42 | Молибден |
Mo 95,95 | |
4d55s1 |
Молибден
— элемент шестой группы (по старой классификации — побочной подгруппы шестой группы) пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 42. Обозначается символом
Mo
(лат. Molybdaenum). Простое вещество
молибден
— переходный металл светло-серого цвета. Главное применение находит в металлургии.
Содержание
- 1 История и происхождение названия
- 2 Нахождение в природе 2.1 Месторождения
- 2.2 В космосе
- 3.1 Генетические группы и промышленные типы месторождений
- 5.1 Изотопы
- 8.1 Круговорот азота
История и происхождение названия
Открыт в 1778 году шведским химиком Карлом Шееле, который, прокаливая молибденовую кислоту, получил MoO3. В металлическом состоянии впервые получен П. Гьельмом в 1781 году восстановлением оксида углём: он получил молибден, загрязнённый углеродом и карбидом молибдена. Чистый молибден в 1817 году получил Й. Берцелиус восстановлением оксида водородом.
Название происходит от др.-греч. μόλυβδος, означающего «свинец». Оно дано из-за внешнего сходства молибденита (MoS2), минерала, из которого впервые удалось выделить оксид молибдена, со свинцовым блеском (PbS). Вплоть до XVIII века молибденит не отличали от графита из-за свинцового блеска, эти минералы носили общее название «молибден».
Нахождение в природе
Содержание в земной коре — 3⋅10−4 % по массе. В свободном виде молибден не встречается. В земной коре молибден распространён относительно равномерно. Меньше всего содержат молибдена ультраосновные и карбонатные породы (0,4—0,5 г/т). Концентрация молибдена в породах повышается по мере увеличения SiO2. Молибден находится также в морской и речной воде, в золе растений, в углях и нефти. Содержание молибдена в морской воде колеблется от 8,9 до 12,2 мкг/л для разных океанов и акваторий. Общим является то, что воды вблизи берега и верхние слои меньше обогащены молибденом, чем воды на глубине и вдали от берега. Наиболее высокие концентрации молибдена в породах связаны с акцессорными минералами (магнетит, ильменит, сфен), однако основная масса его заключена в полевых шпатах и меньше в кварце. Молибден в породах находится в следующих формах: молибдатной и сульфидной в виде микроскопических и субмикроскопических выделений, изоморфной и рассеянной (в породообразующих минералах). Молибден обладает большим сродством с серой, чем с кислородом, и в рудных телах образуется сульфид четырёхвалентного молибдена — молибденит. Для кристаллизации молибденита наиболее благоприятны восстановительная среда и повышенная кислотность. В поверхностных условиях образуются преимущественно кислородные соединения MO6+. В первичных рудах молибденит встречается в ассоциации с вольфрамитом и висмутином, с минералами меди (медно-порфировые руды), а также с галенитом, сфалеритом и урановой смолкой (в низкотемпературных гидротермальных месторождениях). Хотя молибденит считается устойчивым сульфидом по отношению к кислым и щелочным растворителям, в природных условиях при длительном воздействии воды и кислорода воздуха молибденит окисляется, и молибден может интенсивно мигрировать с образованием вторичных минералов. Этим можно объяснить повышенные концентрации молибдена в осадочных отложениях — углистых и кремнисто-углистых сланцах и углях.
Известно около 20 минералов молибдена. Важнейшие из них: молибденит MoS2 (60 % Mo), повеллит CaMoO4 (48 % Mo), молибдит Fe(MoO4)3·nH2O (60 % Mo) и вульфенит PbMoO4.
Месторождения
Крупные месторождения молибдена известны в США, Мексике, Чили, Канаде, Австралии, Норвегии, России. В России молибден выпускают на Сорском ферромолибденовом заводе. Более 7 % от мировых запасов молибдена расположены в Армении, причем 90 % из них сосредоточены в Каджаранском медно-молибденовом месторождении.
В космосе
Аномально высокое содержание молибдена наблюдается в звёздных образованиях, состоящих из красного гиганта (или сверхгиганта), внутри которого находится нейтронная звезда — объектах Ландау — Торна — Житковой.
История открытия.
Также по теме:
ХИМИЯ
Молибденит (дисульфид молибдена, MoS2) был известен древним грекам и римлянам с незапамятных времен. Этот свинцово-серый с металлическим блеском минерал (другое название – молибденовый блеск) сходен с галенитом (свинцовым блеском, PbS) и графитом. Мягкость минерала позволяла использовать его (вместе с графитом) как грифель для карандашей, поэтому долгое время молибденит путали с галенитом и графитом, хотя, в отличие от последнего, он оставлял на бумаге зеленовато-серый цвет. Сходство древнегреческих названий свинца – mólubdV, и галенита – molubdaina было причиной того, что в средневековой Европе три минерала (PbS, MoS2 и графит) имели одно название – Molybdaena. История открытия элемента № 42 связана со Швецией. В 1758 шведский минералог и химик Аксель Фредерик Кронштедт (Axel Fredrik Cronstedt) (1722–1765) высказал предположение, что графит, галенит и молибденовый блеск три самостоятельных вещества. Двадцать лет спустя, в 1778, химическим составом молибденита заинтересовался шведский химик Карл Вильгельм Шееле. Прокипятив его с концентрированной азотной кислотой, он получил белый осадок «особой белой земли» (Wasserbleyerde), которую назвал молибденовой кислотой (Acidum Molybdaenae). Хотя во времена Шееле и не знали, что «земли» представляют собой оксиды металлов, уникальная химическая интуиция подсказывала ему, что металл можно получить прокаливанием молибденовой кислоты с углем. Экспериментальные трудности (у него не было подходящей печи) не позволили Шееле самостоятельно решить эту задачу и лишь в 1782 шведскому химику Петеру Якобу Гьельму (Peter Jacob Hjelm), которому Шееле прислал образец молибденовой кислоты, удалось восстановить ее углем и получить королек металла (сильно загрязненного карбидами). После удачно проведенного опыта Шееле писал Гьельму: «Радуюсь, что мы теперь обладаем металлом – молибденом!»
Относительно чистый металл удалось получить много лет спустя Йенсу-Якобу Берцелиусу в 1817. Совершенно чистый молибден, способный к ковке, получили лишь в начале 20 в.
Также по теме:
ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ
Молибден в природе. Типы месторождений. Молибден относится к редким элементам, его кларк в земной коре равен 1,1·10–4% по массе. Кроме того, оценено общее содержание его во Вселенной (5·10–7% по массе или 10–8% от общего количества атомов), на Солнце (9·10–7%(масс.) или 10–8%(ат.)), углеродистых метеоритах (1,2·10–4(масс.) или 2,5·10–5%(ат.)), морской воде (10–6%(масс.) или 6,4·10–8%(ат.)), речной воде (8·10–8%(масс.) или 8·10–10%(ат.)). В природе этот металл встречается только в виде соединений, известно около двух десятков его минералов, среди которых наиболее важны молибденит (MoS2), повелит (CaMoO4), молибдо-шеелит (Ca(Mo,W)O4), молибдит (xFe2O3·yMoO3·zH2O) и вульфенит (PbMoO4). Промышленное значение имеет только молибденит.
Молибденовые руды принято делить по минеральному составу и форме рудных тел на жильные (кварцевые, кварц-серицитовые и кварц-молибденит-вольфрамитовые), прожилково-вкрапленные (кварц-молибденит-серицитовые, медно-молибденовые, медные порфировые с молибденом), скарновые (молибденовые, воьфрамо-молибденовые и медно-молибденовые). Серицит – природный алюмосиликат. Скарны – это породы, образовавшиеся на контакте известняков и кислых магматических пород типа гранитов, богатых кварцем. Медно-порфировые месторождения представлены породами, в которых кварцевые жилы с молибденитом образуют прожилки в измененной породе. Раньше наибольшее промышленное значение имели кварцевые жильные месторождения, сейчас жильные месторождения, в основном, выработаны и ценны прожилково-вкрапленные и скарновые месторождения. Более 60% запасов молибдена и около 70 % его добычи приходится на медно-молибден-порфировые месторождения. Из них молибден добывается попутно с медью.
Также по теме:
АЛЮМОСИЛИКАТЫ
Еще в 2001 США считались мировым лидером по запасам молибдена, но недавно ситуация изменилась с открытием новых молибденовых месторождений в Китае. Распределение (на 2004) разведанных ресурсов молибденовых руд (в пересчете на свободный металл) по странам мира представлено в Таблице 1:
Таблица 1. Мировое распределение разведанных ресурсов молибдена
Таблица 1. МИРОВОЕ РАСПРЕДЕЛЕНИЕ РАЗВЕДАННЫХ РЕСУРСОВ МОЛИБДЕНА | ||
Страна | Запасы разрабатываемых месторождений, тысячи тонн | Общие разведанные запасы, тысячи тонн |
Китай | 3300 | 8300 |
США | 2700 | 5400 |
Чили | 1100 | 2500 |
Канада | 450 | 910 |
Армения | 200 | 400 |
Россия | 240 | 360 |
Мексика | 90 | 230 |
Перу | 140 | 230 |
Казахстан | 130 | 200 |
Киргизия | 100 | 180 |
Узбекистан | 60 | 150 |
Иран | 50 | 140 |
Монголия | 30 | 50 |
Всего в мире | 8600 | 19 000 |
Cамое большое в мире месторождение молибдена – Клаймакс (англ. Сlimax – наивысшая точка, так как это самое высокое место в США) было открыто в 1924 в штате Колорадо и законсервировано с 1995 в связи с опасностью перепроизводства молибденовой продукции. Крупнейший рудник не будет разрабатываться до тех пор, пока запасы месторождения Empire в том же комплексе, в 100 км к востоку от Клаймакса, не будут истощены.
Добыча молибденсодержащих руд в США ведется в Колорадо (рудник Henderson), Нью-Мексико (месторождение Questa), Айдахо (месторождение Thompson Creek). Попутное извлечение молибдена с медью идет в Аризоне (месторождения Bagdad и Sierrita) и Юте (Bingham Canyon). Точной информации о потенциальных ресурсах молибдена в Китае до сих пор нет, известно лишь, что основная добыча ведется в семи провинциях: Ляонин (горнорудный центр Хулудао), Шаньси (крупнейший молибден-порфировый рудник Циндуичэн), Хэбэй, Хэнань (месторождение Луанчуань), Цзянси (медно-порфировое месторождение Дэсин), Гирин, Шандун. Основная часть месторождений в Канаде расположена на территории Британской Колумбии (рудники Эндако и Китсолт). Ресурсы молибдена в Ценральной и Южной Америке представлены, в основном, медно-молибден-порфировыми месторождениями, крупнейшими из которых (Chuquicamata, El Teniente, Los-Pelambres, Andina) владеет чилийская государственная корпорация Codelco (Corp. Nacional del Cobre de Chile). Кроме того, Мексика (месторождение La Caridad) и Перу (рудник Tokepala) располагают весомыми запасами молибдена. В России разведано десять месторождений молибдена, семь из которых промышленно осваиваются.
Медно-молибден-порфировые месторождения есть в Сибири: крупнейшее в стране Сорское месторождение в Хакассии, уникальное по своим минералого-физическим и технологическим свойствам Жирекенское и Бугдаинское месторождения в Восточном Забайкалье, Орекитканское – в Бурятии. Разведаны также месторождения Агаскырское (Хакассия) и Лабаш в Беломорском районе Карелии. С 1940 разрабатывается скарновое Тырныаузское вольфрамо-молибденовое месторождение на Северном Кавказе, в Кабардино-Балкарии. В Читинской области есть и жильно-молибденовое месторождение – Шахтаминское, временно законсервированное вследствие истощения основных ресурсов. Руда с крупнейших Сорского и Жирекенского месторождений перерабатывается Сорским и Жирекенским горно-обогатительными комбинатами, оба они являются собственностью ОАО «Группа Сибирский алюминий».
Таблица 2. Добыча молибденовой руды в разных странах
Таблица 2. ДОБЫЧА МОЛИБДЕНОВОЙ РУДЫ В РАЗНЫХ СТРАНАХ (В ПЕРЕСЧЕТЕ НА МЕТАЛЛ). | ||
Страна | Масса добытой руды в 2002, тонн | Масса добытой руды в 2003, тонн |
Китай | 29300 | 30000 |
США | 32600 | 34100 |
Чили | 29500 | 31400 |
Канада | 7500 | 7500 |
Армения | 3500 | 4000 |
Россия | 2900 | 2900 |
Мексика | 3400 | 3500 |
Перу | 9500 | 9500 |
Казахстан | 230 | 225 |
Киргизия | 250 | 250 |
Узбекистан | 500 | 500 |
Иран | 1700 | 1700 |
Монголия | 1590 | 1500 |
Всего в мире | 123000 | 127000 |
Добыча
Залежи молибдена и его добыча по странам
Страна | Залежи (тыс. т) | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2014 |
США | 2700 | 37,6 | 32,3 | 29,9 | 41,5 | 58,0 | 59,8 | 59,4 | 68,2 |
Китай | 3000 | 28,2 | 30,33 | 32,22 | 29,0 | 40,0 | 43,94 | 46,0 | 103,0 |
Чили | 1905 | 33,5 | 29,5 | 33,4 | 41,48 | 47,75 | 43,28 | 41,1 | 48,8 |
Перу | 850 | 8,35 | 8,32 | 9,63 | 9,6 | 17,32 | 17,21 | 17,25 | 17,0 |
Канада | 95 | 8,56 | 7,95 | 8,89 | 5,7 | 7,91 | 7,27 | 8,0 | 9,7 |
Россия | 360 | 3,93 | 4,29 | 3,57 | 3,11 | 3,84 | 3,94 | 4,16 | 4,8 |
Мексика | 135 | 5,52 | 3,43 | 3,52 | 3,7 | 4,25 | 2,52 | 4,0 | 14,4 |
Армения | 635 | 3,4 | 3,6 | 3,5 | 3,0 | 2,75 | 3,0 | 3,0 | 7,1 |
Иран | 120 | 2,6 | 2,4 | 2,4 | 1,5 | 2,0 | 2,0 | 2,5 | 4,0 |
Монголия | 294 | 1,42 | 1,59 | 1,6 | 1,7 | 1,19 | 1,2 | 1,5 | 2,0 |
Узбекистан | 203 | 0,58 | 0,5 | 0,5 | 0,5 | 0,57 | 0,6 | 0,5 | 0,5 |
Болгария | 10 | 0,4 | 0,4 | 0,2 | 0,2 | 0,2 | 0,4 | 0,4 | ? |
Казахстан | 130 | 0,09 | 0,05 | 0,05 | 0,23 | 0,23 | 0,25 | 0,4 | — |
Киргизия | 100 | 0,25 | 0,25 | 0,25 | 0,25 | 0,25 | 0,25 | 0,25 | ? |
Прочие | 1002 | — | — | — | — | — | — | — | — |
Итого | 11539 | 134,4 | 124,91 | 129,63 | 141,47 | 186,26 | 185,66 | 188,71 |
Генетические группы и промышленные типы месторождений
1. Контактово-метасоматические (скарновые).
2. Гидротермальные.
А. Высокотемпературные (грейзеновые). Б. Среднетемпературные. а. кварц-молибденитовые. б. кварц-сфалерит-галенит-молибденитовые. в. кварц-халькопирит-молибденитовые (меднопорфировые руды). г. настуран-молибденитовые.
Предостережения
Молибденовый дым и пыль могут образовываться при добыче полезных ископаемых или металлургии , они могут быть токсичными, особенно при проглатывании. Низкие уровни длительного воздействия могут вызвать раздражение глаз и кожи. Следует избегать вдыхания или прямого приема внутрь молибдена и его оксидов. [ 60 ] [ ] OSHA определяет максимально допустимое количество воздействия молибдена за 8-часовую смену, равное 5 мг/м³. Хроническое воздействие от 60 до 600 мг/м³ может вызвать такие симптомы, как утомляемость, головные боли и боли в суставах. [ 62 ]
Физические свойства
Молибден — светло-серый металл с кубической объёмноцентрированной решёткой типа α-Fe (a
= 3,14 Å;
z
= 2; пространственная группа
Im3m
), парамагнитен, шкала Мооса определяет его твёрдость 4,5 баллами. Механические свойства, как и у большинства металлов, определяются чистотой металла и предшествующей механической и термической обработкой (чем чище металл, тем он мягче). Обладает крайне низким коэффициентом теплового расширения. Молибден является тугоплавким металлом с температурой плавления 2620 °C и температурой кипения 4639 °C.
Изотопы
Основная статья: Изотопы молибдена
Природный молибден состоит из семи изотопов: 92Mo (15,86 % по массе),94Mo (9,12 %), 95Mo (15,70 %), 96Mo (16,50 %), 97Mo (9,45 %), 98Mo (23,75 %) и 100Mo (9,62 %). Шесть из них стабильны, 100Mo слаборадиоактивен (период полураспада 8,5⋅1018 лет, что в миллиард раз больше возраста Вселенной). Из искусственных изотопов самым стабильным является 93Mo, с периодом полураспада 4 тысячи лет, период полураспада остальных изотопов не превышает 3 суток.
Приложения
- Около двух третей потребляемого молибдена используется в сплавах. Использование молибдена восходит к Первой мировой войне , когда был большой спрос на вольфрам , что сделало его дефицитным, и требовались очень прочные стали. [ 11 ] [ ] [ ] Поэтому молибден используется в высокопрочных сплавах, которые выдерживают чрезвычайно высокие температуры [ 13 ] и коррозию [ 14 ] . Эти сплавы используются в строительстве, а также в деталях самолетов и автомобилей. [ 3 ][ ]
- Молибден используется в качестве катализатора в нефтяной промышленности. В частности, это полезно для удаления серы . Молибден является важным компонентом высокоэффективных катализаторов селективного окисления пропана, [ 16 ] пропилена или акролеина в акриловой кислоте. [ 17 ] [ ] [ ] [ ]
- 99 Mo используется в ядерной промышленности изотопов . [ 21 ]
- Он используется в различных пигментах (с оранжевым цветом), в красках, красителях, пластмассах и резиновых смесях .
- Дисульфид молибдена (MoS 2 ) сам по себе является хорошей смазкой и придает смазкам свойства устойчивости к экстремальному давлению за счет реакции с металлом [ 22 ] , так что на поверхности металла образуется кристаллический слой. В результате долгосрочный разрушительный контакт металла с металлом сведен к минимуму и может использоваться при высоких температурах. [ 23 ] [ ]
- Молибден используется в некоторых электронных приложениях, например, в проводящих металлических слоях транзисторов TFT (тонкопленочных транзисторов) [ ]
Химические свойства
При комнатной температуре на воздухе молибден устойчив. Начинает окисляться при 400 °C. Выше 600 °C быстро окисляется до триоксида MoO3. Этот оксид получают также окислением дисульфида молибдена MoS2 и термолизом молибдата аммония (NH4)6Mo7O24·4H2O.
Mo образует оксид молибдена (IV) MoO2 и ряд оксидов, промежуточных между MoO3 и MoO2.
С галогенами Mo образует ряд соединений в разных степенях окисления. При взаимодействии порошка молибдена или MoO3 с F2 получают гексафторид молибдена MoF6, бесцветную легкокипящую жидкость. Mo (+4 и +5) образует твердые галогениды MoHal4 и MoHal5 (Hal = F, Cl, Br). С йодом известен только дийодид молибдена MoI2. Молибден образует оксигалогениды: MoOF4, MoOCl4, MoO2F2, MoO2Cl2, MoO2Br2, MoOBr3 и другие.
При нагревании молибдена с серой образуется дисульфид молибдена MoS2, с селеном — диселенид молибдена состава MoSe2. Известны карбиды молибдена Mo2C и MoC — кристаллические высокоплавкие вещества и силицид молибдена MoSi2.
Особая группа соединений молибдена — молибденовые сини. При действии восстановителей — сернистого газа, цинковой пыли, алюминия или других на слабокислые (pH=4) суспензии оксида молибдена образуются ярко-синие вещества переменного состава: Mo2O5·H2O, Mo4O11·H2O и Mo8O23·8H2O.
Mo образует молибдаты, соли не выделенных в свободном состоянии слабых молибденовых кислот, xH2O· MoO3 (парамолибдат аммония 3(NH4)2O·7MoO3·zH2O; CaMoO4, Fe2(MoO4)3 — встречаются в природе). Молибдаты металлов I и III групп содержат тетраэдрические группировки [MoO4].
При подкислении водных растворов нормальных молибдатов образуются ионы MoO3OH−, затем ионы полимолибдатов: гепта-, (пара-) Mo7O266−, тетра-(мета-) Mo4O132−, окта- Mo8O264− и другие. Безводные полимолибдаты синтезируют спеканием MoO3 с оксидами металлов.
Существуют двойные молибдаты, в состав которых входят сразу два катиона, например, M+1M+3(MoO4)2, M+15M+3(MoO4)4. Оксидные соединения, содержащие молибден в низших степенях окисления — молибденовые бронзы, например, красная K0,26MoO3 и синяя K0,28MoO3. Эти соединения обладают металлической проводимостью и полупроводниковыми свойствами.
Изотопы
Молибден имеет шесть стабильных изотопов и около двух десятков радиоизотопов , период полураспада большинства которых составляет несколько секунд. 99 Mo используется в генераторах 99 Mo / 99m Tc для ядерной промышленности по производству изотопов . По оценкам, оборот этого рынка продукции на основе 99 Tc составляет около 100 миллионов евро в год. Эти генераторы широко используются для производства радиофармпрепаратов технеция, которые используются в ядерной медицине .
Известно 35 изотопов молибдена с атомной массой от 83 до 117, а также четыре ядерных изомера. В природе встречаются семь изотопов с атомными массами 92, 94, 95, 96, 97, 98 и 100. Из этих встречающихся в природе изотопов только молибден-92 и молибден-100 нестабильны. [ 57 ] Все нестабильные изотопы находятся в изотопах молибдена , ниобия , технеция и рутения . [ 58 ]
Молибден-98 является наиболее распространенным изотопом, на его долю приходится 24,14% всего молибдена. Молибден-100 имеет период полураспада около 10 19 лет и подвергается двойному бета-распаду на рутении-100. Изотопы молибдена с массовыми числами от 111 до 117 имеют период полураспада примерно 150 нс. [ 57 ] [ ] [ ]
Применение
Молибден используется для легирования сталей как компонент жаропрочных и коррозионностойких сплавов. Молибденовая проволока (лента) служит для изготовления высокотемпературных печей, вводов электрического тока в лампах накаливания. Соединения молибдена — сульфид, оксиды, молибдаты — являются катализаторами химических реакций, пигментами красителей, компонентами глазурей. Гексафторид молибдена применяется при нанесении металлического Mo на различные материалы, MoS2 используется как твёрдая высокотемпературная смазка. Mo входит в состав микроудобрений. Радиоактивные изотопы 93Mo (T
1/2 = 6,95 ч) и 99Mo (
T
1/2 = 66 ч) — изотопные индикаторы.
Молибден — один из немногих легирующих элементов, способных одновременно повысить прочностные, вязкие свойства стали и коррозионную стойкость. Обычно при легировании одновременно с увеличением твёрдости растёт и хрупкость металла. Известны случаи использования молибдена при изготовлении в Японии холодного оружия в XI—XIII веках.
Молибден-99 используется для получения технеция-99, который используется в медицине при диагностике онкологических и некоторых других заболеваний. Общее мировое производство молибдена-99 составляет около 12 000 кюри в неделю (из расчёта активности на шестой день), стоимость молибдена-99 — 46 млн долларов за 1 грамм (470 долларов за 1 Ки).
В 2005 году мировые поставки молибдена (в пересчёте на чистый молибден) составили, по данным «Sojitz Alloy Division», 172,2 тыс. тонн (в 2003 году — 144,2 тыс. тонн). Чистый монокристаллический молибден используется для производства зеркал для мощных газодинамических лазеров. Теллурид молибдена является очень хорошим термоэлектрическим материалом для производства термоэлектрогенераторов (термо-ЭДС 780 мкВ/К). Трёхокись молибдена (молибденовый ангидрид) широко применяется в качестве положительного электрода в литиевых источниках тока.
Молибден применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов и теплоизоляции. Дисилицид молибдена применяется в качестве нагревателей в печах с окислительной атмосферой, работающих до 1800 °C.
Из молибдена изготовляются крючки-держатели тела накала ламп накаливания, в том числе ламп накаливания общего назначения.
Молибденовая проволока диаметром 0,05—0,2 мм используется в проволочных электроэрозионных станках для резки металлов с очень высокой точностью (до 0,01 мм), в том числе и заготовок большой толщины (до 500 мм). В отличие от медной и латунной проволоки, которые используются однократно в подобных станках, молибденовая — многоразовая (~300—500 метров хватает на 30—80 часов непрерывной работы), что несколько уменьшает точность обработки, но повышает её скорость и снижает её стоимость.
МОЛИБДЕН
МОЛИБДЕН (от греч. molybdos-свинец; лат. Molybdae-num) Mo, хим. элемент VI гр. периодич. системы, ат. н. 42, ат. м. 95,94. В природе семь стабильных изотопов с маc. ч. 92 (15,86%), 94 (9,12%), 95 (15,70%), 96 (16,50%), 97 (9,45%), 98 (23,75%), 100 (9,62%). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 2,4•10-28м2. Конфигурация внеш. электронной оболочки атома 4d55sl; степени окисления от +2 до +6 (последняя наиб. характерна); энергия ионизации при последоват. переходе от Мо к Моб+ соотв. равны 7,10, 16,155, 27,13, 40,53, 55,6 и 71,7 эВ; работа выхода электрона 4,3 эВ; электроотрицательность по Полингу 1,8; атомный радиус 0,14 нм, ионные радиусы (нм; в скобках указаны координац: числа) Мо3+ 0,083 (6), Мо4+ 0,079 (6), Мо5+ 0,075 (6), Мо6+ 0,055 (4), 0,064 (5), 0,073 (6) и 0,087 (7).
Молибден мало распространен в природе. Содержание его в земной коре ~3•10-4 % по массе. Известно ок. 20 минералов молибдена, важнейший из них — молибденит MoS2; пром. значение имеют также повеллит СаМоО4, молибдит Fe2 (MoO4)3 • nН2О и вульфенит РbМоО4. Важнейшие месторождения молибденита связаны с гидротермальными образованиями, особенно широко распространены в кварцевых жилах и окварцованных породах. В рудах молибден ассоциируется с шеелитом, вольфрамитом, касситеритом, сульфидами Сu и Fe, иногда с бериллом. Часто содержит в виде изоморфной примеси редкий металл Re (0,04-0,0001%). Кроме собственно молибденовых руд, содержащих обычно 0,1-1% молибдена, источниками молибдена служат нек-рые медные и медно-свинцово-цинковые руды. Крупные месторождения их находятся в США, Мексике, Чили, Канаде, Норвегии, Австралии, СССР.
Свойства.
Молибден-светло-серый металл; кристаллич. решетка кубич. объемноцентрированная типа a-Fe, a = 0,314нм, z = 2, пространств. группа IтЗm; т. пл. 2623 °С, т. кип. ок. 4800°С; плотн. 10,2 г/см3; С° 23,93 Дж/(моль•К); DH0пл 40 кДж/моль, DH0возг 656 кДж/моль (298 К); S0298 28,57 кДж/(моль • К); давление пара над твердым молибденом (Па): 3,19•10-6 (1627°С), 2,5•10-5 (1727°С), 8,44•10-4 (1927°С), 1,54•10-2 (2127°С); теплопроводность 145 Вт/(м•К) при 20°С и 79,1 Вт/(м•К) при 1600°С; температурный коэф. линейного расширения (5,8-6,2)•10-6 К-1 (293-973 К); r5,2•10-6 Ом•см, температурный коэф. р 0,00479 К-1 (20-2600 °С). Излучат. способность (Вт/см2): 0,55 (730 °С), 6,3 (1330 °С), 19,2 (1730 °С), 70 (2330 °С). Молибден парамагнитен, магн. восприимчивость +9•10-5. Т-ра перехода в сверх-проводящее состояние 0,916 К.
Мех. св-ва молибдена определяются чистотой металла и предшествующей мех. и термич. обработкой. Так, твердость по Бринеллю 1,5-1,6 ГПа для т. наз. спеченного штабика, 2-2,5 ГПа для кованого прутка и 1,40-1,85 ГПа для отожженной проволоки; sраст 800-1200 МПа для отожженной проволоки. Модуль упругости для молибдена 285-300 ГПа. Молибден более пластичен, чем W, он не становится хрупким после рекристаллизующего отжига.
На воздухе при обычной т-ре молибден устойчив. Начинает окисляться (появляются т. наз. цвета побежалости) при 400 °С. Выше 600 °С быстро окисляется до триоксида МоО3 (см. Молибдена оксиды). С парами воды выше 700 °С интенсивно взаимод., давая диоксид МоО2. При комнатной т-ре молибден устойчив к действию соляной и серной к-т, слабо реагирует с ними при 80-100 °С. Царская водка, HNO3 и Н2О2 медленно взаимод. с молибденом на холоду, быстрее-при нагревании. Хорошо реагирует молибден со смесью HNO3 и H2SO4. Вольфрам в этой смеси не растворяется. В холодных р-рах щелочей молибден устойчив, но медленно корродирует при нагревании.
С водородом молибден при нагр. образует твердые р-ры (при 1000 °С поглощается 0,5 см3 Н2 в 100 г молибдена). Выше 1500 °С с N2 дает нитрид (вероятного состава Mo2N). Углерод, углеводороды, а также СО при 1100-1200 °С взаимод. с молибденом с образованием карбида Мо2С (т. пл. 2400 °С, с разл.). Окисляется СО2 (выше 1200 °С) и SO2 (при 700-800 °С). При нагр. с F2, Cl2 и Вr2 образует молибдена галогениды. С парами S выше 440 °С и с H2S выше 800 °С дает дисульфид MoS2 (см. Молибдена сульфиды), с Si выше 1200 °С-силицид.
Б о р и д ы: Мо2В (т. пл. 2270°С, с разл.), МоВ (т. пл. 2550 °С), Мо2В5 (т. пл. 2200 °С, с разл.). Серые кристаллы; не раств. в воде и орг. р-рителях. Получают восстановлением оксидов Мо карбидом бора в вакууме, спеканием простых в-в. Борид Мо2В-материал для подогревных катодов электроннолучевых приборов, МоВ и Мо2В5-компоненты керметов, Мо2В5-также огнеупорный материал. ПДК для пыли 4 мг/м3.
Г е к с а к а р б о н и л Мо(СО)б-кристаллы с ромбич. решеткой (а=1,123нм, b= 1,202 нм, с = 0,648 нм, z = 4, пространств. группа Р2пb); заметно возгоняется выше 40 °С, т. пл. 148 °С, т. кип. 155 °С; не раств. в воде, р-рах щелочей, разлагается конц. H2SO4, соляной к-той, HNO3. Получают действием СО на МоСl5 в присут. стружки Fe при 200 °С и давлении 28 МПа. Применяют его для нанесения покрытий Мо на металлы, керамику, графит (молибденирование).
Д и с е л е н и д MoSe2 — темно-серое в-во со слоистой структурой типа MoS2; т. разл. 900 °С (в вакууме); не раств. в воде, окисляется HNO3. Получают взаимод. паров Se или H2Se с Мо или МоО3. MoSe2-твердая смазка.
Т р о й н ы е х а л ь к о г е н и д ы (т. наз. фазы Шеврёля) М„Мо6Х8, где M-Ag, Сu, Pb, Sn и др., X-S, Se, Fe, 1<= n <=4. Не раств. в воде и орг. р-рителях. Получают спеканием простых в-в, конденсацией паров в вакууме, взаимод. молибденовой проволоки с парами сначала элемента X, затем М при 800-900 °С. Фазы Шеврёля-сверхпроводники с критич. т-рами до 15 К; обладают наиб. высокими критич. магн. полями (ок. 50 Тл при 4,2 К и ок. 60 Тл при ~0 К). Перспективны для использования в высокополевых магн. системах.
Д и с и л и ц и д MoSi2-темно-серые кристаллы с тетрагон. решеткой (а = 0,3197 нм, с — 0,787 нм, z = 2, пространств. группа I4/mmm); т. пл. ок. 2030 °С; устойчив на воздухе до 1500-1600 °С; микротвердость 14,1 ГПа; не раств. в воде, соляной к-те, H2SO4, разлагается в смеси HNO3 с фтористоводородной к-той. Получают нагреванием смеси порошков Мо и Si при 1000-1100°С. MoSi2-материал для нагревателей электропечей. Его применяют также для нанесения защитных покрытий на изделия из молибдена
К а р б и д ы: Мо2С (т. пл. 2690°С, микротвердость 14 ГПа) и МоС (т. пл. 2570 °С) — кристаллы с гексагон. решеткой (для Мо2С: а = 0,3012 нм, с = 0,4735 нм; для МоС: а = 0,2901 нм, с = 0,2768 нм). Получают при нагр. Мо или МоО3 с углеродом, в атмосфере СО или смеси СН4 и Н2. Применяют в качестве добавок к углеграфитовым материалам для изменения прочностных, электрич. и др. св-в.
М о л и б д е н о в ы е с и н и-ярко-синие в-ва переменного состава, напр. Мо8О23•8Н2О, Мо4О11•Н2О, Мо2О5•Н2О. Получают действием восстановителей (SO2, Zn, Al, Mo или SnCl2) на слабокислые суспензии МоО3, Н2МоО4 или р-ры молибдатов. В слегка подкисленной воде (рН ок. 4) образуют коллоидные р-ры, применяемые для крашения шелка, меха и. волос. Р-цию образования молибденовых синей используют в качеств. анализе для обнаружения Mo(VI).
См. также Молибдаты.
Получение.
Флотацией молибденовых руд получают молибденовые концентраты с содержанием 85-90% MoS2 (47-50% Мо, 28-32% S, 3-5% SiO2, присутствуют также примеси минералов Fe, Сu, Са и др. элементов). Концентрат вначале подвергают окислит. обжигу при 550-600 °С в многоподовых печах или в печах с кипящим слоем. Если в концентрате содержится Re, при обжиге образуется летучий оксид Re2O7, к-рый удаляют вместе с печными газами. Продукт обжига (т. наз. огарок) представляет собой загрязненный примесями МоО3. Чистый МоО3, необходимый для произ-ва металлич. Молибден, получают из огарка возгонкой при 950-1000 °С или хим. методом. По последнему способу огарок выщелачивают аммиачной водой, полученный р-р молибдата аммония очищают от примесей Сu, Fe и др., выпариванием и кристаллизацией выделяют полимолибда-ты аммония, гл. обр. парамолибдат (NH4)6 [Mo7O24] x х 4Н2О. Прокаливанием парамолибдата аммония при 450-500 °С получают чистый МоО3, содержащий не более 0,05% примесей.
Иногда вместо обжига молибденитовый концентрат разлагают HNO3, при этом осаждают молибденовую к-ту МоО3 • Н2О, к-рую растворяют в аммиачной воде и получают, как описано выше, парамолибдат аммония. Часть молибдена остается в маточном р-ре, из к-рого молибден извлекают ионным обменом или экстракцией. При переработке низкосортных концентратов (содержат 10-20% молибдена) огарки выщелачивают р-рами Na2CO3, из полученных р-ров Na2MoO4 осаждают СаМоО4, используемый в черной металлургии. По др. способу с помощью ионного обмена или жидкостной экстракции р-р Na2MoO4 переводят в р-р (NH4)2MoO4, из к-рого затем выделяют парамолибдат аммония.
Металлич. молибден получают первоначально в виде порошка восстановлением МоО3 в токе сухого Н2 в трубчатых печах сначала при 550-700 °С, затем при 900-1000 °С. Заготовки из компактного металла сечением 2-9 см2 и длиной 450-600 мм производят методом порошковой металлургии. Порошок молибдена прессуют в стальных прессформах под давлением 0,2-0,3 МПа, а затем спекают сначала при 1000-1200 °С в атмосфере Н2, а затем при 2200-2400 °С. Полученные заготовки-спеченные штабики обрабатывают давлением (ковка, протяжка, прокатка). Заготовки массой 100-200 кг м. б. получены при использовании гидростатич. прессования в эластичных оболочках. Заготовки массой 500-2000 кг производят дуговой плавкой (в печах с охлаждаемым медным тиглем и расходуемым электродом, представляющим собой пакет спеченных штабиков) либо электроннолучевой плавкой.
Перспективен способ произ-ва молибдена алюминотермич. восстановлением МоО3; полученные по этому методу слитки рафинируют вакуумной плавкой в дуговых печах. Молибден производят также восстановлением MoF6 или МоСl5водородом, а также электролитически в солевых расплавах. Ферромолибден (сплав с Fe, содержащий 50-70% Мо) получают восстановлением огарка, полученного после обжига молиб-денитового концентрата, ферросилицием в присут. Fe3O4.
Определение.
Молибден обнаруживают по образованию красного комплексного соед. Мо5+ с KNCS или NH4NCS (Mo6+ восстанавливают до Мо5+тиомочевиной, SnCl2 и др.), по образованию красно-фиолетового комплексного соед. Мо6+ с этилксантогенатом в слабокислом р-ре. Для определения молибдена в рудах и рудных концентратах навеску материала разлагают сплавлением с NaOH или Na2O2 с послед. выщелачиванием сплава водой или применяют обработку HNO3, отделяя затем железо от молибдена осаждением аммиаком. При малых содержаниях молибдена (десятые доли %) обычно применяют колориметрич. роданидный метод определения. Для устранения влияния примеси W в р-р добавляют винную к-ту. Большие кол-ва молибдена (напр., в рудных концентратах, сплавах, солях) определяют гравиметрически путем осаждения РbМоО4 (в уксуснокислом р-ре) или MoS2 (в слабокислом р-ре). Иногда используют волюмометрич. метод определения молибдена, к-рый состоит в восстановлении Мо6+цинком или амальгамами и послед. титрованием соед. молибдена низшей валентности перманганатом.
Применение.
Молибден используют для легирования сталей (80-85% производимого молибдена), как компонент жаропрочных сплавов для авиац., ракетной и атомной техники, антикоррозионных сплавов для хим. машиностроения (см. Молибдена сплавы). Из молибденовой проволоки, ленты и прутков изготовляют аноды, сетки, катоды, вводы тока, держатели, нити накаливания и др. детали для электроламп и электровакуумных приборов. Молибденовую проволоку и ленту используют в качестве нагревателей для высокотемпературных печей. Радиоактивные изотопы 93Мо (T1/2 6,95 ч) и 99Мо (Т1/2 66 ч)-изотопные индикаторы.
Мировое произ-во молибдена (без СССР) составило в 1981, 1982 и 1983 соотв. 98, 80 и 45 тыс. т.
Молибден открыл в 1778 К. Шееле, выделивший молибденовую к-ту и нек-рые ее соли. П. Гьельм в 1790 впервые выделил металлич. молибден, к-рый был, однако, загрязнен углеродом и карбидом молибдена. Чистый металл получил И. Берцелиус в 1817.
=== Исп. литература для статьи «МОЛИБДЕН»: Норкотт Л., в кн.: Молибден, пер. с англ., М., 1959; Зелик-ман А. Н., Молибден, М., 1970; Rollinson С. L., The chemistry of chromium, molybdenum and tungsten. Pergamon text in inorganic chemistry, v. 21, Oxf.-[a.o.], 1975; Мохосоев М. В., Базарова Ж. Г., Сложные оксиды молибдена и вольфрама с элементами I-IV групп, М., 1990. А.Н. Зеликман.
Страница «МОЛИБДЕН» подготовлена по материалам химической энциклопедии.
Еще по теме:
- Молибден — справочник по веществам
Биологическая роль
Физиологическое значение молибдена для организма животных и человека было впервые показано в 1953 году, с открытием влияния этого элемента на активность фермента ксантиноксидазы. Молибден промотирует (делает более эффективной) работу антиокислителей, в том числе витамина С. Важный компонент системы тканевого дыхания. Усиливает синтез аминокислот, улучшает накопление азота. Молибден входит в состав ряда ферментов (альдегидоксидаза, сульфитоксидаза, ксантиноксидаза и др.), выполняющих важные физиологические функции, в частности, регуляцию обмена мочевой кислоты. Молибденоэнзимы катализируют гидроксилирование различных субстратов. Альдегидоксидаза окисляет и нейтрализует различные пиримидины, пурины, птеридины. Ксантиноксидаза катализирует преобразование гипоксантинов в ксантины, а ксантины — в мочевую кислоту. Сульфитоксидаза катализирует преобразование сульфита в сульфат.
Недостаток молибдена в организме сопровождается уменьшением содержания в тканях ксантиноксидазы. При недостатке молибдена страдают анаболические процессы, наблюдается ослабление иммунной системы. Тиомолибдат аммония (растворимая соль молибдена), является антагонистом меди и нарушает её утилизацию в организме.
Круговорот азота
Молибден входит в состав активного центра нитрогеназы — фермента для связывания атмосферного азота (распространён у бактерий и архей).
Микроэлемент
Микроколичества молибдена необходимы для нормального развития организмов, используется в составе микроэлементной подкормки, в частности, под ягодные культуры.
Влияет на размножение (у растений).
Марки молибдена и его сплавов
Сплавы молибдена чаше применяются в промышленности, чем чистый металл. Среди них выделяются:
- металл с чистотой 99,96%, который используется для производства электронных устройств, маркируется МЧ;
- металл, получаемый плавкой под вакуумом, маркируется молибден МЧВП;
- для производства проволоки, используемой в источниках света, применяется металл под маркой МРН, где его содержание равно 99,92%;
- при введении присадки, кремниевая щелочь, молибден маркируется МК;
- в Мо вводится цирконий (Zr) или титан (Ti) – марка ЦМ;
- при введении рения – МР;
- вольфрам с Мо – МВ.