Гидроабразивная очистка металлических поверхностей


Гидроабразивная (водопескоструйная) очистка в

Гидроабразивная очистка — струйная технология промышленной очистки, при которой несущими средами, обеспечивающими воздействие на поверхность, являются вода и абразив. Гидроабразивная очистка также может являться пневмогидроабразивной (аэрогидродинамической, аэрогидроабразивной) очисткой, так как гидроабразивная смесь подается на поверхность с помощью сжатого воздуха.
Гидроабразивная очистка используется в широком спектре деятельности в целях удаления загрязнений, подготовки стальных конструкций под окрашивание: придание необходимой шероховатости, удаление окалины, ржавчины, старых лакокрасочных и других покрытий.

В процессе формирования гидроабразивной смеси частицы абразива обволакиваются водой, что увеличивает вес гранулы и соответственно усиливает столкновение абразива с очищаемой поверхностью, обеспечивая мощный эффект отделения загрязнения от поверхности без повреждения самой поверхности за счет того, что при ударе первой контактирует водная оболочка абразива. После того, как абразивная частица при столкновении создала трещину в загрязнении, водная составляющая смеси проникает под слой загрязнения, удаляя его изнутри. Такая физика процесса не только позволяет эффективно очистить поверхность, но и предотвратить износ элементов комплекса: сопел и шлангов.

Гидроструйная очистка

Гидроструйная (гидроабразивная) очистка представляет собой подачу воды с большой кинетической энергией для обновления различных материалов.

Наименование работЕд. измеренияЦена, руб.*
Гидроструйная очисткакв. м400

Направленная струя позволяет без труда удалять с поверхности практически все виды загрязнений любого химического состава:

  • пирофорные соединения,
  • лакокрасочные покрытия,
  • окалину,
  • ржавчину,
  • нагар,
  • смолы,
  • битум,
  • лигносульфонаты и т.д.

Для удаления сложных пятен допустимо применение поверхностно-активных веществ. В этом случае после обработки обязательно необходимо ополаскивать поверхность чистой пресной водой.

Технологические схемы комплексов гидроабразивной очистки

1. Гидропневмоабразиная (аэрогидроабразивная, аэрогидродинамическая) очистка, предусматривающая наличие источника сжатого воздуха.

2. Гидроабразивная очистка инжекционным способом

В случае если Вы заинтересованы в проведении работ с помощью технологии гидроабразивной очистки, заполните заявку на производство работ или свяжитесь с нами по контактным телефонам.

Гидроабразивная очистка

В настоящее время существует несколько способов очистки металлических поверхностей. Каждый из них имеет ряд преимуществ, а также недостатков. При использовании некоторых из них возникает вопрос об экологичности процесса и о том, как утилизировать оставшиеся отходы. Многие применяют абразивоструйную, дробеструйную, ультразвуковую обработку, чистку водой под высоким давлением, кислотное травление, но, ни один из вышеперечисленных методов не объединяет три главных требования – производительность, экология, качество. Как правило, преимущество отдается производительности, а не экологичности процесса.

Метод гидроабразивной очистки известен довольно давно. Впервые он был применен в 60-е годы, но долгое время не получал должной поддержки так, как его было трудно реализовать в металле. Широкое распространение метода гидроабразивной обработки началось несколько лет назад. В последнее время он активно используется в европейских странах, США, а также и в России. Его применяют там, где необходима скорость, качество, экологичность и безопасность.

Гидроабразивная обработка применяется для очистки поверхностей лопаток беспилотных аппаратов, турбин, авиадвигателей от ржавчины, краски и окалины. Метод гидроабразивной очистки позволяет добиться наивысшей степени Sa3. Согласно нормам Шведской ассоциации стандартов – это обработка до чистой поверхности. В результате чего металл не должен содержать любых видов загрязнений и иметь характерный серо-белый оттенок, небольшую рельефность.

Перед тем как приступить к работе специалисты оценивают степень загрязнения поверхности: А – значительная часть поверхности покрыта окалиной, однако отсутствует ржавчина или присутствует в небольших количествах. B – металлическая поверхность ржавая, в некоторых местах начала отслаиваться. C – металлическая поверхность полностью покрыта ржавчиной, но её можно соскрести. При этом на ней расположены небольшие углубления. D – металлическая поверхность полностью ржавая, невооруженным взглядом можно увидеть небольшие отверстия.

Согласно существующим схемам гидроабразивной обработки выделяют:

  1. Гидроабразивную обработку с высоким давлением воды. Очистка таким способом обеспечивается наличием установки, которая подает водную струю под давлением до 3000 Бар и пескоструйный аппарат с компрессором, создающим давление до 12 Бар. При этом абразив должен быть сухой, однородной фракции. Смешивание воды с абразивом проходит в специальном резервуаре совмещенного сопла. В результате этого получается водная струя с абразивом под очень высоким давлением. В настоящий момент подобных установок на территории России немного, но в арсенале она есть.
  2. Гидроабразивная обработка с низким давлением воды. Подобный метод очистки обеспечивается водной струей с абразивом под давлением 12 Бар. Вода подается в специальный отдел распылителя, который закреплен на пескоструйном сопле. В процессе работы вода инжектируется, смешивание абразива и воды происходит на выходе из установки.

Гидроабразивная резка

3.1 Технологические основы гидроабразивной резки

По данным Международной ассоциации инженеров-технологов в мировой практике на мелкосерийное производство, единичное и среднесерийное производство приходиться 70-80 % общего объема выпуска изделий в машиностроении.

Сложность продукции машиностроительного производства за последние три десятилетия в среднем выросли в шесть раз. Из общего числа типоразмеров деталей производства наибольшая доля (более 2/3 общей номенклатуры изделий) приходится на плоские детали сложной конфигурации. Плоские детали сложного контура имеют значительное распространение (более 50 % номенклатуры), а их обработка составляет 20-30 % от общей стоимости механообработки. При месячной программе, измеряемой десятками и сотнями штук сложноконтурных плоских деталей, использование традиционных методов обработки становится экологически нецелесообразно. Выход из создавшегося положения заключается в использовании деталей из толстолистового проката, а для его обработки – резку гидроабразивной струей.

Процесс гидроабразивной резки иллюстрирует рисунок 4. От насоса сверхвысокого давления вода поступает в подводящий водовод 1 и фокусируется в отверстии сопла 2. Одновременно через подвод 3 в смесительную трубку 4 поступает абразивный порошок. Происходит смешивание струи воды, порошка и воздуха. Гидроабразивная струя направляется на поверхность обрабатываемого материала. В зоне резания образуется щель или сквозной паз. На выходе из паза разрушающая сила струи гасится водой, содержащейся в ванне 8.

а) б)

Рисунок 4 — Схемы режущей головки (б) и траектории движения частиц в смесительной трубке (а): 1 — подводящий водовод; 2 — сопло; 3 — подвод абразива; 4 -смесительная трубка; 5 — кожух; 6 — режущая струя; 7 — разрезаемый материал; 8 — гасящий слой воды; 9 — смесительная камера

В сопло 2 вода поступает под давлением 300…600 МПа и фокусируется отверстием сопла до размера Ø 0,01…0,025 мм. Скорость истечения струи воды на выходе из сопла превышает в 3…4 раза скорость звука. Такая струя воды становится режущим инструментом. С добавлением частиц она способна разрезать практически все материалы. Сфокусированная водяная струя с абразивом постепенно и с постоянной скоростью вводится в заготовку и прорезает в ней узкую щель. Скорость струи по толщине реза вследствие трения о поверхность

реза замедляется – на входе в заготовку скорость максимальная, на выходе минимальна. Съем материала по толщине также разный. В результате образуется изогнутая фронтальная поверхность реза. Угол между неискаженной водяной струей и поверхностью резания постепенно увеличивается (рис. 5 а)

Рисунок 5 — Форма струи в направлении движения головки (а) и формы паза на входе (б) и на выходе (в) реза

Форма стенок реза по толщине также неодинакова: на входе стенки реза расположены вертикально; на выходе наклонно (рис. 5 б, в).

Частицы абразива в процессе перемещений взаимодействуют (соударяются) с поверхностью смесительной трубки и вызывают увеличение диаметра вследствие интенсивного износа. В результате на выходе трубки уменьшается давление струи и ее скорость.

Обычно сопла изготавливают из сапфира, рубина или твердого сплава. Срок службы сапфировых и рубиновых сопел составляет 60…100 ч, твердосплавных сопел 80…150 ч. Смесительные трубки изготавливают из сверхпрочных материалов, и их срок службы составляет 100…200 часов.

Основными технологическими параметрами процесса гидроабразивной резки являются скорость перемещения режущей головки, скорость и давление гидроабразивной струи, толщина обрабатываемого материала; концентрация и размеры абразивных частиц; свойства разрезаемого материала. При завышенной скорости перемещения режущей головки происходит отклонение от прямолинейности водно-абразивной струи; заметно проявляется ослабевание струи и, как следствие, возникновение конусности реза.

При выборе параметров режима резания задаются следующие исходные данные:

  • материал обрабатываемого изделия;
  • толщина реза;
  • состав и количество (расход) абразивного материала;
  • диаметры водяного и рабочего сопел;
  • давление воды на входе в рабочую головку;
  • требуемые показатели качества поверхностного слоя.

Назначаемой величиной является подача головки, которую часто называют скоростью резания. В таблице 5.1 приведены рекомендуемые скорости резания некоторых материалов.

Таблица 5.1 – Рекомендуемые значения параметров режима резания различных материалов

Условия обработкиМаксимальная скорость резки, м/мин
Давление 414 МпаДавление 276 МПа
Соотношение диаметров водяного и выходного сопел, мм0,254/0,7620,355/1,0160,457/1,500,254/0,7620,33/,016
Расход воды (л/мин)2,274,367,271,913,23
Расход абразива, кг/мин0,40,631,130,270,45
Мощность, кВт2550801125
Толщина, ммАлюминий
6,251,361,932,560,681,01
12,50,640,911,210,320,48
250,290,410,540,140,21
Графит
6,253,695,246,951,862,73
Термореактивный пластик
12,51,752,483,290,831,29
250,781,101,460,390,57
Никелевый сплав
6,250,460,650,860,230,34
12,50,220,310,410,110,16
250,010,140,180,050,07
Стекло
6,252,613,704,911,321,93
12,51,241,762,330,620,91
250,550,781,030,280,41
Сталь среднеуглеродистая
6,250,540,771,020,270,40
12,50,260,360,480,130,19
250,110,160,210,060,08
Сталь нержавеющая
6,250,500,710,950,250,37
12,50,240,340,450,120,18
250,100,140,200,050,08
Титановый сплав (6Al4V)
6,250,660,931,230,330,49
12,50,310,440,580,160,23
250,140,200,260,070,10

По мере увеличения давления в струе с одной стороны происходит увеличение глубины резания, с другой стороны ускоряется износ элементов режущей головки.

Для каждого вида и толщины обрабатываемого материала подбираются оптимальные значения давления и концентрации абразива и размера частиц.

Максимальное рабочее давление обычно составляет 300…320, 380, 415 или 600 МПа.

Оптимальная концентрация абразива зависит от вида материала, а также степени износа сопла.

При малой концентрации абразива эффективность гидроабразивной резки будет невысокой, а повышенная концентрация вызывает скопление абразива, которое вызывает затруднение его удаления из зоны резания. При этом понижается эффективность обработки.

Размер абразивных частиц составляет 10-30 % диаметра режущей струи для обеспечения ее эффективного воздействия и стабильного истечения. Обычно размер частиц составляет 150..250 мкм, и в ряде случаев 75..100 мкм, если допустимо получение поверхности реза с низкой шероховатостью.

3.2 Технологическое оборудование для гидроабразивной резки

Технологическое оборудование выполнено по модульному принципу. Модули соединяются между собой гибкими связями. Это позволяет легко осуществлять монтаж и демонтаж отдельных модулей на подвижные платформы, в том числе и на автомобильные, осуществлять транспортировку к объектам обработки. Мобильность установок способствует увеличению их загрузки.

Модулями являются: координатный стол 1; режущая головка 2; система подачи абразива 3; бак-отстойник 4; станция высокого давления 5; высоконапорная разводка 6; система водоподготовки 7; воздушный компрессор 8; система управления 9 (рис. 6). Дополнительно в состав установки могут входить устройства для предотвращения столкновений режущей головки с заготовкой, механическая система предварительного просверливания, ловушка струи воды, гасящая ее энергию и служащая для сбора отработанного абразива. Таким образом, установки обладают разной степенью универсальности и автоматизации. Они могут быть выполнены в виде роботизированных комплексов.

Рисунок 6 — Схема установки гидроабразивной резки: 1- координатный стол; 2 — режущая головка; 3 — система подачи абразива; 4 — бак-отстойник; 5 — станция высокого давления; 6 — высоконапорная установка; 7 — система водоподготовки; 8 — воздушный компрессор; 9 — система управления

Координатный стол предназначен для размещения обрабатываемого изделия и позиционирования режущей головки. Стол включает портал 1 (рис. 7), перемещающийся по осям Х, Y, Z. Вдоль портала по оси Y движется поперечная тележка 3, обеспечивающая подъем и опускание по оси Z вертикальной каретки 4. Режущая головка 5 имеет возможность вращения вокруг двух взаимно перпендикулярных осей.

Перемещение по каждой из осей осуществляется отдельным приводом. Положение головки определяется преобразователями координат или магнитной линейной системой.

Перемещение по осям ограничивается с помощью концевых датчиков. Опорные датчики гарантируют повторяемость перемещений на требуемую позицию даже при сбоях в системе электропитания.

Программное управление обеспечивает динамический наклон головки, что позволяет избежать конусности обрабатываемых поверхностей.

Под рабочей поверхностью стола находится уловитель остаточной энергии (ловушка струи). Как дополнительный вариант возможна установка оборудования для автоматической регулировки уровня воды, барботирования и откачки пульпы (шлама и использованных абразивных материалов) во внешний отстойный резервуар.

Рисунок 7 — Схема стола портального типа (а) и направления вращения режущей головки: 1 — продольные направляющие; 2 — портал; 3, 4 — соответственно поперечная и высотная каретки; 5 — режущая головка

Режущая головка осуществляет окончательное формирование высоконапорной тонкой струи как режущего инструмента со своими геометрическими и энергетическими параметрами. Конструктивные особенности струйной головки: взаиморасположение деталей, характер их соединения, контакт формируемой струи определяют качество и надежность головки. Существует множество конструкций струйных головок. Наиболее совершенными из них считаются конструкции со свободным вводом абразива в рабочую зону с минимальным нарушением их гидродинамических характеристик (рис. 8).

Основными геометрическими параметрами проточной части гидроабразивной головки являются: dₒ — выходной диаметр струеформирующего сопла; dв — диаметр отверстия водовода; d — диаметр отверстия коллиматора; D — диаметр камеры смешивания; L1 — длина камеры смешения; — длина коллиматора.

Рисунок 8 — Схема конструкции гидроабразивной головки: 1- струеформирующее устройство; 2 — успокоитель; 3 — подводящий водовод; 4 — сопло; 5 — камера смешивания; 6 — переходник; 7 — коллиматор; 8 — корпус коллиматора; 9 — корпус головки

Существующие теоретические модели формирования абразивной струи базируются на представлении, что формирование гидроабразивной струи происходит только в коллиматоре головки. При этом с помощью уравнений гидродинамики описывается разгон смеси воздуха и абразивных частиц, как течение двух параллельных осесимметричных потоков воздушной струи и смеси воздуха с абразивными частицами. В соответствии с математической моделью формирования гидроабразивной струи параметры режущей головки подразделяются на три группы.

К первой группе относятся динамические и структурные характеристики струи высокого давления, влияющие на эффективность формирования гидроабразивной струи: диаметр сопла d0 и давление воды перед насадкой.

Вторая группа включает геометрические параметры проточной части гидроабразивного инструмента: диаметр D и длина L камеры смешивания и геометрические параметры коллиматора: диаметр d и длина L2 .

К третьей группе относятся параметры системы дозирования подачи абразива в камеру смешивания в условиях гравитационной подачи абразива в камеру смешивания или путем самовсасывания за счет разряжения.

Повышением эффективности существующих режущих головок является их модернизация путем охлаждения режущей струи распылением жидкого азота в камере смешивания (криогенная резка). В результате происходит охлаждение высоконапорной струи жидкости с испаряющимся азотом, образование в ней частиц льда, выполняющих роль абразивных зерен, и возникновение на поверхности сопла ледяной корки, защищающей сопло от интенсивного износа. Гидроабразивная головка с охлаждением представлена на рисунке 9.

Головка функционирует следующим образом.

По трубопроводу 4 через форсунку расположенную в патрубке 3, внутрь камеры 5 подается вода и распыляется жидкий азот. Происходит интенсивное охлаждение корпуса режущей головки 1 и циркулирующей воды. Эффективность охлаждения повышается за счет оребрения 14.

Одновременно по трубопроводу 7 через форсунку, расположенную в патрубке 6, внутрь камеры смешивания 9 также поступает распыленный жидкий азот. В результате происходит непосредственное охлаждение высоконапорной струи жидкости испаряющимся азотом и образование в нем частиц льда, а также происходит кристаллизация водяной пыли, образующейся в камере 9. Выход газа из камер предварительного и окончательного охлаждения осуществляется через патрубки 11,13.

Криогенная резка позволяет разрезать сверхтолстые и прочные материалы, недоступные другим видам резки. Криогенная резка является конкурентам для других высокотехнологичных видов резки: лазерной, плазменной, гидроабразивной.

Достоинствами криогенной резки являются возможность резки всех видов материалов, высокая скорость реза, практически отсутствие ограничений на толщину разрезаемого материала, высокое качество реза толстого материала, относительная безопасность процесса.

Рисунок 12 — Гидроабразивная головка с охлаждением: 1– корпус режущей головки; 2, 8 — корпуса устройств соответственно предварительного и окончательного охлаждения; 3, 6 — входные патрубки; 4, 7 — входные трубопроводы; 5 — камера предварительного охлаждения; 9 — смесительная камера; 10 — струя высокого давления; 11, 13 — выходные патрубки; 12 — сопло; 14 — оребрение

Станция высокого давления включает насосы прямого действия или мультипликаторного. Насосы прямого действия основаны на создании давления жидкости кривошипно-шатунными механизмами, приводимыми в действие электрическими двигателям. Насосы прямого действия могут надежно и стабильно работать на уровне давления до 400 МПа. Практика использования установок для гидроабразивной резки показала, что процесс резки устойчиво и стабильно осуществляется в диапазоне давления 270…340 МПа. Кроме того, насосы прямого действия обладают высоким КПД — до 95 %.

Насосы мультипликаторного действия способны создавать давление 400…600 МПа.

Давление в таких насосах поднимается ступенчато. На первой ступени первичное давление создается гидравлическим насосом. При этом используется гидравлическая жидкость, которая последовательно

поступает в левый и правый цилиндры мультипликатора. Площади цилиндров мультипликатора могут быть в 20 раз больше площади плунжеров мультипликатора. В результате давления воды, выталкиваемой плунжерами из каждого цилиндра в 20 раз выше первичного давления в гидравлическом насосе. Вода высокого давления последовательно из каждого цилиндра поступает в аттенюатор (аккумулятор), который сглаживает пульсации давления и обеспечивает ее непрерывный поток в режущую головку.

Разводка высокого давления используется для подачи воды от насоса высокого давления к режущей головке системой неподвижных и подвижных труб. Для обеспечения плотности соединений при движении портала и рабочей головки используются специальные шарниры, высокого давления или спиральные специальные конструкции.

Достоинства и недостатки гидроабразивной резки

Область применения гидроабразивной резки весьма обширна: высококачественные стали, цветные металлы, стекло, натуральный камень, керамика, материалы для авиационной и космической промышленности, пластмассы, комбинированные материалы и т. д. Гидроабразивной резкой можно разделять практически все материалы. При этом не возникает механических деформаций, поскольку воздействия струи составляет 1…100 Н, а температура в зоне реза не превышает 60…90 °С. Поэтому в материале отсутствуют термические напряжения. Исключается оплавление или пригорание кромок. Возможно обработка термочувствительных материалов. Обеспечивается экологическая чистота процесса, полное отсутствие вредных газовых выделений.

Гидроабразивная струя способна разрезать материалы, толщиной до 300 мм по сложному контору с высокой точностью. Возможна резка со скосом кромок. При резке возможны минимальные зазоры между деталями, что позволяет минимизировать расход обрабатываемого материала. Режущая головка обеспечивает перемещение абразивной струи в любом направлении. Поэтому возможно получение двухмерных плоских и трехмерных объемных изделий.
911

Пневматическая гидроабразивная обработка


Пневматическая гидроабразивная обработка применяется для очистки поверхности от нагара, ржавчины, окалины, краски. Благодаря её использованию можно добиться снижения шероховатости, матирования. Существуют малогабаритные камеры для пневматической гидроабразивной обработки. Их назначение, кроме вышеперечисленного, также: очистка малогабаритных изделий, матирование деталей оптических устройств, плазменное напыление, гальваника, цинкование. В некоторых случаях можно применять также пневматические гидроабразивные установки открытого типа. Подобный аппарат соединяет в себе функции стационарного и передвижного устройства. Благодаря экологичному способу очистки может использоваться в закрытых цехах с температурой не ниже 4°С. Отдельно стоит выделить автоматические установки для пневматической гидроабразивной очистки. В зависимости от обрабатываемой поверхности они имеют несколько видов:

  1. Для очистки турбинных лопаток. Для того чтобы качественно их обработать оператор предварительно обводит поверхность лазерным лучом. Автоматическая система запоминает и повторяет траекторию движения, регулирует ход лопатки и струйного аппарата. Тем самым гарантируется качественная очистка всей поверхности. На графическом дисплее можно видеть стадии процесса обработки. Такая система может комплектоваться измерительными приборами, которые сканируют начальные и финишные результаты и выдают в печатном виде.
  2. Установка для очистки титановых профилей. Она удаляет из их поверхности органические и неорганические отложения, окалину.
  3. Установка для очистки отрезков труб. С её помощью можно избавиться от окалины, нагара, ржавчины, окиси, органических и неорганических загрязнений. Такая установка обеспечит минимальное воздействие на очищаемый объект.
  4. Аппарат для очистки колесных пар. Он предназначен для обработки оси, наружной и внутренней околоободной части.
  5. Установка для очистки проволоки и сортопроката. С её помощью можно избавиться от окисных пленок, окалины, нагара, ржавчины, органических и неорганических отложений. Эту установку используют для подготовки проката к холодной деформации.
  6. Установка для обработки листа. Она предназначена для очистки листов титана от технологических загрязнений и окалины.

Гидроструйная очистка металлоконструкций

Данный способ очистки поверхностей применяют в тех особых случаях, когда стандартная сухая очистка будет неэффективна. Также его можно использовать при недопустимости пылевой составляющей. В подобных условиях на поверхность подают не только воду, но и абразив.

По своему принципу работы различают 2 типа гидроабразивных установок:

  • инжекторные, где абразив за счет разряжения попадает в сопло;
  • напорные, где в сопло подают воду, создавая водную оболочку или соединение с воздушно-абразивной смесью.

Гидроструйная очистка металлоконструкций отличается высокой эффективностью при работе на фермах и иных механических конструкциях. Обычно так удаляют старую краску и ржавчину. Инжекторные установки – разумный выбор, позволяющий полностью исключить образование пыли.

Использование гидроструйной очистки металлоконструкций нередко необходимо для объектов нефтяной и газовой промышленности. Как правило, производится очистка резервуаров, газо- и нефтепроводов. Этот метод позволяет исключить появление искр, отвечая требованиям пожарной и взрывобезопасности.

Достоинства гидроабразивной очистки:

  • Сохранение начального уровня шероховатости и формы поверхности.
  • Возможность обрабатывать ажурные и тонкие устройства.
  • Отсутствие съема основной поверхности металла.
  • Невозможность попадания абразива во внутреннюю структуру поверхности.
  • Ликвидация места образования коррозии.
  • Возможность проведения последующей дефектоскопии.
  • Возможность добавления в процессе очистки специальных средств, предотвращающих повторное появление коррозийных центров.
  • Экологичность метода: все абразивы имеют гигиенические сертификаты.
  • Отсутствие пыли при обработке.
  • Совместимость с имеющимися производственными процессами.
  • Применение недорогого и доступного сырья, возможность повторного использования абразива, что приводит к снижению стоимости всего процесса.
  • Отсутствие требований по подготовке воды.
  • Взрыво- и пожаробезопасность

Установка для гидроструйной очистки

Все возможности этого метода можно полностью реализовать с использованием установки для гидроструйных работ. Установка для гидроструйной очистки монтируется на основе 20-футового стандартного контейнера, который может транспортироваться на типовом полуприцепе обычным седельным тягачом.

Установка имеет в своем составе:

  • насос высокого давления, способный развить давление до 1000 бар при производительности 200 литров в минуту;
  • дизельный привод для насоса, развивающий мощность 372 квт;
  • различные насадки, оснастки и приспособления для очистки всевозможного технологического оборудования (шланги, рассчитанные на высокое давление, насадки, специально предназначенные для очистки трубок теплообменников и разнообразных трубопроводов, для очистки пространства между трубами, оснастка для очистки теплообменников спиральной формы, различного оборудования емкостного и колонного вида.
Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]