Сварка низкоуглеродистой стали, режимы, типы и методы сваривания


Технология сварки стали с низким содержанием углерода

В составе инструментальной стали присутствует до 1 % углерода, что определяет ее твердость и прочность. В то же время износостойкость металла достаточно низкая, поэтому из него изготавливают только инструменты. А невысокая закупочная цена обеспечивает прибыльность производства.

Технология сварки стали этого типа предполагает использование инвертора и специально предназначенного электрода. Для обработки подходят стержни УОНИ-13/НЖ/20Х13 и сварочный инвертор.

Рекомендуем статьи по металлообработке

  • Марки сталей: классификация и расшифровка
  • Марки алюминия и области их применения
  • Дефекты металлический изделий: причины и методика поиска

Особенности сварки металла

Процесс сварки представляет сложный процесс, направленный на соединение металлов при помощи воздействия высокой температуры.

Качественная сварка совершенно невозможна без учета законов, обеспечивающих эффективное применение различных металлов, применения электричества и реализации тепловых процессов.

Качественный процесс сварки предполагает также знание особенностей разных металлов.

Технология сварки разных типов конструкционной стали

Более востребованной является конструкционная сталь, она используется для производства как мелких металлических деталей, так и габаритных станков. В эту категорию входят стали таких марок, как 40х, 30хгса, 35хгса и др.

В составе конструкционной стали присутствуют различные примеси, включая серу и фосфор. Большее количество этих компонентов уменьшает надежность материала.

Конструкционные типы стали делят на несколько групп:

  • обыкновенная;
  • качественная;
  • высококачественная;
  • особо высококачественная.

В последней группе присутствует минимальное количество примесей, поэтому сталь является наиболее прочной и качественной. Обычная конструкционная сталь, напротив, содержит высокий процент примесей, поэтому долговечностью не отличается. В названных группах существует деление на подгруппы в зависимости от присутствия в составе дополнительных химических элементов.

Специфика сплава алюминия, а также алюминиевых веществ

Учитывая то, что подобный металл выступает в качестве одного из наиболее распространенных, для грамотного проведения комплекса работ, необходимо учитывать ряд особенностей.

В частности, главной особенностью в данном случае является активизация реакции металла с кислородом, в процессе которого происходит образование оксид алюминия, температура которого в большинстве случаев превышает отметку в 2000 градусов по Цельсию.

Еще одна особенность состоит в том, что подобный металл разрушается при температуре около 600 градусов.

Каждый, кто работает с таким типом металла, должен принимать во внимание то, что для него характерно полное отсутствие переходного состояния, то есть, под воздействием высоких температур он переходит в жидкое состояние.

Для определенного снижения подобного негативного эффекта, необходимо использовать следующие правила:

  • С целью проведения присадки крайне важно использовать алюминиевую проволоку, содержание кремния в которой составляет не менее 5%;
  • В процессе сварки необходимо использовать подкладки из стали, которые помогают удерживать тепло в необходимых точках;
  • Сварочный процесс необходимо начинать при сильном постоянном токе, характеризующемся обратной полярностью, при условии, что постепенно будет происходить снижение его показателей на 15%.

Технология сварки разных видов легированной стали

Самыми востребованными являются различные виды легированной стали. Спрос на них обусловлен составом, в который включены различные легирующие компоненты, придающие металлу нужные характеристики и свойства.

Добавки придают металлу повышенную прочность, долговечность, улучшают его характеристики. Физико-химические свойства материала меняются путем добавления в состав легирующих компонентов.

К достоинствам разных типов легированной стали также относятся:

  • высокая жаропрочность;
  • устойчивость к коррозии (сравнивать их с нержавеющей сталью, конечно, нельзя, однако они обладают повышенной стойкостью).

Технология сварки стали этого типа предполагает использование дугового метода обработки и электродов с фтором и кальцием. Оптимальным вариантом является применение газовой сварки, качество соединения деталей в этом случае получается более высоким.

VT-metall предлагает услуги:

Разница в технологии сварки стали газом и полуавтоматом или инвертором заключается в образовании тепла за счет пламени газовой горелки, а не электрической дуги. Пламя возникает при смешивании горючего газа с кислородом. Для использования технологии газовой сварки углеродистых сталей необходимы опыт и сноровка.

Как правильно варить нержавейку — сварка нержавеющих труб

Рассмотрим основные особенности сварки труб из нержавеющей стали. Начать нужно на потолочной части немного отступив от нижней точки 20-30 мм. Весь шов нужно разделить на участке. Их размеры зависит от количества сварщиков и диаметра трубы.

Ниже на схеме изображен порядок и расположение участков шва.

Очень важно разбивать участки шва чтобы замки нижнего и последующих слоев не совпадали. Это зачастую ведет к дефектам. Они должны быть смещены миллиметров на 30-35 друг относительно друга. Если сварка выполняется в среде аргона неплавящимся электродом, а защитить обратную сторону шва аргоном нет возможности то можно использовать специализированный флюс пасты. Их нужно наносить на корневую часть шва с внутренней стороны до сварки.

Сварку выполнять без поперечных колебаний на минимальной длине дуги. Валики делать не больше 6 мм по ширине и не выше 2,5–3 миллиметра. Случай обрыва дуги, точку обрыва необходимо зачистить механически или с помощью шлифмашинки. Далее нужно отступить миллиметров 18–20 от места обрыва и возобновить процесс.

Когда сварка многослойная (многопроходная) обязательно дожидаться остывание предыдущего слоя до температуры около 100 градусов и только после этого начинать новый слой. После сварки каждого слоя нужно внимательно осмотреть соединение, нету ли на нём дефектов. Если есть, то их необходимо удалить, а шов подварить.

Технология сварки различных типов низколегированной стали

В составе разных типов низколегированной стали (чаще всего они же являются низкоуглеродистыми) присутствует небольшой процент легирующих компонентов (в основном, в пределах 2-3 %). В составе этих металлов есть железо, небольшой процент углерода и различные примеси.

Низколегированная сталь, устойчивая к высокотемпературному воздействию (до +200 °С), используется для производства хирургических, ювелирных, гравировальных инструментов, бритв и лезвий. Добавление небольшого количества хрома в состав позволяет получить металл, отличающийся высокой прочностью и долговечностью.

Низколегированная сталь входит в класс черных металлов, используется для производства габаритных сварных металлических конструкций. Хотя содержание легирующих компонентов в ее составе невелико, материал обладает высокой прочностью. Такие характеристики достигаются за счет присутствия в составе хрома, никеля и молибдена, улучшающих свойства низколегированной стали. Благодаря хрому и никелю повышается устойчивость металла к коррозионному воздействию.

Соблюдение технологии сварки стали этого типа позволяет достичь хороших результатов. Однако при работе с низколегированными металлами необходимо учитывать многочисленные особенности материала. Большую роль играет опыт сварщика.

Чаще всего мастера сталкиваются с перегревом сварной области. Такая проблема возникает при работе с различными марками низколегированных сталей. Из-за быстрого охлаждения сварного шва и заготовки в целом на месте соединения образуется мертенсит. Так называют твердую углеродистую структуру, возникающую на сварном шве из-за резкого охлаждения.

Технология сварки стали с низким содержанием углерода предполагает использование электродов с кальцием и фтором. Наиболее подходящими являются стержни, имеющие основное покрытие, такие как Э42А или Э50А. Лучшими считаются электроды марок УОНИ 13/45, МР-3, АНО-8, СМ-11. Впрочем, подойдут и другие, обладающие похожими характеристиками.

Технология сварки стали с низким содержанием углерода позволяет пользоваться полуавтоматической или автоматической сваркой под флюсом с полуавтоматом и присадочной проволокой. Флюс может быть заменен углекислым газом или смесью углекислого газа и аргона. Это позволяет повысить качество шва по сравнению с работой с электродами.

Низкоуглеродистые


Малоуглеродистая сталь, имеющая в своем составе, помимо углерода еще и легирующие добавки сваривается, как правило, с применением любой из сварочных технологий.

Работа не требует высокой квалификации сварщика. Такие материалы относятся к числу хорошо свариваемых сталей. Поэтому здесь может с успехом применяться обычная дуговая сварка.

Особенностями сварки низкоуглеродистых сталей является пониженное содержание углерода в металле шва и увеличенное количество легирующих добавок, поэтому возможно некоторое упрочнение металла шва по отношению к металлу деталей.

Еще одной проблемой, которую следует учитывать, является повышенная хрупкость шва при выполнении многослойной сварки.

Для выполнения соединений низкоуглеродистых сталей применяются электроды с рутиловым и кальциево-фтористорутиловым покрытием. Профессиональные сварщики используют электроды, в обмазку которых добавляют немного порошка железа. Из электродов, выпускаемых промышленностью, для сварки подходят следующие марки: УОНИ-13/85, ЦЛ-14, ЦЛ-18-63.

Стали с малым количеством углерода легко сваривать, применяя ацетилен. При этом даже можно обойтись без использования флюса, а газ расходуется в небольшом объеме.

Для получения качественного стыка, обладающего прочностью, не меньшей, чем основной металл, применяют кремнемарганцевую сварочную проволоку. По окончании работы со швом пламя не гасят и не снимают его со стыка деталей, а плавно отклоняют, давая шву остыть.

Если убрать пламя сразу, то без флюса материал шва, будучи разогретым, окислится. Чтобы придать шву лучшие прочностные свойства, металл шва, как правило, проковывают и подвергают термической обработке.

Технология сварки стали различных структурных классов

Перлитную и аустенитную стали сваривать сложнее, поскольку на сварном шве образуются мартенситный налет или карбидная гряда, причем их объем снижает степень легирования материала, приближая его к характеристикам перлитной стали. Прослойка образуется в связи с худшим перемешиванием жидкого металла в пристеночных слоях. Если запас аустенитности металла в районе шва невелик, то прослойка может достигнуть критического уровня, приводя к разрушению соединения.

Соответственно, выбирая технологию сварки стали, необходимо отдавать предпочтение той, которая позволят добиться минимальной толщины кристаллизационного слоя. Для этого:

  • используют высококонцентрированные источники тепла, например, электронный луч, лазер, плазму;
  • разделывают или наплавляют кромки, снижая содержание участвующих в процессе сталей;
  • выбирают режимы обработки, при которых толщина плавления минимальна;
  • используют дуговую сварку в защитной газовой среде, способной обеспечить интенсивное смешивание металла сварной ванны.

Для сварки комбинированной стали наиболее подходящей является обработка в защитной газовой среде, поскольку при использовании этой технологии повышается температура расплавленного металла, снижается поверхностное напряжение, а значит, повышается интенсивность его смешивания. Это обусловлено увеличением приэлектродного падения напряжения сварочной дуги и кинетической энергии переноса капель металла электрода и плазменного потока в сварочной дуге.

Усилению эффекта способствует добавление в аргон кислорода, азота, углекислого газа. При добавке кислорода увеличивается температура в сварной ванне, а также возникают экзотермические окислительно-восстановительные реакции. За счет этого уменьшается степень структурной и механической неоднородности в области соединения перлитного металла с аустенитным швом.

Ручная дуговая технология сварки стали позволяет добиться лучших результатов в случае уменьшения температуры плавления электродов и, как следствие, температуры сварной ванны. Чтобы уменьшить температуру плавления электродов, используют стержни, в составе которых присутствуют никель и марганец. При применении этих электродов в процессе сварки под флюсом уменьшаются также кристаллизационные и диффузионные прослойки.

Состав и свойства высокопрочных сталей

Стали с пределом прочности свыше 1500 МПа называются высокопрочными. Такой предел достигается подбором химического состава и наиболее подходящей термической обработкой. Данный уровень прочности может образовываться в среднеуглеродистых легированных сталях (40ХН2МА, 30ХГСН2А) путем использования закалки с низким отпуском (при 200…250оС). Легирование таких сталей W, Mo, V затрудняет разупрочняющие процессы, что снижает порог хладоломкости и повышает сопротивление хрупкому разрушению. Как варить металл, если перед вами высокопрочная сталь? Сварка высокопрочных сталей отличается использованием некоторых дополнительных технологических приемов (сварка каскадом, горкой, секциями, предварительный подогрев, применение мягкой прослойки и других).


Закаленные стали (структура)

Изотермическая закалка среднеуглеродистых легированных сталей придает им немного меньшую прочность, но большую вязкость и пластичность. Поэтому они более надежны в эксплуатации, чем низкоотпущенные и закаленные. Низкоотпущенные и закаленные среднеуглеродистые стали с высоким уровнем прочности обладают повышенной восприимчивостью к концентраторам напряжения, склонностью к хрупкому разрушению. Из-за этого их рекомендуют использовать для работы, связанной с плавным нагружением.

К высокопрочным сталям можно отнести так называемые рессорные (пружинные) стали. Они содержат 0,5…0,75% С и дополнительно легируются другими элементами. Термообработка легированных рессорных сталей (закалка 850…880оС, отпуск 380…550оС) обеспечивает получение высокой прочности и текучести. Может применяться изотермическая закалка. Сварка рессорной стали выполняется с обязательной предварительной термообработкой, с подогревом в процессе сварочных работ и дальнейшей термической обработкой.

Мартенситно-стареющие стали (04Х11Н9М2Д2ТЮ, 03Н18К9М5Т) также относятся к высокопрочным сталям. Они превосходят среднеуглеродистые легированные стали по конструкционной прочности и технологичности. Для таких сталей характерны высокое сопротивление хрупкому разрушению, низкий порог хладоломкости и малая чувствительность к надрезам при прочности около 2000 МПа. Мартенситно-стареющие стали являются безуглеродистыми сплавами железа с никелем и дополнительно легированы молибденом, кобальтом, алюминием, хромом, титаном и другими элементами. Эти стали имеют высокую конструкционную прочность в диапазоне температур от криогенных до 500оС и применяются в изготовлении стволов артиллерийского и стрелкового оружия, корпусов ракетных двигателей, зубчатых колес, шпинделей и так далее.

Технологии сварки разнородных типов стали одного структурного класса

Сварка разных типов перлитной стали, разница в которых заключается в степени легирования, выполняется с помощью электродов, используемых для металлов с меньшей степенью легирования, при отсутствии дополнительных требований к прочности соединений, жаропрочности, коррозионной устойчивости, которые свойственны более легированным сталям. При этом технология предполагает выбор режимов и температуры сварки, применяемых при работе с более легированными металлами.

Если подогрев невозможен, то выполняется наплавка кромок с использованием более легированного материала, подогреваемого электродами типа Э42А. При этом наплавленный слой должен иметь такую толщину, которая не позволит более легированному металлу нагреться до температур Ac1, т. е. не допустить создания условий для закалки.

Работая с различными сочетаниями высокохромистых мартенситных (12 % Cr), ферритных (28 % Cr) и ферритно-аустенитных металлов типа Х21Н5, необходимо выбирать такую технологию сварки сталей, при которой не будут образовываться холодные трещины и хрупкие участков в сварном шве. Режим подогрева выбирают для самого закаливающегося металла с недопущением полного охлаждения заготовок. Это возможно при использовании сварочных материалов ферритно-аустенитного класса, сварки с минимальной погонной энергией, поскольку металлы с высоким содержанием хрома подвержены росту зерна, являющегося причиной образования хрупкости места шва.

После того как термообработка завершена, заготовку необходимо быстро охладить, чтобы избежать хрупкости, возникающей при +475 °С. Можно также использовать для работы аустенитные электроды. Но в таком случае при термообработке нельзя полностью исключить сварочные напряжения, вызванные разницей в коэффициентах линейного расширения шва и основного металла.

Сварка высокоуглеродистых сталей

Высокоуглеродистые стали относятся к сложно свариваемым и ограниченно свариваемым материалам ввиду их особой склонности к закалке, образованию трещин и других термических дефектов. Ввиду высокой сложности выполнения работ ручные методы электродуговой сварки практически не используются.

Газовая сварка

Основным методом соединения заготовок из высокоуглеродистой стали является газовая сварка с предварительным прогревом до 200-300℃. В ряде случаев используется и сопутствующий подогрев. Работы проводятся восстановительным пламенем или пламенем с небольшим избытком ацетилена, интенсивность – не более 90 куб. дм в час. Используется «левый» способ, позволяющий снизить время термического воздействия на металл.

В качестве присадки используется проволока Св-15 или Св-15Г, иногда – проволоки, легированные хромом, никелем, марганцем. В отличие от среднеуглеродистых сталей высокоуглеродистые не рекомендуется обрабатывать ковкой. В случае необходимости выполняется их отпуск или отжиг с полным прогревом заготовок до 350-400℃.

Другие способы сварки

Альтернативным способом соединения высокоуглеродистых сталей является лучевая сварка, которая подразделяется на электролучевую (направленный поток заряженных частиц) и лазерную (направленный поток фотонов). К недостаткам этих технологий можно отнести высокую сложность и дороговизну оборудования, к преимуществам – высокую скорость и точность проведения работ, короткое время и малую площадь температурного воздействия на стык.

Ограниченно применяются технологии контактной, плазменной, электрошлаковой сварки, которые требуют значительных ресурсозатрат, однако, не решают всех проблем, связанных с сообщением необходимых механических свойств шву. Одним из перспективных направлений является соединение заготовок высокоуглеродистых сталей между собой и с другими материалами сваркой трением.

Технология сварки двухслойных (плакированных) видов стали

За счет двухслойной стали снижается использование высоколегированных материалов, при этом работоспособность конструкций не снижается. Из таких металлов изготавливают оборудование, эксплуатируемое в коррозионной среде.

Облицовочный слой толщиной до 12 мм, устойчивый к коррозии и контактирующий с агрессивной средой, выполняется из следующих металлов:

  • высоколегированных хромоникелевых аустенитных (12Х18Н10Т, 08Х18Н10Т, 12Х18Н12Т, 08Х18Н12Б и др.);
  • хромистых ферритных;
  • мартенситно-ферритных (08X13, 12X13 и др.).

Основной слой, толщина которого достигает 150 мм, более устойчив к силовым нагрузкам. Для его изготовления используются углеродистые низколегированные металлы (Ст3, 20К, 15ХМ и др.). Сварные соединения при этом должны иметь:

  • Однородность облицовочного слоя с высокой коррозионной стойкостью сварного шва.
  • Отсутствие комплексных сплавов с низкими механическими характеристиками в месте соединения облицовочного и основного слоев. Для этого необходимо использовать подходящие материалы и технологию сварки сталей, разделывать кромки и последовательно проводить работы.

Описанию основных типов и конструктивных элементов формы подготовки кромок в соответствии с технологией и способами сварки посвящен ГОСТ 16098-80. Сварка слоев выполняется раздельно с применением различных сварочных материалов. Последним обрабатывается облицовочный слой, чтобы не допустить его повторного нагрева. Обработка основного покрытия осуществляется в первую очередь. Для работы используются подходящие сварочные проволоки, флюсы, электроды и пр.

Подготовительные работы

Прим сварке пищевой стали особое внимание следует уделять подготовительным работам. Правильность подготовки стальных заготовок оказывает заметное влияние на качество конечного результата.

  • Фаска на соединяемых кромках. Если сваривается достаточно толстый прокат, от 5 (мм), то на стыкуемых поверхностях нужно обязательно снять фаску.

Благодаря фаскам у сварщика появится свободный доступ к корню шва, что позволит сделать качественное и надежное соединение.

Разумеется, фаски следует делать не всегда. Если сваривается нержавеющая пищевая сталь небольшой толщины, до 3-5 (мм), то электрод сможет добраться до корня шва без помощи дополнительного зазора.

  • Обезжиривание соединяемых поверхностей. Данная процедура важна при использовании аргоновой сварки, с применением вольфрамового неплавящегося электрода.

При обезжиривании улучшится контакт электрода с металлическими поверхностями, которые соединяются. Это повысит как производительность, так и качество шовного соединения.

Касательно непосредственно процесса сварки пищевой стали, если соединяются заготовки большой толщины, то сварочный шов создается послойно. В этом случае делается многократный проход электродом.

Послойное создание шва даст возможность снизить деформацию изделия.

Нержавейка

Чаще всего нержавеющие стали, используемые в промышленности, получают свои антикоррозийные свойства посредством введения легирующих добавок – хрома и никеля.
При сварке хромированных деталей необходимо учитывать, что при высокой температуре (более 500 °C), возможно окисление стыка деталей.

Чтобы избежать этого применяют аргонодуговую сварку, или TIG-сварку (ТИГ). Такая технология предусматривает осуществление сварочных операций без доступа воздуха непосредственно к зоне сварки. Соответственно отсутствие кислорода, наличие которого в воздухе обязательно, устраняет предпосылки к окислению материала.

Ограничение доступа воздуха осуществляется путем введения в зону сварки аргона, инертного газа, который будучи тяжелее воздуха, вытесняет его. Иногда такой способ называют сваркой стали аргоном. На самом деле сталь либо просто сваривается между собой дугой, либо с помощью присадочного материала.

Для аргонодуговой сварки требуется специальное оборудование. Работы ведутся неплавящимися вольфрамовыми электродами, требования к которым определяются ГОСТ 10052-75.

Вторая проблема заключается в следующем. Нержавеющие стали имеют высокий коэффициент температурного расширения, и при сварке листовой стали, когда стык имеет большую длину в сравнении с линейными размерами детали, в процессе остывания возможно искривление сварочного шва.

Проблема решается путем выставления зазоров между листами и применением прихваток, фиксирующих детали в нужном положении.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]