Особенности металла алюминия: его свойства, преимущества и характеристики

Авиация

На современном этапе развития дозвуковой и сверхзвуковой авиации алюминиевые сплавы являются основными конструкционными материалами в самолетостроении.

В авиации США широко применяются сплавы серии 2ххх, Зххх, 5ххх, 6ххх и 7ххх. Серия 2ххх рекомендована для работы при высоких рабочих температурах и с повышенными значениями коэффициента вязкости разрушения. Сплавы серии 7ххх — для работы при более низких температурах значительно нагруженных деталей и для деталей с высокой сопротивляемостью к коррозии под напряжением. Для малонагруженных узлов применяются сплавы серии Зххх, 5ххх и 6xxx. Они же используются в гидро-, масло-и топливных системах.

В России при изготовлении авиационной техники успешно используются упрочняемые термической обработкой высокопрочные алюминиевые сплавы Al-Zn-Mg-Cu и сплавы средней и повышенной прочности Al-Mg-Cu. Они являются конструкционным материалом для обшивки и внутреннего сплавного набора элементов планера самолета (фюзеляж, крыло, киль и др.). Сплав 1420, принадлежащий системе Al-Zn-Mg, используют при конструировании сварного фюзеляжа пассажирского самолета. При изготовлении гидросамолетов предусмотрено применение свариваемых коррозионностойких магнолиевых сплавов (AМг5, АМг6) и сплавов Al-Zn-Mg (1915, В92, 1420).

Рисунок 1 – Гражданский самолет

Бесспорное преимущество имеется у свариваемых алюминиевых сплавов при создании объектов космической техники. Высокие значения удельной прочности, удельной жесткости материала позволили обеспечить изготовление баков, межбаковых и носовых частей ракеты с высокой про-дольной устойчивостью. К достоинствам алюминиевых сплавов (2219 и др.) следует отнести их работоспособность при криогенных температурах в контакте с жидким кислородом, водородом и гелием. У этих сплавов происходит так называемое криогенное упрочнение, т.е. прочность и пластичность параллельно растут с понижением температуры.

Сплав 1460 принадлежит системе Al-Cu-Li и является более перспективным для проектирования и изготовления баковых конструкций применительно к криогенному типу топлива – сжатому кислороду, водороду или природному газу.

Свойства алюминия (таблица): температура, плотность, давление и пр.:

Подробные сведения на сайте ChemicalStudy.ru

100Общие сведения
101НазваниеАлюминий
102Прежнее название
103Латинское названиеAluminium
104Английское названиеAluminium, Aluminum (в США и Канаде)
105СимволAl
106Атомный номер (номер в таблице)13
107ТипМеталл
108ГруппаАмфотерный, лёгкий, цветной металл
109ОткрытХанс Кристиан Эрстед, Дания, 1825 г.
110Год открытия1825 г.
111Внешний вид и пр.Мягкий, лёгкий и пластичный металл серебристо-белого цвета
112ПроисхождениеПриродный материал
113Модификации
114Аллотропные модификации
115Температура и иные условия перехода аллотропных модификаций друг в друга
116Конденсат Бозе-Эйнштейна
117Двумерные материалы
118Содержание в атмосфере и воздухе (по массе)0 %
119Содержание в земной коре (по массе)8,1 %
120Содержание в морях и океанах (по массе)5,0·10-7 %
121Содержание во Вселенной и космосе (по массе)0,005 %
122Содержание в Солнце (по массе)0,006 %
123Содержание в метеоритах (по массе)0,91 %
124Содержание в организме человека (по массе)0,00009 %
200Свойства атома
201Атомная масса (молярная масса)26,9815386(8) а. е. м. (г/моль)
202Электронная конфигурация1s2 2s2 2p6 3s2 3p1
203Электронная оболочкаK2 L8 M3 N0 O0 P0 Q0 R0

204Радиус атома (вычисленный)118 пм
205Эмпирический радиус атома*125 пм
206Ковалентный радиус*121 пм
207Радиус иона (кристаллический)Al3+
53 (4) пм,

67,5 (6) пм

(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

208Радиус Ван-дер-Ваальса184 пм
209Электроны, Протоны, Нейтроны13 электронов, 13 протонов, 14 нейтронов
210Семейство (блок)элемент p-семейства
211Период в периодической таблице3
212Группа в периодической таблице13-ая группа (по старой классификации – главная подгруппа 3-ей группы)
213Эмиссионный спектр излучения
300Химические свойства
301Степени окисления0, +1, +2, +3
302ВалентностьIII
303Электроотрицательность1,61 (шкала Полинга)
304Энергия ионизации (первый электрон)577,54 кДж/моль (5,985769(3) эВ)
305Электродный потенциалAl3+ + 3e– → Al, Eo = -1,663 В
306Энергия сродства атома к электрону41,762(5) кДж/моль (0,43283(5) эВ)
400Физические свойства
401Плотность*2,70 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело),
2,375 г/см3 (при температуре плавления 660,32 °C и иных стандартных условиях, состояние вещества – жидкость),

2,289 г/см3 (при 1000 °C и иных стандартных условиях, состояние вещества –жидкость)

402Температура плавления*660,32 °C (933,47 K, 1220,58 °F)
403Температура кипения*2470 °C (2743 K, 4478 °F)
404Температура сублимации
405Температура разложения
406Температура самовоспламенения смеси газа с воздухом
407Удельная теплота плавления (энтальпия плавления ΔHпл)*10,71 кДж/моль
408Удельная теплота испарения (энтальпия кипения ΔHкип)*284 кДж/моль
409Удельная теплоемкость при постоянном давлении0,903 Дж/г·K (при 25 °C)
410Молярная теплоёмкость*24,20 Дж/(K·моль)
411Молярный объём9,993 см³/моль
412Теплопроводность237 Вт/(м·К) (при стандартных условиях),
237 Вт/(м·К) (при 300 K)
500Кристаллическая решётка
511Кристаллическая решётка #1
512Структура решёткиКубическая гранецентрированная

513Параметры решётки4,050 Å
514Отношение c/a
515Температура Дебая394 К
516Название пространственной группы симметрииFm_ 3m
517Номер пространственной группы симметрии225
900Дополнительные сведения
901Номер CAS7429-90-5

Примечание:

205* Эмпирический радиус атома алюминия согласно [1] и [3] составляет 143 пм.

206* Ковалентный радиус алюминия согласно [1] и [3] составляет 121±4 пм.

401* Плотность алюминия согласно [3] и [4] составляет 2,6989 г/см3 (при 0 °C и иных стандартных условиях, состояние вещества – твердое тело) и 2,699 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело).

402* Температура плавления алюминия согласно [3] составляет 660 °C (933,15 K, 1220 °F).

403* Температура кипения алюминия согласно [3] составляет 2518,82 °C ( 2792 K, 4565,88 °F).

407 * Удельная теплота плавления (энтальпия плавления ΔHпл) алюминия согласно [3] и [4] составляет 10,75 кДж/моль и 10,8 кДж/моль соответственно.

408* Удельная теплота испарения (энтальпия кипения ΔHкип) алюминия согласно [3] и [4] составляет 284,1 кДж/моль и 293 кДж/моль соответственно.

410* Молярная теплоёмкость алюминия согласно [3] составляет 24,20 Дж/(K·моль) и 24,35 Дж/(K·моль).

Судостроение

Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.

Основное преимущество при внедрении алюминия и его сплавов по сравнению со сталью – снижение массы судов, которая может достигать 50 – 60 %. В результате представляется возможность повысить грузоподъемность судна или улучшить его тактико-технические характеристики (маневренность, скорость и т.д.).

Наиболее широкое применение среди алюминиевых сплавов для изготовления конструкций речного и морского флота находят магналиевые сплавы АМгЗ, АМг5, АМг61, а также сплавы АМц и Д16. Корпус судна повышенной грузоподъемности изготовляют из стали, тогда как надстройки и другое вспомогательное оборудование из алюминиевых сплавов. Имеет место изготовление рыболовецких баркасов из сплава АМг5 (обшивка).

Широкое применение в судостроении США находят свариваемые сплавы серии 5ххх и 6ххх. Там, где необходима высокая прочность (500 МПа), используются полуфабрикаты из сплавов серии 2xxx и 7ххх.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Железнодорожный транспорт

Тяжелые условия эксплуатации подвижного состава железной дороги (длительный срок службы и способность выдерживать ударные нагрузки) выдвигают особые требования к конструкционным материалам.

Рисунок 2 – Товарный поезд

Основные характеристики алюминия и его сплавов, раскрывающие целесообразность применения их в железнодорожном транспорте, высокая удельная прочность, небольшая сила инерции, коррозионная стойкость. Внедрение алюминиевых сплавов при изготовлении сварных емкостей повышает их долговечность при перевозке ряда продуктов химической и нефтехимической промышленности.

Алюминий и его сплавы используются при изготовлении кузова и рамы вагона. Для вагона рекомендованы свариваемые сплавы средней прочности марок АМг3, AMr5, Амг6 и 1915. Перспективными сплавами для рефрижераторных вагонов являются алюминиевые сплавы. В зависимости от продуктов химической промышленности выбирается марка свариваемого материала для котлов цистерны.

В США из свариваемых сплавов серии 6ххх, серии 5ххх и сплава 7005 изготавливают подвижной состав с получением оптимальных прочностных характеристик и высокой коррозионной стойкости сварных элементов.

Классификация чистоты алюминия

Обычно применяется следующая, условная, классификация степеней чистоты алюминия [1]:

  • 99,50-99,79 – алюминий промышленной чистоты (commercial purity)
  • 99,80-99,949 – высокочистый алюминий (high purity)
  • 99.950-99,9959 – сверхчистый алюминий (super purity)
  • 99.9960-99,9990 – особо чистый алюминий (extreme purity)
  • более 99,9990 – ультрачистый алюминий (ultra purity).

Ниже представлен обзор свойств алюминия со степенью чистоты от 99,50 и выше. О влиянии легирующих добавок и примесей на свойства алюминия и алюминиевых сплавов см. здесь.

Автомобильный транспорт

Одним из основных требований к материалам, применяемым в автомобильном транспорте, является малая масса и достаточно высокие показатели прочности. Принимаются во внимание также коррозионная стойкость и хорошая декоративная поверхность материала.

Рисунок 3 – Автомобиль

Высокая удельная прочность алюминиевых сплавов увеличивает грузоподъемность и уменьшает эксплуатационные расходы передвижного транспорта. Высокая коррозионная стойкость материала продляет сроки эксплуатации, расширяет ассортимент перевозимых товаров, включая жидкости и газы с высокой агрессивной концентрацией.

При изготовлении элементов каркаса, обшивки кузова полуприцепа автофургона, рефрижератора, скотовоза и т.п. перспективным материалом являются алюминиевые сплавы АД31, 1915 (прессованные профили) и сплавы АМг2, АМг5 (лист).

Находят применение алюминиевые сплавы АМц, АМгЗ и 1915 при изготовлении отдельных узлов легкового автомобиля (навесные детали, бамперы, радиаторы охлаждения, отопители).

В автомобилестроении США широко используются алюминиевые свариваемые сплавы серии Зххх, 5ххх и 6ххх.

Из прессованных полуфабрикатов сплавов 2014 и 6061 изготовляют балки, рамы тяжелых грузовых автомобилей. Панели и отдельные элементы из сплава 5052 поступают на изготовление кабины. В качестве обшивочного материала кузова грузовика используют лист из сплавов 5052, 6061, 2024, 3003 и 5154. Стойки кузова выполняются из прессованных полуфабрикатов сплавов 6061 и 6063. Магналиевые сплавы серии 5ххх (5052, 5086, 5154 и 5454) являются основным материалом при изготовлении автоцистерн.

Строительство

Перспективность применения алюминиевых сплавов в строительных конструкциях подтверждается технико-экономическими расчетами и многолетней мировой практикой в области сооружения различных строительных объектов.

Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.). В зависимости от назначения строительных алюминиевых конструкций рекомендуются различные марки сплавов: АД1, АМц, АМг2, АД31, 1915 и др.

Рисунок 4 – Здание со светопрозрачными конструкциями из алюминия

Опыт, накопленный в США, подтверждает целесообразность использования алюминиевых сплавов в строительных конструкциях. На них расходуется больше алюминия, чем в любой другой отрасли промышленности. При этом предпочтение отдается внедрению свариваемых сплавов серии Зххх, 5ххх и 6ххх.

Процесс плавления в домашних условиях

Относительно низкая температура плавления алюминия позволяет проводить эту операцию в домашних условия. Надо сразу отметить, что в качестве сырья в домашней мастерской использовать порошкообразную смесь слишком опасно. Поэтому в качестве сырья применяют или чушки, или нарезанную проволоку. Если к будущему изделию нет особых требований по качеству, то для плавления можно использовать все, что изготовленного из этого металла.

Плавка алюминия в самодельном горне

При этом не особо важно, будет сырье покрыто краской или нет. Когда происходит плавление алюминия, все посторонние вещества просто выгорят и будут удалены вместе со шлаком.

Для получения качественного результата плавки необходимо использовать материалы, которые называют флюсами. Они призваны решать задачу по связыванию и удалению из расплава посторонних примесей и загрязнений.

Нефтяная и химическая промышленность

Освоение новых месторождений, увеличение глубины скважин выдвигают определенные требования к материалам, применяемым для изготовления деталей и узлов нефте- и газопромыслового оборудования и аппаратуры для переработки продуктов нефти.

Рисунок 5 – Нефтяная вышка

Высокая удельная прочность алюминиевых сплавов позволяет уменьшить массу бурильного оборудования, облегчить их транспортабельность и обеспечить прохождение глубоких скважин.

Коррозионностойкие алюминиевые сплавы дают возможность повысить эксплуатационную надежность бурильных, насосно-компрессорных и нефтегазопроводных труб. Повышенная сопротивляемость коррозионному растрескиванию позволяет применить алюминиевые сплавы при изготовлении емкостей для хранения нефти и ее продуктов.

Основным конструкционным материалом при изготовлении бурильных труб из алюминиевых сплавов является сплав марки Д16.

Высокую стойкость к сырой нефти и некоторым бензинам показали алюминиевые сплавы АМг2, AMr3, АМг5 и АМг6. Из перечисленных магналиевых сплавов наиболее технологичным сплавом для изготовления аппаратов является сплав АМг2, особенно при изготовлении конденсаторов и холодильников на нефтеперегонных заводах.

В США оборудование для нефтяной промышленности изготовляется из алюминиевых сплавов серии Зххх, 5ххх и 6ххх. В конструкции бурового оборудования применяют трубы из сплава 6063. Морские платформы собираются из труб 6061, 6063, а также из высокопрочных сплавов марок 2014 и 7075. Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

Химической промышленности рекомендованы алюминиевые сплавы АМц, АМг2, АМгЗ, АМг5 для изготовления сосудов, работающих под давлением при температурах от – 196 до +150 °С.

Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

В США в зависимости от условий эксплуатации аппаратуры химической промышленности применяют сплавы серий 1ххх, Зххх, 5ххх. В отдельных случаях для обеспечения наибольшей прочности применяют термически упрочняемые сплавы 2ххх и 7ххх с пониженной коррозионной стойкостью.

Емкости для хранения химических продуктов выполняют из сплавов высокой коррозионной стойкости – 1100 или 3003; сосуды высокого давления – из сплавов 5052 или 6063; тара, цистерны и другие виды оборудования для хранения уксусной кислоты, высокомолекулярных жирных кислот, спиртов и других продуктов – из сплавов 3003, 6061, 6063, 5052; емкости для озоносодержащих растворов удобрений из сплавов 3004; 5052 и 5454; емкости для хранения растворов нитрата аммония из сплавов 1100, 3003, 3004, 5050, 5454, 6061 и 6062 [3].

Космическая техника

Первым, кто понял огромный потенциал алюминия для космоса, был великий писатель-писатель Жюль Верн. В своем романе «Путешествие на Луну» от еще в 1865 году детально описал ракету из алюминия.

Алюминиевые сплавы для космических аппаратов

Корпус первого советского спутника, который был запущен в октябре 1957 года, был изготовлен из алюминиево-магниевого сплава АМг6 с содержанием магния 6 %. Алюминиево-магниевые сплавы остаются основным материалом для изготовления корпусов ракет. Во внутренних отсеках ракет применяются и дюралевые алюминиевые сплавы.


Первый искусственный космический объект – советский Спутник 1

В последние десятилетия 20-го века в космических аппаратах стали применяться алюминиево-литиевые сплавы. Плотность лития составляет всего 0,533 г/см3 – он легче воды. Добавки лития в алюминий в количестве до 2,5 % снижают плотность алюминиевого сплава , а также повышают его модуль упругости. Так, сплав 8090 имеет плотность на 10 % ниже, а модуль упругости на 11 % выше, чем у популярных в самолетостроении сплавов 2024 и 2014. На рисунке ниже показано колесо марсохода Curiosity из алюминиевого сплава 7075.

Колесо марсохода Curiosity из алюминиевого сплава 7075-Т7351

Алюминий применяется также в качестве связующего материала в бороалюминиевых композитах, которые в настоящее время также применяются в космической технике.

Бороалюминиевый композит (40 % волокон бора)

Порошковый алюминий – компонент ракетного топлива

Высокая химическая активность алюминия дает возможность применять его в составе ракетного топлива для твердотопливных ускорителей в разрабатываемой NASA системе космических запусков (SLS).

В ракетных ускорителях алюминиевый порошок и перхлорат аммиака соединяются вместе с помощью специального связующего вещества. Эта смесь, похожая на материал стирательной резинки, помещается затем в стальной корпус [3].

Когда эта смесь загорается, кислород из перхлората аммиака соединяется с алюминием с образованием оксида алюминия, хлорида алюминия, водяного пара и газообразного азота, а также с выделением огромного количества энергии.

Алюминий входит в состав твердого топлива для ракетных ускорителей NASA [3]

Электрика

Алюминий и ряд сплавов на его основе находят применение в электротехнике, благодаря хорошей электропроводности, коррозионной стойкости, небольшому удельному весу, и, что немаловажно, меньшей стоимостью, по сравнению с медью и ее проводниковыми сплавами.

В зависимости от величины удельного электросопротивления, алюминиевые сплавы подразделяют на проводниковые и сплавы с повышенным электрическим сопротивлением.

Удельная электрическая проводимость электротехнического алюминия марок А7Е и А5Е составляет порядка 60 % от проводимости отожженной меди по международному стандарту. Технический алюминий АД0 и электротехнический А5Е используют для изготовления проводов, кабелей и шин. Применение в электротехнической промышленности получили низколегированные сплавы алюминия системы Al-Mg-Si АД31, АД31Е.

Сплавы алюминия, повышающие его прочность и улучшающие другие свойства, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.

Дуралюмин

Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава) – сплав алюминия (основа) с медью (Cu: 2,2 – 5,2%), магнием (Mg: 0,2 – 2,7 %) марганцем(Mn: 0,2 – 1 %). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом длZ авиационного и транспортного машиностроения.

Рисунок 6 – Дюралюминий листовой

Силумин

Силумин – легкие литейные сплавы алюминия (основа) с кремнием (Si: 4 – 13 %), иногда до 23 % и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Из него изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.

Рисунок 7 – СилуминРисунок 8 – Магналии

Магналии

Магналии – сплавы алюминия (основа) с магнием (Mg: 1 – 13 %) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Из них изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т. д. (деформируемые магналии).

По широте применения сплавы алюминия занимают второе место после стали и чугуна [4].

ЗАПАСЫ И ДОБЫЧА

Кусочки алюминия

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14%. Современный метод получения, процесс Холла—Эру был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

Применение в быту

Исследуя влияние алюминия на различные пищевые продукты, ученые установили, что при контакте пищи с алюминием не разрушаются витамины. Это открытие послужило причиной широкого применения алюминия в пищевой промышленности, в виде посуды из алюминия, а также в косметике и бытовой химии. Из алюминия изготавливают разнообразную аппаратуру, предназначенную для переработки пищевых продуктов в сахарной, кондитерской, маслобойной и других отраслях промышленности.

Рисунок 9 – Алюминивая посуда

Алюминиевых изделий изобилие, как на кухне крупного предприятия общественного питания, так и на домашней кухне: мясорубки, вилки, ложки, чашки, тазы, посуда из алюминия и т. д. Алюминиевая фольга — прекрасный упаковочный материал, хорошо сохраняющий различные продукты. В обертку из алюминиевой фольги упаковываются кулинарный жир, маргарин, мороженое, конфеты и многое другое, поэтому его еще именуют — пищевой алюминий. В алюминиевые тубы традиционно упаковывается зубная паста. Чтобы было удобно пользоваться, некоторые продукты, такие, например, как плавленый сыр, упаковывают в тубы с отвинчивающейся крышкой. В таких тубах берут с собой в космос продукты питания космонавты. Все чаще тонкий листовой пищевой алюминий применяется вместо жести при производстве консервных банок, а также все больше посуды из алюминия изготавливают производители [5].

Процесс производства

Технологический процесс получения данного металла включает в себя три этапа:

  1. Получение глинозема из первичного сырья (содержащие алюминий руды).
  2. Создание из получившегося глинозема технического алюминия.
  3. Процесс максимальной очистки металла.

Получение оксида алюминия происходит из глинозема под действием электролиза. Соединение должно быть максимально чистым, поскольку на этом этапе его получения весьма проблематично избавиться от ненужных примесей.

Чтобы получить алюминий с чистотой приближенной к единице, необходимо организовать несколько цехов для его обработки, каждый из которых будет отвечать за определенный этап производства. Именно поэтому чистый металл имеет достаточно высокую цену, которая достигает до 1700 долларов за 1 т (1000 кг алюминия).

Фармацевтика

Говоря об универсальности алюминия, нельзя обойти вниманием важный факт: металл, из которого делают посуду и самолеты, широко применяется для лечения и предупреждения тяжелых болезней и одобрен для этих целей Всемирной организацией здравоохранения. Конечно, речь идет не об алюминии в чистом виде, а о его соединениях.

В 1926 году было открыто, что осажденный квасцами дифтерийный токсоид (обезвреженный бактериальный токсин) гораздо лучше стимулирует выработку антител, чем он же в чистом виде. С тех пор для усиления действия вакцин чаще всего используют алюминиевые соли, поскольку они считаются безвредными для человека.

Именно на основе алюминия производят наиболее эффективные антациды. Гидроокись алюминия, хорошо нейтрализующая кислоту, нужна для лечения язвенных болезней, диспепсии, раздражения желудка. Для этих же целей подходит фосфат алюминия.

Рисунок 10 — ЛекарстваРисунок 11 — Дезодоранты

Но даже тем, у кого прекрасное здоровье, пригодится содержащее алюминий средство, которое продается в любое аптеке, да и не только. Речь идет о дезодоранте-антиперспиранте. Еще древние греки и римляне использовали квасцы для подавления секреции. Обычными квасцами пользовались и наши бабушки. В первые фабричные средства от запаха пота добавляли хлорид алюминия, а основным агентом современных средств является хлоргидрат алюминия. Кстати, на чем основан эффект их действия, до сих пор точно не известно [6].

Структура и состав

Структура алюминия представлена кубической решеткой из кристаллов. Минимальное расстояние между двумя атомами составляет от 2,863Å. Кристаллическая решетка имеет стабильность при температурных условиях от 4К до непосредственной температуры плавления. Наличие примесей практически не влияет на структуру алюминия.

Помимо чистого алюминия в состав могут входить примеси из цинка, кремния, магния и других металлов. Далее мы рассмотрим получение и применение алюминия на основе его химических и физических свойств.

О том, как правильно расплавить алюминий при помощи газовой плиты, расскажет видеоролик ниже:

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]