магистральный желоб через отверстие в стене помещения, придвиньте его к магистральному желобу, уложенному и закрепленному (см. п. 2.3.3) так, чтобы зазор между желобами был равен 1 ÷ 2 мм, и произведите сварку магистральных желобов в стык под углом 90° (см. рис. и рис. ). При этом каждая боковая полоса желоба проваривается со всех сторон.

Рис. 10

Рис. 11. Крепление магистрального желоба при стыке в 90°

2.3.5. Приварите магистральный желоб в проходе через стену к настенным угольникам (см. рис. ). Сварка производится с одной стороны желоба односторонним швом в шахматном порядке.

Рис. 12. Проход магистрального жалоба через стену

2.3.6. Приварите вертикальные магистральные желоба к кронштейнам, закрепленным на стене помещения (см. рис. ). Сварка производится к каждому кронштейну с трех сторон.

Рис. 13. Крепление вертикального магистрального желоба к стене

2.3.7. Смонтируйте спуски магистральных желобов в каркасном ряду (см. рис. ), при этом приварку желобов к кронштейнам каркасного ряда произведите с трех сторон каждой боковой полосы желоба.

Рис. 14. Спуск желобов в каркасном ряду

2.3.8. Смонтируйте спуски магистральных желобов в местах их прохода через перекрытие пола (см. рис. ). При производстве работ приварку магистральных желобов к обрамлению проходного отверстия произведите с обеих сторон боковых полос желоба.

Рис. 15. Проходное устройство магистральных желобов через перекрытие

2.3.9. Смонтируйте металлоконструкции в помещении шахты. Основания щелевых кронштейнов привариваются к фундаментным угольникам. В верхней части кронштейны приваривают к стальной полосе 30×4. Пример установки кронштейнов в шахте показан на рис. .

Рис. 16. Пример установки кронштейнов в шахте

Крепление рядов щелевых кронштейнов между собой и к стенам помещений производится при помощи магистральных угольников 40×50×4, которые приваривают к верхней части щелевых кронштейнов и настенным угольникам. Рядовые желоба в помещении шахты приваривают к магистральным угольникам, причем к крайним угольникам желоба приваривают с двух сторон (см. рис. ), а к остальным угольникам — с одной стороны в шахматном порядке (см. рис. и рис. ).

Рис. 17. Расположение и места сварки желобов в шахте (примерное)

Рис. 18. Расположение и места сварки желобов в шахте (примерное)

2.3.10. Магистральные угольники крепления рядов кронштейнов в шахте сращиваются методом сварки в стык (см. рис. а) или внахлест (см. рис. б).

Рис. 19. Примеры сращивания магистральных угольников

2.3.11. Произведите монтаж воздушных желобов по стенам помещения шахты. Пример расположения и места сварки желобов приведен на рис. и рис. .

Рис. 20. Расположение и места сварки желобов в шахте (примерное)

Рис. 21. Расположение и места сварки желобов в шахте (примерное)

2.3.12. Монтаж металлоконструкций в кроссе производится аналогично монтажу металлоконструкций в шахте. Ряды стативов в кроссе крепятся между собой и к настенным угольникам помещения при помощи магистральных угольников 40×50×4, которые приваривают к каркасу кросса и настенным угольникам. Крепление рядовых желобов в кроссе методом сварки производится аналогично креплению в шахте. Пример установки желобов над ячейками кросса показан на рис. .

Рис. 22. Пример установки желобов над ячейками кросса

2.3.13. Крепление магистральных желобов к рядовым осуществляется методом сварки при помощи стержня, который приваривают к боковым полосам рядовых и магистральных желобов с обеих сторон (см. рис. 23).

Рис. 23. Крепление магистрального желоба к рядовому

2.3.14. Крепление магистральных желобов Ж магистральным желобам в пролете до 2,5 м осуществляется методом сварки, причем магистральный желоб для прочности усиливают стальными стержнями, привариваемыми к обеим боковым полосам желоба (см. рис. ).

Рис. 24. Крепление желоба в пролете до 2,5 м

3.3.15. Крепление желобов для кроссировочных проводов производится аналогично креплению магистральных желобов в пролете до 2,5 м также методом сварки, только без использования стальных стержней жесткости. Пример крепления желобов приведен на рис. .

Рис. 25. Пример крепления желоба для хромировочных проводов

2.3.16. Крепление рамки с испытательными гнездами в абонентском кроссе производится методом сварки. Пример крепления рамки методом сварки показан на рис. .

Рис. 26. Крепление рамки с испытательными гнездами в абонентском кроссе

2.3.17. После окончания монтажа металлоконструкций производится очистка сварных соединений от окалины, проверка качества их выполнения и окраска серой эмалью.

2.3.18. В процессе проверки качества сварных соединений путем внешнего осмотра при помощи лупы с 10-кратным увеличением могут быть обнаружены дефекты. Виды дефектов, получившихся в процессе сварки, приведены на рис. .

Рис. 27. Виды дефектов при сварке

2.3.19. Дефекты сварных соединений исправляют подваркой с последующей очисткой от окалины и покрытием одним слоем серой эмали.

С чего начать

Главенствующее значение имеет проектирование сварочных цехов. В чем оно заключается? Здесь несколько позиций, которые будут определять технологический процесс, касающийся сварочных работ, а также сборки узлов и деталей.
В первую очередь надо разобраться с комплектацией. Понятно, что основное оборудование для сварочного цеха – сварочные аппараты (газовые, электрические). Их стоимость определяется объемами проводимых работ.

Если объемы большие, то лучше приобретать профессиональные приборы. Если сварочный цех небольшой, то можно обойтись бытовыми аналогами. Цех для сварки должен быть разноплановым, чтобы собрать как можно больше работы, поэтому стоит подумать о приобретении контактной сварки.

Нельзя забывать о простых на первый взгляд приспособлениях, которые в сварочном цеху будут занимать определенное место. К примеру, верстак или стол для сварки.

Он должен быть правильно организован не только в плане удобства проведения сварочных операций, но и в плане быстрого доступа к дополнительным инструментам, расходным материалам. Тем более, рабочее место сварщика – единый комплекс приспособлений, которыми ежедневно пользуются.

Организация труда на сварочном участке

Сварочные работы предназначены для ликвидации трещин, разрывов, поломок, а так же прикрепления кронштейнов, уголков и т. п. В АТП применяют электродуговую и газовую сварку. Работы газовой сварки обычно подразделяют на сварку деталей из толстолистовой стали и сварку тонколистовой стали кузовов, а так же тонкостенных деталей. Электросваркой ремонтируют массивные детали (раму).

Подготовка металла (деталей) к сварке.

Металл, идущий на изготовление сварных конструкций, предварительно очищают и выправляют.

Очистка должна производиться до сборки узла. В месте сварки кромки тщательно очищают от ржавчины, масла, влаги, окалины, загрязнений, наличие которых приводит к образованию пор и других дефектов. Особенно следует обратить внимание на зачистку в зазоре между кромками. Если в зазор уже собранного узла попали загрязнения, его следует тщательно продуть сжатым воздухом или прожечь пламенем горелки.

Очистка производится ручными и механическими проволочными щетками, пламенем многофакельной горелки, абразивными кругами, травлением в растворах кислот и щелочей, промывкой растворителями.

Перед сваркой кромки деталей, если это предусмотрено чертежами, подвергают обрезке, скосу и очистке.

Для обеспечения качественного провара и формирования сварного шва выполняют подготовку кромок под сварку Элементами геометрической формы подготовки кромок под сварку являются: угол разделки кромок , угол скоса одной кромки , зазор между стыкуемыми кромками и притупление. Существующие способы ручной дуговой сварки позволяют сваривать без разделки кромок металл ограниченной толщины — до 6 мм. Поэтому при сварке металла большой толщины необходимо разделывать кромки для доступа сварочной дуги вглубь соединения и полного проплавления кромок на всю толщину.

Сборка деталей под сварку

Более 30 % общей трудоёмкости изготовления сварных деталей и узлов составляют затраты труда на сборку деталей под сварку.

Сборка деталей под сварку выполняется с целью установления взаимного пространственного положения элементов сварных конструкций. Для уменьшения времени сборки, а также повышения её точности применяют различные приспособления: установочные детали, прижимные механизмы, стенды, кондуктор и др.

Сборку деталей под сварку выполняют несколькими способами. Наиболее рационален метод секционной сборки, предусматривающий сборку и сварку отдельных узлов, из которых состоит конструкция, а затем сборку и сварку всей конструкции.

При изготовлении сварных конструкций широко используют так называемый метод общей сборки сварной конструкции. Он заключается в том, что вначале всю конструкцию собирают из отдельных заготовленных элементов, а затем её сваривают. Если это не удается, то детали последовательно присоединяют к уже сваренной конструкции.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]