Научная точка зрения
Чтобы определить, какие металлы не магнитятся, нужно выяснить, как все металлы вообще могут относиться к магнитам и магнитному полю. По отношению к внесенному магнитному полю все вещества делят на диамагнетики, парамагнетики и ферромагнетики.
Каждый атом состоит из положительно заряженного ядра и отрицательно заряженных электронов. Они непрерывно движутся, что создает магнитное поле. Магнитные поля электронов одного атома могут усиливать друг друга или уничтожать, что зависит от направления их движения. Причем скомпенсированы могут быть:
- Магнитные моменты, вызванные движением электронов относительно ядра – орбитальные.
- Магнитные моменты, вызванные вращением электронов вокруг своей оси – спиновые.
Если все магнитные моменты равны нулю, вещество относят к диамагнетикам. Если скомпенсированы только спиновые моменты – к парамагнетикам. Если поля не скомпенсированы – к ферромагнетикам.
Магнитные свойства
Каждый атом имеет величину, называемую суммарным магнитным моментом, которая определяется движением электронов по их орбите. Магнитный момент определяет величину восприимчивости вещества к магнитному полю. Все металлы делятся на три группы:
- Диамагнетики — вещества с отрицательной магнитной восприимчивостью, т. е. не магнитятся. Сюда относятся: цинк, золото, медь и другие.
- Парамагнетики — имеют положительное значение магнитной восприимчивости, но невысокое. Это магний, платина, хром, алюминий и другие. Магнитятся, но слабо.
- Ферромагнетики — это вещества, которые обладают сильной восприимчивостью к магнитному полю. Сюда относятся: никель, кобальт, железо, некоторые редкоземельные металлы, сплавы железа и другие.
Медь в таблице Менделеева
Парамагнетики и ферромагнетики
Рассмотрим вариант, когда у каждого атома вещества есть свое магнитное поле. Эти поля разнонаправлены и компенсируют друг друга. Если же рядом с таким веществом положить магнит, то поля сориентируются в одном направлении. У вещества появится магнитное поле, положительный и отрицательный полюс. Тогда вещество притянется к магниту и само может намагнититься, то есть будет притягивать другие металлические предметы. Так, например, можно намагнитить дома стальные скрепки. У каждой появится отрицательный и положительный полюс и можно будет даже подвесить целую цепочку из скрепок на магнит. Такие вещества называют парамагнитными.
Ферромагнетики – небольшая группа веществ, которые притягиваются к магнитам и легко намагничиваются даже в слабом поле.
Диамагнетики
У диамагнетиков магнитные поля внутри каждого атома скомпенсированы. В этом случае при внесении вещества в магнитное поле к собственному движению электронов добавится движение электронов под действием поля. Это движение электронов вызовет дополнительный ток, магнитное поле которого будет направлено против внешнего поля. Поэтому диамагнетик будет слабо отталкиваться от расположенного рядом магнита.
Итак, если подойти с научной точки зрения к вопросу, какие металлы не магнитятся, ответ будет – диамагнитные.
Распределение парамагнетиков и диамагнетиков в периодической системе элементов Менделеева
Магнитные свойства простых веществ периодично изменяются с увеличением порядкового номера элемента.
Вещества, не притягивающиеся к магнитам (диамагнетики), располагаются преимущественно в коротких периодах – 1, 2, 3. Какие металлы не магнитятся? Это литий и бериллий, а натрий, магний и алюминий уже относят к парамагнетикам.
Вещества, притягивающиеся к магнитам (парамагнетики), расположены преимущественно в длинных периодах периодической системы Менделеева – 4, 5, 6, 7.
Однако последние 8 элементов в каждом длинном периоде также являются диамагнетиками.
Кроме того, выделяют три элемента – углерод, кислород и олово, магнитные свойства которых различны у разных аллотропных модификаций.
К тому же называют еще 25 химических элементов, магнитные свойства которых установить не удалось вследствие их радиоактивности и быстрого распада или сложности синтеза.
Магнитные свойства лантаноидов и актиноидов (все они являются металлами) меняются незакономерно. Среди них есть и пара- и диамагнетики.
Выделяют особые магнитоупорядоченные вещества – хром, марганец, железо, кобальт, никель, свойства которых изменяются незакономерно.
Какие металлы не магнитятся: список
Ферромагнетиков, то есть металлов, которые хорошо магнитятся, в природе существует всего 9. Это железо, кобальт, никель, их сплавы и соединения, а также шесть металлов- лантаноидов: гадолиний, тербий, диспрозий, гольмий, эрбий и тулий.
Металлы, притягивающиеся только к очень сильным магнитам (парамагнетики): алюминий, медь, платина, уран.
Поскольку в быту не встречаются настолько большие магниты, которые бы притянули парамагнетик, а также не встречаются металлы-лантаноиды, можно смело утверждать, что все металлы, кроме железа, кобальта, никеля и их сплавов не будут притягиваться к магнитам.
Итак, какие металлы не магнитятся к магниту:
- парамагнетики: алюминий, платина, хром, магний, вольфрам;
- диамагнетики: медь, золото, серебро, цинк, ртуть, кадмий, цирконий.
В целом можно сказать, что черные металлы притягиваются к магниту, цветные – не притягиваются.
Если говорить о сплавах, то сплавы железа магнитятся. К ним относят в первую очередь сталь и чугун. К магниту могут притянуться и драгоценные монеты, поскольку они изготовлены не из чистого цветного металла, а из сплава, который может содержать небольшое количество ферромагнетика. А вот украшения из чистого цветного металла к магниту не притянутся.
Железо, никель и магнетизм Земли
Как показали недавние исследования совместно с группой Дж. Санджованни в Университете Вюрцбурга (Германия), магнитные свойства никеля проявляют черты как сходства, так и отличия от железа. Отличие атома никеля от железа состоит в том, что он имеет восемь, а не шесть d
-электронов. Хотя, сходно с железом, локальная восприимчивость никеля подчиняется закону Кюри — Вейсса, в никеле она имеет совершенно иное происхождение, а именно, в значительной мере обусловлена зонной структурой, а не взаимодействием. Кроме того, в никеле локальный момент сравнительно мал и к тому же уже при высоких температурах частично экранирован. Единственная роль взаимодействия состоит в резком уменьшении температуры Кондо, выше которой локальные моменты хорошо определены, с нескольких тысяч до нескольких сотен градусов.
Под высоким давлением железо становится немагнитным. Но добавление небольшого количества никеля возвращает магнетизм
Эти (и некоторые другие, не описанные здесь) интересные особенности никеля получили недавно дальнейшее развитие в сплавах железо-никель под давлением. Под давлением железо оказывается в особой, так называемой эпсилон-фазе, которая кардинально отличается от «обычной» альфа-фазы железа. В частности, эпсилон-железо абсолютно не обладает локальными магнитными моментами. Однако добавление к эпсилон-железу атомов никеля даже в небольшой концентрации качественно изменяет ситуацию.
Особенности электронной структуры никеля и эпсилон-железа таковы, что магнитные свойства их сплава, содержащего даже небольшое количество никеля, оказываются близкими свойствам «обычного» никеля. Указанный факт может иметь важные последствия для объяснения земного геомагнетизма. Внутреннее ядро Земли, как предполагается, как раз содержит железо и никель в концентрации примерно 4:1. Хотя при высоких внутриземных температурах железо жидкое, подвижность атомов железа невелика, и их состояние можно соотнести с одной из кристаллических фаз. При этом немагнитная эпсилон-фаза, по-видимому, наиболее энергетически выгодна. А тогда именно присутствие в ядре Земли никеля может обеспечить появление магнитного поля Земли благодаря так называемому эффекту геодинамо (вращению жидкого ядра), поддерживаемого благодаря результирующей низкой теплопроводности сплава железо-никель. Таким образом, абсолютно теоретические исследования сплавов железо-никель могут прояснить одну из пока не решенных задач — задачу о происхождении магнитного поля Земли.
Щелочные металлы – САМЫЕ ОПАСНЫЕ и Активные Элементы! (Декабрь 2019).
Магниты – это материалы, которые создают магнитные поля, которые привлекают определенные металлы. У каждого магнита есть северный и южный полюс. Обратные полюса привлекают, в то время как полюса отталкиваются.
В то время как большинство магнитов изготовлены из металлов и металлических сплавов, ученые разработали способы создания магнитов из композиционных материалов, таких как магнитные полимеры.
Что создает магнетизм?
Магнетизм в металлах создается неравномерным распределением электронов в атомах некоторых металлических элементов.
Неравномерное вращение и движение, вызванные этим неравномерным распределением электронов, сдвигают заряд внутри атома назад и вперед, создавая магнитные диполи.
Когда магнитные диполи выравниваются, они создают магнитный домен, локализованную магнитную область с северным и южным полюсами.
В немагнитных материалах магнитные домены сталкиваются в разных направлениях, отменяя друг друга. В то время как в намагниченных материалах большинство этих доменов выровнены, указывая в том же направлении, что создает магнитное поле. Чем больше областей, которые выравнивают друг друга, тем сильнее магнитная сила.
Типы магнитов:
- Постоянные магниты (также известные как жесткие магниты) – это те, которые постоянно производят магнитное поле. Это магнитное поле вызвано ферромагнетизмом и является самой сильной формой магнетизма.
- Временные магниты (также известные как мягкие магниты) являются магнитными только при наличии магнитного поля.
- Электромагниты требуют, чтобы электрический ток проходил через их провода катушки, чтобы создать магнитное поле.
Развитие магнитов:
Греческие, индийские и китайские писатели задокументировали базовые знания о магнетизме более 2000 лет назад. Большая часть этого понимания была основана на наблюдении за влиянием магния (естественного магнитного минерала железа) на железо.
Ранние исследования магнетизма были проведены еще в XVI веке, однако развитие современных высокопрочных магнитов происходило не раньше 20-го века.
До 1940 года постоянные магниты использовались только в базовых приложениях, таких как компасы и электрические генераторы, называемые магнитосами. Разработка магнитов из алюминия и никеля-кобальта (Alnico) позволила постоянным магнитам заменить электромагниты в двигателях, генераторах и громкоговорителях.
Создание магнитов самария-кобальта (SmCo) в 1970-х годах создало магниты с вдвое большей магнитной плотностью энергии, чем любой ранее доступный магнит. Меньше более мощные магниты способствовали развитию многих известных нам электронных устройств.
К началу 1980-х годов дальнейшие исследования магнитных свойств редкоземельных элементов привели к открытию магнитов неодима и железа-бора (NdFeB).Магниты NdFeB снова привели к удвоению магнитной энергии над магнитами SmCo.
Магниты из редкой земли теперь используются во всем: от наручных часов и iPad до гибридных двигателей автомобилей и ветрогенераторов.
Магнетизм и температура:
Металлы и другие материалы имеют разные магнитные фазы, в зависимости от температуры окружающей среды, в которой они расположены. В результате металл может проявлять более одной формы магнетизма.
Железо, например, теряет свой магнетизм, становясь парамагнитным при нагревании выше 1418 ° F (770 ° C).
Температура, при которой металл теряет магнитную силу, называется ее температурой Кюри.
Железо, кобальт и никель – единственные элементы, которые в металлической форме имеют температуры Кюри выше комнатной температуры. Таким образом, все магнитные материалы должны содержать один из этих элементов.
Общие ферромагнитные металлы и их температуры кюри:
Вещество | Температура Кюри |
Железо (Fe) | 1418 ° F (770 ° C) |
Кобальт (Со) | 2066 ° F (1130 ° C) |
Никель (Ni) | 676. 4 ° F (358 ° C) |
Гадолиний | 66 ° F (19 ° C) |
Диспрозий | -301. 27 ° F (-185. 15 ° C) |
Источники: How Stuff Works, Inc. Как работают магниты. // science. Как это работает. ком / magnet1. HTM Wikipedia. Температура Кюри. // ru. википедия. орг / вики / Curie_temperature
Развитие классических идей новыми методами
Однако появление в середине 2000-х годов концепции орбитально-зависимых переходов металл — изолятор вновь заставляло пересмотреть и дополнить полученные ранее результаты. Здесь я перехожу к моим, совместно с коллегами, исследованиям. Мой интерес к проблеме железа возник в 2007 году в результате обсуждений в недавно созданном в Екатеринбурге Институте квантового материаловедения, но затем вышел за рамки этого института. В частности, для меня представлял интерес вопрос о том, как идеи Мотта и Гуденафа могут быть далее развиты уже с помощью современных методов анализа электронных корреляций.
Схема электронной конфигурации атома железа. Концентрические окружности
соответствуют разным энергетическим уровням атома.
Зеленые точки
изображают электроны на орбиталях
s
(круговых),
синие
— на
p
(вытянутых),
оранжевые
— на
d
-орбиталях с более сложным распределением в пространстве
В связи с этим возникла идея провести рассмотрение железа в рамках динамической теории среднего поля, обратив внимание на вклад различных электронных орбиталей в наблюдаемые свойства. Уже из зонной структуры следовало, что вклады t2g
и
eg
— электронных состояний в железе должны быть различны. (Здесь обозначения
t2g
и
eg
вновь относятся к симметрии электронных
d
-состояний на кубической решетке, на каждом атоме из пяти возможных
d
-состояний имеется три
t2g
-состояния и два
eg
-состояния — на каждую из двух возможных проекций спина электрона. В твердом теле эти состояния образуют, соответственно,
t2g
— и
eg
-зоны). Действительно, две электронные зоны —
t2g
и
eg
— устроены совершенно по-разному (точнее, у них разная зависимость энергии электрона от импульса). А оставшиеся менее существенные, так называемые нелокальные эффекты могли быть рассмотрены по теории возмущений.
С рассмотрения этой проблемы началось мое сотрудничество с группой Владимира Анисимова в Институте физики металлов УрО РАН. Как показали проведенные расчеты в методе динамической теории среднего поля, поведение t2g
— и
eg
-электронов совершенно различно. В частности, так называемая собственная энергия электронов, описывающая влияние взаимодействия электронов на их движение, имеет различную зависимость от энергии для
t2g
— и
eg
-состояний. Причем зависимость, полученная для
eg
-состояний, действительно свидетельствовала о возможности их локализации. Кроме того, были вычислены также орбитальные вклады в локальную (то есть соответствующую реакции одного выбранного атома на приложенное к нему внешнее магнитное поле) восприимчивость. Оказалось, что вклад
eg
-состояний в локальную восприимчивость хорошо описывается законом Кюри (частный случай закона Кюри — Вейсса), что вновь свидетельствовало о сильной локализации этих состояний. В то же время, вклад
t2g
-состояний проявляет более сложную температурную зависимость, но за счет смешанных
t2g
—
eg
-вкладов полная локальная восприимчивость также удовлетворяет закону Кюри. Динамическая локальная восприимчивость, определяемая как отклик уже на зависящее от времени внешнее магнитное поле, демонстрирует характерный для систем с локальными моментами узкий пик.
Строго говоря, в вышеописанном законе Кюри для локальной восприимчивости присутствует также небольшая поправка. Она указывает на существование малой температуры, ниже которой локальные моменты перестают существовать, будучи, как говорят, экранированными подвижными электронами проводимости (это называется эффектом Кондо, по имени открывшего эффект японского физика).
Схема возникновения косвенного обмена РККИ между локальными моментами (длинные стрелки
) через электроны проводимости (
короткие стрелки
).
i
,
j
соответствуют двум различным атомам,
I
— взаимодействие Хунда,
тонкие стрелки
показывают направление перескока
Реальное рассмотрение нелокальных эффектов (в том числе и природы магнитного обмена) в рамках теории возмущений было выполнено значительно позже, в 2015–2017 годах в сотрудничестве с Петром Игошевым, Александром Белозеровым и Владимиром Анисимовым. Для вычисления магнитного обмена можно следовать давней идее, что он обусловлен косвенным обменом через электроны проводимости. Это так называемый механизм РККИ: Рудермана — Киттеля — Касуи — Иосиды (Ruderman — Kittel — Kasuya — Yosida); в Советском Союзе аналогичные идеи развивались Семеном Шубиным и Сергеем Вонсовским. Косвенный обмен — это взаимодействие локальных моментов через посредство подвижных, свободных электронов. Проблема, однако, в том, что четкое разделение между этими состояниями в переходных металлах отсутствует, так как локальные моменты имеют конечное время жизни, и один и тот же электрон может быть локализованным или делокализованным в разные моменты времени. Эту проблему, однако, удается обойти (по крайней мере, для железа) с помощью математических преобразований — переписав восприимчивость электронной системы в виде, где взаимодействие между эффективными магнитными моментами становится явно выделенным. При этом оно как раз имеет форму РККИ. Полученные «квазилокальные» моменты можно затем связать с наблюдаемыми локальными моментами. Указанный подход дает хорошие результаты, сопоставимые с полученными ранее в рамках чисто зонных теорий, в которых, как уже сказано, понятие локального момента отсутствует.
Таким образом, в железе имеются хорошо определенные локальные моменты, появляющиеся в результате обменного взаимодействия. Одновременно были вычислены нелокальные поправки, позволившие добиться хорошего согласия с экспериментальными данными.
Поисковый магнит на золото и серебро и его свойства
Обычно, мощные магниты предназначены для поиска драгоценных металлов. Реагирует поисковый магнит на золото и серебро, довольно сильно, и хоть в чистом виде найти их сложно, его мощности хватает подобрать с земли драгоценности и монеты. Основная цель всех поисковиков — клады, дорогие монеты, а иногда просто черный металл.
В статье опишется устройство магнита и основной принцип работы. Также разберется что именно с его помощью можно найти и как отыскать дорогостоящие сплавы. Подробно объяснится что такое ферромагнетики, парамагнетики и диамагнетики. Кроме того, будут даны ценные советы и рекомендации, которые значительно упростит поиск ценных предметов.
Притягивает ли магнит золото и серебро
Можно ли найти чистое золото или серебро, мощными магнитами. Нет, так как такие металлы являются диамагнетиками, то есть не притягиваются к магнитам. Но не все так плохо, благодаря всей мощности неодимового сплава, есть возможность достать некоторые украшения. Такие предметы, обычно имеют в себе лигатуру.
Данный сплав помогает драгоценным металлам, таким как золото или серебро, обретать определенные свойства. Например серебряные украшения не так темнеют, а украшения из золота имеют большую прочность. Но самое главное то, что лигатура позволяет примагничиваться, и дает возможность отыскивать различные сплавы.
Но и есть возможность найти чистое золото или серебро. В начале статьи говорилось о том, что можно найти железные шкатулки. Обычно украшения из золота или серебра хранят именно в таких футлярах. Так что ходя по чердаку или подобным ему местам, можно хорошо «озолотится», в прямом смысле этого слова.
Магнетические свойства различных металлов
Для того, чтобы отправится на охоту за ценными металлами нужно знать, что именно притянется к магниту. Так как металлы имеют разные магнитные свойства, а некоторые вообще не имеют. Их можно разделить на три группы:
Ферромагнетики являются металлами с одними из лучших магнитных свойств. Такие металлы хорошо магнитятся. К ним можно отнести черный металл.
Парамагнетики имеют обычные свойства, они охотно притягиваются к магниту, но не имеют функции намагничивания. К ним можно отнести некоторые сплавы бижутерии и несколько видов цветных металлов.
И наконец диамагнетики. Такие сплавы крайне сложно поддаются магнитному полю и сильно усложняют поиски действительно драгоценных вещей. К диамагнетикам относятсязолото, серебро, алюминий, патина и другие металлы который не берет даже самый сильный магнит.
Можно ли найти золото с помощью магнита
Как уже рассматривалось ранее украшения и монеты с золотом можно поднять, но очень проблематично.
Чистое золото достать магнитом невозможно.
Но если будут благоприятствовать разные факторы, такие как железная шкатулка или лежащие рядом парамагнетические драгоценности, то есть шанс отыскать его. В основном на магнит можно словить только украшения с содержанием золота, такие как браслеты, сережки и кольца. Лучшим местом для поисков является песчаный пляж, колодцы, а также морское или речное дно, где плавают большое количество людей.
Нержавеющие стали, которые магнитятся
В некоторых случаях железо в составе сплава проявляет магнетические свойства, и здесь проверка народным методом только введёт в заблуждение. Но сомнения в качестве товара будут необоснованны.
К ферромагнетикам относят два класса стали и их промежуточные варианты:
Ферриты
В хромистых сплавах нет никеля, который превращает структуру в аустенит. С одной стороны это недорогие материалы, но с другой — они склонны к межкристаллической коррозии. Для повышения стойкости к агрессивным веществам в состав добавляют марганец, кремний и другие элементы. Все марки AISI 400-й серии — ферриты.
Мартенситы
Мартенситное превращение происходит при отпуске аустенитной стали. Состав остается тем же, но кристаллы приобретают упорядоченную структуру, а сплав высокую прочность и способность к самовосстановлению при незначительных деформациях. Свойства этого состояния мало изучены, однако хромоникелевый сплав становится ферромагнетиком при выполнении специфических условий. Превращению способствуют присадки вольфрама и молибдена. Рядовые покупатели редко сталкиваются с подобным материалом, он необходим для изготовления хирургических инструментов, роторов, промышленного оборудования.
Ферритно-мартенситные стали
В структуре сплава присутствуют фазы мартенсита (от 15%) и феррита. Наиболее распространенная: AISI 430.
Важное практическое значение у магнитных качеств нержавейки отсутствует, скорее они ограничивают применение вблизи точных приборов и везде, где используется электромагнитное поле: компьютеры, электроинструмент, транспорт, нефтепереработка. Тем не менее мысль очумелых ручек не знает границ. С помощью кусочка магнита можно обеспечить порядок при хранении нержавеющих деталей, плотное прилегание москитных сеток на садовом участке.