Какие металлы обладают хорошей электропроводностью?

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), — серебро.


Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

Что является металлом?

Металлом называется светлое тело, которое ковать можно. Таких тел находим только шесть: золото, серебро, медь, олово, железо и свинец.

Интересные материалы:

Сколько должен спать дневальный? Сколько должна была продлиться операция Барбаросса? Сколько должна стекать красная икра? Сколько должно быть беговых дорожек на любых международных соревнованиях? Сколько должно быть в эссе? Сколько дунган в Кыргызстане? Сколько ехать из Краснодара в Симферополь? Сколько ехать с аэропорта Борисполь до ЖД вокзала? Сколько элементов вошло в первый опубликованный вариант периодической системы Менделеева? Сколько Эло нужно для 4 лвл?

Металлы высокой электропроводности широкого применения

У металлов высокой электропроводности удельное электрическое сопротивление в нормальных условиях не превышает 100 нОм·м. Наиболее распространёнными среди них являются медь, алюминий и железо. Высокой электропроводностью обладают также многие тугоплавкие металлы, большинство драгоценных и ряд других металлов, а также некоторые сплавы, в частности сплавы меди – бронзы и латуни. Температура плавления t

,°С, плотность Мг/м3 и удельное электрическое сопротивление ρ, нОм·м) основных металлов электротехники приведены в таблице 2.1.

Таблица 2.1


Температура плавления, плотность и удельное электрическое сопротивление основных металлов электротехники

Металлt
, °С
Плотность, Мг/м3ρ, нОм·мМеталлt
, °С
Плотность, Мг/м3ρ, нОм·м
Алюминий6572,7028Никель14558,9073
Вольфрам338019,3055Олово2327,29120
Железо15397,8798Палладий155412,02110
Золото106319,3024Платина176921,43105
Индий1577,3190Ртуть– 38,913,55958
Иридий244722,6554Свинец32711,40210
Кадмий3218,6576Серебро96210,4916
Медь10838,9417Хром18907,19210
Молибден262310,2057Цинк4207,1359

Медь

Медь

является первым и основным проводниковым материалом. Удельное электрическое сопротивление стандартной меди при комнатной температуре 17,241 нОм·м, что соответствует удельной электропроводности 58 МСм/м. Электропроводность других металлов и сплавов часто оценивают в процентах от электропроводности стандартной меди. Только серебро имеет электропроводность выше, чем медь, однако, оно тяжелее, а главное гораздо дороже. Плотность меди 8,94 · 103 кг
/
м3, она достаточно прочна; предел прочности мягкой (отожжённой) меди от 260 до 280, а твёрдой – от 360 до 390 МПа.

Медь плавится при температуре 1083 °С, а кипит при 2567 °С.

Химическая стойкость меди достаточно высока. Даже в условиях высокой влажности медь окисляется на воздухе значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах.

Медь удобно обрабатывать, она легко прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до нескольких микрон (мкм). Медь удобно паять, слабая оксидная плёнка на поверхности меди легко разрушается флюсами, для пайки можно использовать как мягкие, так и твёрдые припои.

Получение меди.

Медь получают путём переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьём медь, предназначенная для электротехнических целей, обязательно проходит электролитическую очистку. Побочный продукт электролиза – шлам – представляет собой ценное сырье, т. к. содержит драгоценные и редкие металлы. Полученные в процессе электролиза катодные пластины переплавляют в болванки, из которых прокатывают листы или протягивают проволоку.

При холодной протяжке получают твёрдую (твёрдотянутую) медь, которая маркируется МТ. Благодаря влиянию наклёпа твёрдая медь имеет высокий предел прочности при растяжении и малое относительное удлинение при разрыве, а также твёрдость и упругость при изгибе; проволока из твёрдой меди несколько пружинит. Если же медь подвергнуть отжигу, т. е. нагреву до нескольких сот градусов с последующим охлаждением, то получится мягкая (отожжённая) медь, которая маркируется ММ. Мягкая медь сравнительно пластична, обладает малой твёрдостью и небольшой прочностью, но большим относительным удлинением при разрыве и малым удельным сопротивлением. Отжиг меди производят в специальных печах без доступа воздуха, чтобы избежать окисления.

Марки меди.

В качестве проводникового материала используют медь М1 и М0. Маркировка произведена по содержанию примесей в основном металле (соответственно не более 0,1 % и не более 0,05 %).

Специальныеэлектровакуумныесорта меди не содержат кислорода. Их получают из электролитической меди, переплавленной в вакууме или в защитной атмосфере восстановительного газа СО. Значительное ухудшение механических свойств меди вызывает водород. При взаимодействии водорода с кислородом, присутствующим в технической меди в виде закиси Cu2O,образуется вода,разрушительно действующая на медь. После водородного отжига прочность меди может уменьшиться в несколько раз.

Недостатком меди является её подверженность атмосферной коррозии с образованием оксидных и сульфидных плёнок, которые являются полупроводниками и в контакте с медью образуют выпрямительныеэлементы. Вследствие односторонней проводимости окисленная медь непригодна для слаботочных контактов. Скорость окисления быстро возрастает при нагревании, однако прочность сцепления оксидной плёнки с металлом невелика. При высокой температуре в электрической дуге оксид меди разлагается, обнажая металлическую поверхность. Механическое отслаивание и термическое разложение оксидной плёнки вызывает повышенный износ медных контактов при сильных токах.

Применение меди.

Медь применяют в силовой электротехнике для изготовления проводов, кабелей, шин распределительных устройств, обмоток трансформаторов, электрических машин, токоведущих деталей приборов и аппаратов, анодов гальванических ванн; медные проволоки и ленты используют в качестве экранов кабелей. Твёрдую медь употребляют в тех случаях, когда нужна особенно высокая механическая прочность, твёрдость и сопротивляемость истиранию, например, для изготовления контактных проводов, коллекторных пластин. Если же требуется хорошая гибкость и пластичность, а прочность не имеет особого значения, то предпочтительнее мягкая медь (например, для гибких шнуров и монтажных проводов).

Из специальных электровакуумных сортов меди изготавливают детали магнетронов и других приборов СВЧ, аноды мощных генераторных ламп, некоторые типы волноводов и резонаторов. Кроме того, медь используют для покрытия тонкой плёнкой (фольгирования) гетинакса и текстолита, а также применяют в микроэлектронике в виде осаждённых на подложки плёнок, играющих роль проводящих соединений между функциональными элементами схемы.

Сплавы меди.

Кроме чистой меди в качестве проводниковых материалов применяют сплавы меди с цинком (
латуни), а также бронзы – сплавы меди с другими металлами – оловом, фосфором, бериллием, кадмием и т. д., здесь может присутствовать и цинк. Электропроводность медных сплавов несколько ниже, а механическая прочность и химическая стойкость значительно выше, чем у чистой меди.
В наименовании бронзы присутствует название того металла, добавка которого в основном определяет её свойства. Фосфористую бронзу применяют как припой для пайки меди; бериллиевую бронзу особой прочности (до 1350 МПа) применяют для изготовления пружин и пружинящих контактов. Из кадмиевойбронзы, электропроводность некоторых марок которой достигает до 95 % от электропроводности меди, изготавливают коллекторные пластины электродвигателей и генераторов, контактные провода электротранспорта и детали других скользящих контактов.

Латуни содержат до 43 % цинка по массе и маркируются по количеству содержащейся в них меди; Л68 и т. п. Латуни прочнее, чем медь, и устойчивее к коррозии, поэтому широко применяются для изготовления штырей и гнёзд разъёмных контактов, а также в качестве твёрдого припоя для пайки меди – ПМЦ (припой медно-цинковый).

Алюминий

Алюминий является вторым по значению проводниковым материалом электротехники, важнейшим из лёгких металлов (его плотность 2,7·103 кг/

м3). Удельное сопротивление электротехни-ческого алюминия 28 нОм·м, что в 1,63 раза больше, чем у меди. Однако, если сделать из 1 кг алюминия и из 1 кг меди провода одинаковой длины, площадь сечения алюминиевого провода будет в 3,3 раза больше, а сопротивление в 2 раза меньше, чем у медного. Это позволяет считать, что электропроводность у килограмма алюминия в 2 раза выше, чем у меди. Стоит алюминий гораздо дешевле меди, это делает его самым выгодным проводниковым материалом и стимулирует замену меди алюминием, несмотря на его недостатки – малую прочность (предел прочности мягкого алюминия достигает 80, а твёрдого – до 160 МПа), а также ломкость и химическую активность.

Алюминий – металл серебристо-белого цвета, его поверхность покрыта прочной плёнкой оксидаAl2О3, которая является полупроводником n

-типа, а по удельному сопротивлению близка к диэлектрикам. Эта плёнка предохраняет алюминий от коррозии, но создаёт большое переходное сопротивление в местах контакта алюминиевых проводов, а также делает невозможной пайку алюминия обычными методами. Для разрушения оксидной плёнки при пайке алюминия применяют специальные припои и флюсы, а также вибрацию жала паяльника с частотой ультразвука под слоем расплавленного припоя.

Оксидная изоляция прочна механически и нагревостойка. Температура плавления алюминия равна 657 °С, а оксидной плёнки – около 2050 °С. Слой оксида толщиной 0,03 мм имеет пробивное напряжение около 100 В. Плотные оксидные слои на поверхности алюминиевой фольги или провода получают с помощью электрохимической обработки (анодирования). Такая изоляция широко применяется в оксидных (электролитических) конденсаторах. Из анодированных алюминиевых проводов и шин, без применения дополнительной межвитковой изоляции, изготавливают различные обмотки, отличающиеся высокой нагревостойкостью.

Важнейшее значение имеет контакт алюминия и меди. Если область контакта подвергается воздействию влаги, то возникает местная гальваническая пара с довольно высоким значением ЭДС, вследствие чего алюминиевый проводник разрушается, превращаясь в белый порошок оксида. Поэтому места соединения медных проводников с алюминиевыми должны быть тщательно защищены от увлажнения (их покрывают изолентой и пропитывают лаком, и т. п.).

Алюминий широко распространён в природе. Его получают электролизом глинозёма Al2О3 в расплаве криолита Na3AlF6 при 950 °С. Прокатку, протяжку и отжиг алюминия производят по технологиям, аналогичным соответствующим операциям для меди. Из алюминия высокой чистоты можно прокатать очень тонкую (6–7 мкм) фольгу.

Марки алюминия.

Для электротехнических целей используют алюминий технической чистоты АЕ, содержащий не более 0,5 % примесей. Проволока из алюминия АЕ, отожжённая при температуре 350 ± 20 °С, обладает при 20 °С удельным сопротивлением не более 0,029 мкОм·м при прочности 90 МПа. Алюминий высокой чистоты А97 (не более 0,03 % примесей) применяют для изготовления алюминиевой фольги, используемой в качестве обкладок и для изготовления корпусов электролитических конденсаторов. У алюминия особой чистоты А999 примеси не превышают 0,001 %, его используют для плакирования (покрытия тонким слоем) проводов из алюминия марки АЕ с целью придать им особую стойкость к коррозии.

С целью упрочнения в алюминий добавляют до 0,5 % магния, до 0,7 % кремния и до 0,3 % железа, при этом получают сплав под названием альдрей. За счёт образования мелкодисперсного соединения Mg2Si прочность альдрея достигает 350 МПа при ρ = 31,7 нОм·м.

У металлов высокой электропроводности удельное электрическое сопротивление в нормальных условиях не превышает 100 нОм·м. Наиболее распространёнными среди них являются медь, алюминий и железо. Высокой электропроводностью обладают также многие тугоплавкие металлы, большинство драгоценных и ряд других металлов, а также некоторые сплавы, в частности сплавы меди – бронзы и латуни. Температура плавления t

,°С, плотность Мг/м3 и удельное электрическое сопротивление ρ, нОм·м) основных металлов электротехники приведены в таблице 2.1.

Таблица 2.1


Температура плавления, плотность и удельное электрическое сопротивление основных металлов электротехники

Металлt
, °С
Плотность, Мг/м3ρ, нОм·мМеталлt
, °С
Плотность, Мг/м3ρ, нОм·м
Алюминий6572,7028Никель14558,9073
Вольфрам338019,3055Олово2327,29120
Железо15397,8798Палладий155412,02110
Золото106319,3024Платина176921,43105
Индий1577,3190Ртуть– 38,913,55958
Иридий244722,6554Свинец32711,40210
Кадмий3218,6576Серебро96210,4916
Медь10838,9417Хром18907,19210
Молибден262310,2057Цинк4207,1359

Медь

Медь

является первым и основным проводниковым материалом. Удельное электрическое сопротивление стандартной меди при комнатной температуре 17,241 нОм·м, что соответствует удельной электропроводности 58 МСм/м. Электропроводность других металлов и сплавов часто оценивают в процентах от электропроводности стандартной меди. Только серебро имеет электропроводность выше, чем медь, однако, оно тяжелее, а главное гораздо дороже. Плотность меди 8,94 · 103 кг
/
м3, она достаточно прочна; предел прочности мягкой (отожжённой) меди от 260 до 280, а твёрдой – от 360 до 390 МПа.

Медь плавится при температуре 1083 °С, а кипит при 2567 °С.

Химическая стойкость меди достаточно высока. Даже в условиях высокой влажности медь окисляется на воздухе значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах.

Медь удобно обрабатывать, она легко прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до нескольких микрон (мкм). Медь удобно паять, слабая оксидная плёнка на поверхности меди легко разрушается флюсами, для пайки можно использовать как мягкие, так и твёрдые припои.

Получение меди.

Медь получают путём переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьём медь, предназначенная для электротехнических целей, обязательно проходит электролитическую очистку. Побочный продукт электролиза – шлам – представляет собой ценное сырье, т. к. содержит драгоценные и редкие металлы. Полученные в процессе электролиза катодные пластины переплавляют в болванки, из которых прокатывают листы или протягивают проволоку.

При холодной протяжке получают твёрдую (твёрдотянутую) медь, которая маркируется МТ. Благодаря влиянию наклёпа твёрдая медь имеет высокий предел прочности при растяжении и малое относительное удлинение при разрыве, а также твёрдость и упругость при изгибе; проволока из твёрдой меди несколько пружинит. Если же медь подвергнуть отжигу, т. е. нагреву до нескольких сот градусов с последующим охлаждением, то получится мягкая (отожжённая) медь, которая маркируется ММ. Мягкая медь сравнительно пластична, обладает малой твёрдостью и небольшой прочностью, но большим относительным удлинением при разрыве и малым удельным сопротивлением. Отжиг меди производят в специальных печах без доступа воздуха, чтобы избежать окисления.

Марки меди.

В качестве проводникового материала используют медь М1 и М0. Маркировка произведена по содержанию примесей в основном металле (соответственно не более 0,1 % и не более 0,05 %).

Специальныеэлектровакуумныесорта меди не содержат кислорода. Их получают из электролитической меди, переплавленной в вакууме или в защитной атмосфере восстановительного газа СО. Значительное ухудшение механических свойств меди вызывает водород. При взаимодействии водорода с кислородом, присутствующим в технической меди в виде закиси Cu2O,образуется вода,разрушительно действующая на медь. После водородного отжига прочность меди может уменьшиться в несколько раз.

Недостатком меди является её подверженность атмосферной коррозии с образованием оксидных и сульфидных плёнок, которые являются полупроводниками и в контакте с медью образуют выпрямительныеэлементы. Вследствие односторонней проводимости окисленная медь непригодна для слаботочных контактов. Скорость окисления быстро возрастает при нагревании, однако прочность сцепления оксидной плёнки с металлом невелика. При высокой температуре в электрической дуге оксид меди разлагается, обнажая металлическую поверхность. Механическое отслаивание и термическое разложение оксидной плёнки вызывает повышенный износ медных контактов при сильных токах.

Применение меди.

Медь применяют в силовой электротехнике для изготовления проводов, кабелей, шин распределительных устройств, обмоток трансформаторов, электрических машин, токоведущих деталей приборов и аппаратов, анодов гальванических ванн; медные проволоки и ленты используют в качестве экранов кабелей. Твёрдую медь употребляют в тех случаях, когда нужна особенно высокая механическая прочность, твёрдость и сопротивляемость истиранию, например, для изготовления контактных проводов, коллекторных пластин. Если же требуется хорошая гибкость и пластичность, а прочность не имеет особого значения, то предпочтительнее мягкая медь (например, для гибких шнуров и монтажных проводов).

Из специальных электровакуумных сортов меди изготавливают детали магнетронов и других приборов СВЧ, аноды мощных генераторных ламп, некоторые типы волноводов и резонаторов. Кроме того, медь используют для покрытия тонкой плёнкой (фольгирования) гетинакса и текстолита, а также применяют в микроэлектронике в виде осаждённых на подложки плёнок, играющих роль проводящих соединений между функциональными элементами схемы.

Сплавы меди.

Кроме чистой меди в качестве проводниковых материалов применяют сплавы меди с цинком (
латуни), а также бронзы – сплавы меди с другими металлами – оловом, фосфором, бериллием, кадмием и т. д., здесь может присутствовать и цинк. Электропроводность медных сплавов несколько ниже, а механическая прочность и химическая стойкость значительно выше, чем у чистой меди.
В наименовании бронзы присутствует название того металла, добавка которого в основном определяет её свойства. Фосфористую бронзу применяют как припой для пайки меди; бериллиевую бронзу особой прочности (до 1350 МПа) применяют для изготовления пружин и пружинящих контактов. Из кадмиевойбронзы, электропроводность некоторых марок которой достигает до 95 % от электропроводности меди, изготавливают коллекторные пластины электродвигателей и генераторов, контактные провода электротранспорта и детали других скользящих контактов.

Латуни содержат до 43 % цинка по массе и маркируются по количеству содержащейся в них меди; Л68 и т. п. Латуни прочнее, чем медь, и устойчивее к коррозии, поэтому широко применяются для изготовления штырей и гнёзд разъёмных контактов, а также в качестве твёрдого припоя для пайки меди – ПМЦ (припой медно-цинковый).

Алюминий

Алюминий является вторым по значению проводниковым материалом электротехники, важнейшим из лёгких металлов (его плотность 2,7·103 кг/

м3). Удельное сопротивление электротехни-ческого алюминия 28 нОм·м, что в 1,63 раза больше, чем у меди. Однако, если сделать из 1 кг алюминия и из 1 кг меди провода одинаковой длины, площадь сечения алюминиевого провода будет в 3,3 раза больше, а сопротивление в 2 раза меньше, чем у медного. Это позволяет считать, что электропроводность у килограмма алюминия в 2 раза выше, чем у меди. Стоит алюминий гораздо дешевле меди, это делает его самым выгодным проводниковым материалом и стимулирует замену меди алюминием, несмотря на его недостатки – малую прочность (предел прочности мягкого алюминия достигает 80, а твёрдого – до 160 МПа), а также ломкость и химическую активность.

Алюминий – металл серебристо-белого цвета, его поверхность покрыта прочной плёнкой оксидаAl2О3, которая является полупроводником n

-типа, а по удельному сопротивлению близка к диэлектрикам. Эта плёнка предохраняет алюминий от коррозии, но создаёт большое переходное сопротивление в местах контакта алюминиевых проводов, а также делает невозможной пайку алюминия обычными методами. Для разрушения оксидной плёнки при пайке алюминия применяют специальные припои и флюсы, а также вибрацию жала паяльника с частотой ультразвука под слоем расплавленного припоя.

Оксидная изоляция прочна механически и нагревостойка. Температура плавления алюминия равна 657 °С, а оксидной плёнки – около 2050 °С. Слой оксида толщиной 0,03 мм имеет пробивное напряжение около 100 В. Плотные оксидные слои на поверхности алюминиевой фольги или провода получают с помощью электрохимической обработки (анодирования). Такая изоляция широко применяется в оксидных (электролитических) конденсаторах. Из анодированных алюминиевых проводов и шин, без применения дополнительной межвитковой изоляции, изготавливают различные обмотки, отличающиеся высокой нагревостойкостью.

Важнейшее значение имеет контакт алюминия и меди. Если область контакта подвергается воздействию влаги, то возникает местная гальваническая пара с довольно высоким значением ЭДС, вследствие чего алюминиевый проводник разрушается, превращаясь в белый порошок оксида. Поэтому места соединения медных проводников с алюминиевыми должны быть тщательно защищены от увлажнения (их покрывают изолентой и пропитывают лаком, и т. п.).

Алюминий широко распространён в природе. Его получают электролизом глинозёма Al2О3 в расплаве криолита Na3AlF6 при 950 °С. Прокатку, протяжку и отжиг алюминия производят по технологиям, аналогичным соответствующим операциям для меди. Из алюминия высокой чистоты можно прокатать очень тонкую (6–7 мкм) фольгу.

Марки алюминия.

Для электротехнических целей используют алюминий технической чистоты АЕ, содержащий не более 0,5 % примесей. Проволока из алюминия АЕ, отожжённая при температуре 350 ± 20 °С, обладает при 20 °С удельным сопротивлением не более 0,029 мкОм·м при прочности 90 МПа. Алюминий высокой чистоты А97 (не более 0,03 % примесей) применяют для изготовления алюминиевой фольги, используемой в качестве обкладок и для изготовления корпусов электролитических конденсаторов. У алюминия особой чистоты А999 примеси не превышают 0,001 %, его используют для плакирования (покрытия тонким слоем) проводов из алюминия марки АЕ с целью придать им особую стойкость к коррозии.

С целью упрочнения в алюминий добавляют до 0,5 % магния, до 0,7 % кремния и до 0,3 % железа, при этом получают сплав под названием альдрей. За счёт образования мелкодисперсного соединения Mg2Si прочность альдрея достигает 350 МПа при ρ = 31,7 нОм·м.

Почему металлы так хорошо проводят тепло и электричество?

Структура металлов

Структуры чистых металлов описать просто, поскольку атомы, образующие эти металлы, можно рассматривать как идентичные совершенные сферы. Более конкретно, металлическая структура состоит из «выровненных положительных ионов» (катионов) в «море» делокализованных электронов. Это означает, что электроны могут свободно перемещаться по структуре и обуславливают такие свойства, как проводимость.

Какие бывают виды облигаций?

Ковалентные облигации

Ковалентная связь — это связь, которая образуется, когда два атома разделяют электроны. Примерами соединений с ковалентными связями являются вода, сахар и диоксид углерода.

Ионные связи

Ионная связь — это полный перенос валентных электронов между металлом и неметаллом. В результате возникают два противоположно заряженных иона, которые притягиваются друг к другу.В ионных связях металл теряет электроны, чтобы стать положительно заряженным катионом, тогда как неметалл принимает эти электроны, чтобы стать отрицательно заряженным анионом. Примером ионной связи может быть соль (NaCl).

Металлические облигации

Металлическая связь — это результат электростатической силы притяжения, которая возникает между электронами проводимости (в форме электронного облака делокализованных электронов) и положительно заряженными ионами металлов.Это можно описать как распределение свободных электронов между решеткой положительно заряженных ионов (катионов). Металлическое соединение определяет многие физические свойства металлов, такие как прочность, пластичность, термическое и электрическое сопротивление и проводимость, непрозрачность и блеск.

Делокализованные движущиеся электроны в металлах —

Это свободное движение электронов в металлах, которое придает им проводимость.

Электропроводность

Металлы содержат свободно движущиеся делокализованные электроны.Когда прикладывается электрическое напряжение, электрическое поле внутри металла вызывает движение электронов, заставляя их перемещаться от одного конца проводника к другому. Электроны будут двигаться в положительную сторону.

Электроны текут к положительному выводу

Теплопроводность

Металл хорошо проводит тепло.Проводимость возникает, когда вещество нагревается, частицы получают больше энергии и больше вибрируют. Затем эти молекулы сталкиваются с соседними частицами и передают им часть своей энергии. Затем это продолжается и передает энергию от горячего конца к более холодному концу вещества.

Почему металлы так хорошо проводят тепло?

Электроны в металле — это делокализованные электроны и свободно движущиеся электроны, поэтому, когда они набирают энергию (тепло), они вибрируют быстрее и могут перемещаться, это означает, что они могут быстрее передавать энергию.

Какие металлы проводят лучше всего?

Вверху: Электронные оболочки Золото (au), Серебро (Ag), Медь (Cu) и Цинк (Zn). По логике можно было бы подумать, что Золото — лучший проводник, имеющий единственный s-орбитальный электрон в последней оболочке (диаграмма выше)… так почему серебро и медь на самом деле лучше (см. таблицу ниже).

Электропроводность металлов > С / м
Серебро6,30 × 10 7
Медь5,96 × 10 7
Золото4.10 × 10 7
Алюминий3,50 × 10 7
цинк1,69 × 10 7

Серебро имеет больший атомный радиус (160 мкм), чем золото (135 мкм), несмотря на то, что в золоте больше электронов, чем в серебре! Причину этого см. В комментарии ниже.

Примечание: Серебро является лучшим проводником, чем золото, но золото более желательно, потому что оно не подвержено коррозии.(Медь является наиболее распространенной, потому что она наиболее экономична) Ответ немного сложен, и мы размещаем здесь один из лучших ответов, которые мы видели для тех, кто знаком с материалом.
«Серебро находится в середине переходных металлов примерно на 1/2 пути между благородными газами и щелочными металлами. В столбце 11 периодической таблицы все эти элементы (медь, серебро и золото) имеют единичный s -орбитальный электрон электрон внешней оболочки (платина также, в столбце 10).

Орбитальная структура электронов этих элементов не имеет особого сродства приобретать или терять электрон по отношению к более тяжелым или легким благородным газам, потому что они находятся на полпути между ними. В общем, это означает, что не требуется много энергии, чтобы временно сбить электрон или добавить его. Удельное сродство к электрону и потенциалы ионизации варьируются, и в отношении проводимости наличие относительно низких энергий для этих двух критериев в некоторой степени важно.

Если бы это были единственные критерии, золото было бы лучшим проводником, чем серебро, но у золота есть дополнительные 14 f-орбитальных электронов под 10 d-орбитальными электронами и единственным s-орбитальным электроном. 14 f-электронов связаны с дополнительными атомами в ряду актинидов. С 14 дополнительными электронами, которые, по-видимому, выталкивают d- и s-электроны, можно подумать, что s-электрон просто «созрел» для проводимости (почти не требовалось энергии, чтобы оттолкнуть его), но НЕТ. Электроны на f-орбите упакованы таким образом, что это приводит к тому, что атомный радиус золота на самом деле МЕНЬШЕ, чем атомный радиус серебра — не намного, но он меньше. Меньший радиус означает большую силу со стороны ядра на внешние электроны, поэтому серебро побеждает в «соревновании» проводимости. Помните, сила электрического заряда обратно пропорциональна квадрату расстояния. Чем ближе 2 заряда вместе, тем выше сила между ними.

И медь, и платина имеют еще меньший диаметр; следовательно, большее притяжение от ядра, следовательно, больше энергии, чтобы сбить этот одинокий s-электрон, следовательно, меньшая проводимость.

Другие элементы с единственным s-орбитальным электроном, находящимся там, «созревшим для того, чтобы появился сборщик проводимости», также имеют меньшие атомные радиусы (молибден, ниобий, хром, рутений, родий), чем серебро.

Итак, именно то место, где оно находится — то место, где «мать-природа» поместила серебро в периодической таблице, что определяет его превосходную проводимость ».

Источник из фунтов101 Yahoo

ВЫБОР ИСТОЧНИКОВ И ЧИТАТЕЛЕЙ —

Структура и физические свойства металлов

Почему одни металлы проводят тепло лучше, чем другие?

Как передается тепло?

Теплопроводность металлов

.

Основы электропроводности | mho siemens

Электропроводность и ее формулы часто используются в электротехнике и электронике в единицах сименса или mhos.

Учебное пособие по сопротивлению Включает:

Что такое сопротивление Закон Ома Удельное сопротивление Таблица удельного сопротивления для обычных материалов Температурный коэффициент сопротивления Электрическая проводимость Последовательные и параллельные резисторы Таблица параллельных резисторов Калькулятор параллельных резисторов

В отличие от сопротивления, которое измеряет сопротивление потоку электрического тока, электрическая проводимость или электропроводность является мерой того, как электрический ток движется внутри вещества.

Чем выше электропроводность материала, тем выше плотность тока для данной приложенной разности потенциалов.

Таким образом, можно увидеть, что электропроводность или электропроводность вещества является мерой его способности проводить электричество.

Электропроводность или электропроводность материала важна, потому что некоторые вещества должны проводить электричество как можно лучше. Проводники должны обеспечивать прохождение тока как можно проще.Другие материалы могут потребоваться для ограничения прохождения тока, как в случае резистора, а другие материалы не должны проводить электричество, как в случае изоляторов.

Основы электропроводности

Электропроводность — это отношение плотности тока к напряженности электрического поля. Чем выше значение проводимости, тем меньшее сопротивление оно оказывает прохождению электрического тока.

Значение электропроводности зависит от способности электронов или других носителей заряда, таких как дырки, перемещаться внутри решетки материала.

Материалы с высокой проводимостью, такие как медь, позволяют электронам свободно перемещаться внутри своей молекулярной решетки. Внутри решетки есть свободные электроны.

Материалы с низким уровнем проводимости или проводимости содержат очень мало свободных электронов в своей структуре. Электроны плотно удерживаются внутри молекулярной структуры и требуют значительного уровня энергии, чтобы вытащить их.

Единицы измерения электропроводности: siemens и mho

Единицы измерения электропроводности — сименс на метр, S⋅m -1 .

Сименс также раньше назывался mho — это величина, обратная ому, и это выводится путем обратного написания ома.

Электропроводность — величина, обратная сопротивлению, и один сименс равен одному сопротивлению, обратному величине.

Название siemens для единицы проводимости было принято 14-й Генеральной конференцией по мерам и весам в качестве производной единицы СИ в 1971 году. Она была названа в честь Эрнста Вернера фон Сименса.

Как и в случае любого названия Международной системы единиц СИ, которое образовано от имени собственного человека, первая буква его символа — заглавная, т.е.е. в этом случае буква «S» обозначает значение в сименсах, 10S. Когда полное название единицы СИ пишется на английском языке, оно всегда должно начинаться со строчной буквы, то есть в данном случае siemens. Исключение составляют случаи, когда любое слово пишется с заглавной буквы, как в случае начала предложения и т. Д.

Чаще всего используется символ в нижнем регистре греческой буквы сигма, σ, хотя иногда также используются каппа, & каппа, гамма и гамма.

Хотя единицы измерения проводимости в системе СИ используются наиболее широко, значения проводимости часто выражаются в виде процентного значения IACS.IACS, Международный стандарт на отожженную медь, был установлен Международной электрохимической комиссией 1913 года.

Электропроводность отожженной меди (5,8001 x 107S / м) определена как 100% IACS при 20 ° C.

Все остальные значения проводимости связаны с этим значением проводимости. Это означает, что железо со значением проводимости 1,04 x 107 См / м имеет проводимость примерно 18% от проводимости отожженной меди, что составляет 18% IACS.

Поскольку методы обработки металлов улучшились с момента введения стандарта, некоторые современные изделия из меди теперь часто имеют значения проводимости IACS выше 100% IACS, поскольку теперь из металла можно удалить больше примесей.

Формулы электропроводности

Удельное сопротивление и проводимость взаимосвязаны. Электропроводность обратно пропорциональна удельному сопротивлению. Соответственно, одно легко выразить через другое.

Где: σ — удельное сопротивление материала в сименсах на метр, См -1 ρ — удельное сопротивление материала в Ом-метрах, Ом · м

Затем это можно подставить в формулу для удельного сопротивления, чтобы получить следующую зависимость.

Где: σ — проводимость материала в сименсах на метр, S⋅m -1 E — величина электрического поля в вольтах на метр, V⋅m -1 J — величина плотность тока в амперах на квадратный метр, А⋅м -2

Часто необходимо связать проводимость с определенной длиной материала с постоянной площадью поперечного сечения.

Используя эту диаграмму, можно связать проводимость с сопротивлением, длиной и площадью поперечного сечения образца в приведенной ниже формуле проводимости.

Где: R — электрическое сопротивление однородного образца материала, измеренное в омах, l — длина куска материала, измеренная в метрах, м A — площадь поперечного сечения образца, измеренная в квадратных метрах, м 2

Используя эти формулы электропроводности, можно рассчитать электропроводность, зная сопротивление, длину и площадь поперечного сечения блока материала.

Дополнительные основные понятия:

Напряжение ток Сопротивление Емкость Мощность Трансформеры RF шум Децибел, дБ Q, добротность
Вернуться в меню «Основные понятия».. .
.

Единица измерения

Единицей удельной электропроводности σ в СИ является: [ σ ] = 1 См/м ( Сименс на метр ).

Эти единицы определяются по формуле G = σ * S / l . Если решить эту формулу в соответствии с σ, то получим σ = G * l / S .

Единица измерения электрической проводимости G задается как: [ G ] = 1 / σ = 1 См ( Сименс, международное обозначение: S ).

Если теперь ввести в формулу все единицы измерения, то получится:

[ σ ] = 1 См * 1 м / м2 = 1 См / м .

Вы также будете чаще использовать единицы измерения См / см , м / Ом * мм2 или См * м / мм2 . Вы можете преобразовать отдельные измеряемые переменные так: См / см = См / 10-2 м и так: м / Ом * мм2 = См * м / мм2 = См * м / 10-3 м * 10-3 м = 106 См / м .

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]