Общие сведения о якорных обмотках машин постоянного тока

Электрические машины › Электрические машины постоянного тока

Элементом обмотки якоря является секция, которая своими концами присоединена к двум пластинам коллектора. Секции могут быть одновитковыми и многовитковыми. Пазовые стороны секций расположены в пазах сердечника якоря. Расстояние между пазовыми сторонами секции приблизитеьно равно полюсному делению.

где Da — диаметр сердечника якоря.

Обычно обмотки якоря выполняют двухслойными. В зависимости от порядка присоединения секций к пластинам коллектора обмотки разделяют на волновые и петлевые, простые, сложные и комбинированные.

Простая волновая обмотка

В простой волновой обмотке концы каждой секции присоединены к пластинам коллектора, находящимся на расстоянии, называемом шагом обмотки по коллектору,

где К — число коллекторных пластин в коллекторе.

На рис. 13.5 показана схема простой волновой обмотки якоря. Секции обмотки образуют две параллельные ветви (2а = 2). Число параллельных ветвей в обмотке и число секций в каждой ветви определяют ток и ЭДС Еа обмотки якоря:

где S — количество секций в обмотке якоря; ес — ЭДС одной секции; — допустимое значение тока в секции.

Машины постоянного тока. Обмотки якорей машин постоянного тока.

Машина постоянного тока — электрическая машина, предназначенная для преобразования механической энергии в электрическую постоянного тока (генератор) или для обратного преобразования (двигатель). Электрическая машина постоянного тока обратима. Для работы машины постоянного тока необходимо наличие в ней двух обмоток: обмотки возбуждения и обмотки якоря. Первая служит для создания в машине постоянного тока магнитного поля, т. е. для возбуждения, а посредством второй происходит преобразование энергии. Исключение составляют магнитоэлектрические машины постоянного тока, в которых имеется лишь одна (якорная) обмотка, так как магнитное поле (возбуждение) в этих машинах создается постоянными магнитами.

Обмотка якоря машины постоянного тока представляет собой замкнутую систему проводников, определенным образом уложенных на сердечнике якоря и присоединенных к коллектору.

Элементом обмотки якоря является секция, которая содержит один или несколько витков и присоединяется к двум коллекторным пластинам. Секция состоит из активных сторон, заложенных в пазы сердечника якоря, и лобовых частей, соединяющих эти стороны. При вращении якоря в каждой из активных сторон индуктируется э. д. с. В лобовых же частях секции э. д. с. не индуктируется.

Часть поверхности якоря, приходящаяся на один полюс, называется полюсным делением и выражается следующей формулой:

где t — полюсное деление;

D – диаметр якоря;

2p – число главных полюсов в машине.

Полюсное деление Расположение активных сторон на сердечнике якоря

Чтобы э. д. с., индуктируемые в активных сторонах секций, складывались, т. е. действовали согласно, секцию следует расположить в пазах сердечника якоря так, чтобы ширина секции была равна или незначительно отличалась от полюсного деления. Элементарные пазы: а) один элементарный паз; б) два элементарных паза; в) три элементарных паза Изображение секции на развернутой схеме

Секции укладываются в пазах сердечника якоря в два слоя. При этом если одна из активных сторон секции находится в нижней части одного паза, то ее другая сторона находится в верхней части другого паза. Верхняя сторона одной секции и нижняя сторона другой, уложенные в одном пазу, образуют элементарный паз (Z3 ). В реальном пазу может быть и более двух активных сторон, например четыре, шесть, восемь и т. д. В этом случае реальный паз состоит из нескольких элементарных пазов.

Так как секция имеет две активные стороны, то каждой секции соответствует один элементарный паз. Концы секции присоединяются к коллекторным пластинам, при этом к каждой пластине присоединяется начало одной секции и конец другой, т. е. на каждую секцию приходится одна коллекторная пластина. Таким образом, для якорной обмотки можно записать следующее равенство:

где S – число секций в обмотке якоря;

Zэ – число элементарных пазов;

К – число коллекторных пластин.

Для более удобного и наглядного изображения схем якорных обмоток цилиндрическую поверхность якоря вместе с обмоткой условно развертывают на плоскости и все соединения проводников изображают прямыми линиями на плоскости чертежа. Выполненная в таком виде схема обмотки называется развернутой.

В зависимости от формы секций и от способа присоединения их к коллектору различают следующие типы якорных обмоток: простая петлевая, сложная петлевая, простая волновая, сложная волновал и комбинированная.

Простая петлевая обмотка

В простой петлевой обмотке якоря каждая секция присоеди­нена к двум рядом лежащим коллекторным пластинам. На рис. изображена одновитковая, и двухвитковая секция петлевой обмотки. При укладке секций на сердечник якоря начало каждой последующей секции соединяют с концом предыдущей секции, постепенно перемещаясь при этом по по­верхности якоря (и коллектора) так, что за один обход уклады­вают все секции обмотки. В результате конец последней секции оказывается соединенным с началом первой, т. с. обмотка замы­кается. Одновитковая секция простой петлевой обмотки Двухвитковая секция простой петлевой обмотки

На рис. изображена часть простой петлевой обмотки, на которой показаны шаги обмотки — расстояние между активны­ми сторонами секций по якорю. Кратчайшее расстояние между активными сторонами одной секции на поверхности якоря назы­вают первым частичным шагом обмотки по якорю и обозначают через y1 . Это расстояние измеряется в элементарных пазах и, как было указано ранее, должно быть равным пли незначительно отличаться от полюсного деления.

Расстояние между активной стороной нижнего слоя первой секции и активной стороной верхнего слоя второй секции называют вторым частичным шагом обмотки по якорю, обозначают через y2 и измеряют в элементарных пазах.

Знание шагов обмотки y1 и y2 дает возможность определить результирующий шаг обмотки по якорю у, который представляет собой расстояние между расположенными в одном слое актив­ными сторонами двух следующих друг за другом секций.

Из рис. следует, что

у= y1 — y2 Шаги петлевой обмотки:

а) – правоходовая обмотка: б) левоходовая обмотка

Укладывая секции обмотки, мы как бы перемещаемся не только по сердечнику якоря, но и по коллектору. Расстояние между двумя коллекторными пластинами, к которым присоединены начало и конец одной секции, называется шагом обмотки по коллектору и обозначается через ук .

Шаги обмотки по якорю измеряются элементарными пазами, а шаг по коллектору — коллекторными делениями (пластинами). Обмотка, часть которой показана на рис. называется правоходовой, так как укладка секций этой обмотки происходит слева на право но якорю, в отличие ог левоходовой, в которой укладка секций обмотки по якорю идет справа налево. Как следует из определения, начало н конец каждой секции простой петлевой обмотки присоединяется к рядом лежащим коллекторным пластинам, следовательно,

y = yк = ± 1.

В этом выражении знак «плюс» соответствует правоходовой обмотке, а знак «минус» — левоходовой.

Для определения всех шагов простой петлевой обмотки до­статочно рассчитать первый частичный шаг по якорю

,

где ε – велечина, меньшая единицы, вычитая или суммируя ко­торую можно получить шаг у1 , выраженный целым числом.

y2 = y1 ± y = y1 ± 1

Прежде чем приступить к выполнению схемы, необходимо отметить следующее:

1. Все пазы сердечника якоря н секции обмотки нумеруют­ся. При этом номер секции определяется номером паза, в верх­ней части которого находится одна из ее активных сторон.

2. Активные стороны верхнего слоя изображают на схеме сплошными линиями, а стороны нижнего слоя — пунктирными так, что одна половина секции, относящаяся к верхнему слою,

показывается на схеме сплошной линией, а другая, относящаяся к нижнему слою, — пунктирной.

Для удобства вычерчивания схемы следует предварительно составить таблицу соединений. В этой таблице (табл. 2.1) гори­зонтальные линии изображают секции, а наклонные указыва­ют на порядок соединения секции со стороны коллекто­ра. При правильно вычислен­ных шагах таблица включает в себя все активные стороны верхнего и нижнего слоев об­мотки .

Развернутую схему обмот­ки (рис. 2.8) строят в следу­ющей последовательности. На листе бумаги размечают пазы, и наносят контуры полюсов. При этом следует учесть, что изображенный на схеме полюс представляет собой как бы зер­кальное отражение полюса, находящегося над якорем. При выполнении схемы обмотки ширину полюса следует при­нять равной приблизительно 0,8 т. Полярность полюсов че­редуется: N—S—N—S. Затем изображают коллекторные пла­стины и наносят на схему пер­вую секцию, активные стороны которой расположатся в пазах 1 и 4. Коллекторные пластины, к которым присоединены концы первой секции, обозначают цифрами 1 и 2. Затем нумеруют остальные коллекторные пла­стины и последовательно наносят на схему другие секции (2, 3 и т. д.). Последняя секция (12) должна замкнуть обмотку, что будет свидетельствовать о правильно выполненной схеме.

Далее на схеме изображают щетки. Расстояние между щет­ками А и В должно соответствовать полюсному делению, т. е. должно соответствовать полюсному делению, т. е. должно составлять коллекторных делений. В нашем примере это расстояние равно коллекторным делениям. Что же касается расположения щеток на коллекторе, то при этом следует руководствоваться следующим. Предположим, что электрический контакт якорной обмотки с внешней цепью осуществлялся не через коллектор и щетки, а при помощи так называемых условных щеток, расположенных на поверхности якоря. В этом случае наибольшее значение э. д. с. машины соответствует положению условных щеток на геометрической нейтрали. Но так как коллекторные пластины, к ко­торым присоединены секции, смещены относительно активных сторон этих секций приблизительно на 1/2τ, топере­ходя от условных щеток к реальным, следует расположить их на коллекторе по оси главных полюсов машины. Развернутая схема простой петлевой обмотки:

2p = 4; Zэ = 12 Расположение условных щеток на якоре Расположение щеток на коллекторе по оси главных полюсов

Предположим, что машина работает в режиме генератора и ее якорь вращается в направлении слева направо. Воспользо­вавшись правилом «правой руки», определяем направление э. д. с. (тока), индуктируемой в активных сторонах секций. Это дает нам возможность установить полярность Щеток: щетки А1 и А2 , от которых ток отводится во внешнюю цепь, являются положительными, а щетки B1 и B2 — — отрицательными. Щетки одинаковой полярности соединяют параллельно и подключают к соответствующим выводам машины.

Простая петлевая обмотка

В машинах постоянного тока низкого напряжения (значительного тока) необходима обмотка якоря с большим числом параллельных ветвей. Таким свойством обладают петлевые обмотки. В простой петлевой обмотке якоря (рис. 13.7) каждая секция присоединена к двум рядом лежащим коллекторным пластинам, а число параллельных ветвей равно числу полюсов, т.е. 2а = 2р.

Замыкание обмотки якоря на корпус

Такого рода замыкание происходит из-за механических повреждений изоляции. Причинами механических повреждений являются: наличие в пазах выступающих листов активной стали и заусенцев, тугое заполнение паза, неплотная укладка обмотки в пазы, отчего провода под действием центробежных сил при вращении перемещаются в пазу, ослабление бандажей и другое.

Кроме механических повреждений изоляции, причинами замыкания на корпус могут явиться увлажнение изоляции, попадание в пазы и лобовые части припоя, сильный и длительный перегрев машины, распайка соединений и другое.

Замыкание обмотки якоря на корпус можно обнаружить контрольной лампой (рисунок 1, а). При проверке лампу присоединяют одним концом к сети, а другим к коллектору. Второй (свободный) конец сети присоединяют к валу якоря. Загорание лампочки свидетельствует о замыкании обмотки на корпус. Для такой проверки можно пользоваться также мегомметром.

Рисунок 1. Проверка замыкания обмоток на корпус. а – контрольной лампой; б – мегомметром: 1 – мегомметр; 2 – коллектор; 3 – вал; 4 – подставка

Место замыкания обмотки на корпус можно определить по схеме, приведенной на рисунке 2.

Рисунок 2. Определение места замыкания обмотки на корпус. а – по падению напряжения; б – показания прибора при отыскании замыканий (для петлевой обмотки); в — прослушиванием

В схеме, приведенной на рисунке 2, а, питание от источника постоянного тока подключают к щеткам через предохранитель П. Ток регулируют реостатом R. Щуп одного из проводов от милливольтметра mV присоединяют к сердечнику или валу якоря, а другим касаются любой пластины коллектора. Источником тока может служить аккумуляторная батарея или сеть постоянного тока напряжением 220 или 110 В. При отыскании повреждения достаточен ток 6 – 8 А. Милливольтметр берут со шкалой до 50 мВ.

При петлевой обмотке присоединение к коллектору производят в двух диаметрально противоположных точках. При волновой обмотке соединение к пластинам производят на расстоянии половины шага по коллектору.

При замыкании на корпус в петлевой обмотке стрелка прибора покажет отклонение, равное сумме падений напряжений в секциях, оказавшихся между секцией, замкнутой на корпус, и той, к которой присоединен щуп (рисунок 2, б, положение I – сплошная стрелка). Щуп, присоединенный к коллектору, передвигают в одну и другую стороны. При его приближении к замкнутой на корпус секции показания прибора будут уменьшаться (положение II – пунктирная стрелка), так как будет уменьшаться число секций, на которых измеряется падение напряжения. Когда щуп будет соединен с секцией, которая замкнута на корпус, стрелка милливольтметра станет на нуль (положение III). Если двигать щуп дальше, то стрелка прибора отклонится в обратную сторону (положение IV).

При проверке волновой обмотки наименьшие показания будут давать пластины коллектора, либо непосредственно замкнутые на корпус, либо замкнутые на корпус через секции обмотки.

Место замыкания определяют также «прослушиванием» обмотки (рисунок 2, в). Для этого аккумуляторную батарею и зуммер 3 присоединяют к валу якоря и любой коллекторной пластине. К валу присоединяют также один вывод телефона 1; другой вывод его перемещают по коллектору 2. Чем ближе перемещаемый проводник к замкнутой пластине или секции, тем слабее шум в телефоне. При касании проводником замкнутой на корпус секции шум исчезает.

Если указанные выше способы не дают положительных результатов, то приходится путем распайки делить обмотку на части и проверять мегомметром каждую часть в отдельности. При обнаружении замыкания в одной из частей обмотки ее продолжают делить на части до тех пор, пока не будет обнаружена секция, замкнутая на корпус.

Замыкания на корпус устраняют следующим образом:

  1. если замыкание произошло в местах выхода секций из пазов, то вгоняют под секцию небольшие клинья из фибры, бука или другого изоляционного материала;
  2. если замыкание произошло в пазовой части секции, то секцию переизолируют или заменяют новой;
  3. при отсыревании обмотки ее прослушивают;
  4. если обнаружено замыкание пластин на корпус, то следует произвести ремонт коллектора с разборкой.

Сложная петлевая обмотка

При необходимости получить еще большее число параллельных ветвей применяют сложную петлевую обмотку якоря (рис. 13.8). Такая обмотка содержит две простые петлевые обмотки (m = 2), поэтому у нее число параллельных ветвей удвоено, т.е. 2а = 2 * 2р = 4р. Такие обмотки необходимы в машинах значительной мощности при низком напряжении сети: 12; 24; 48 В.

Для того чтобы распределение токов в параллельных ветвях обмотки якоря было одинаковым, необходимо, чтобы электрическое сопротивление этих ветвей не отличалось друг от друга и чтобы ЭДС, наводимые в секциях, составляющих каждую параллельную ветвь, были одинаковыми. При несоблюдении этих условий между параллельными ветвями появляются уравнительные токи, нарушающие работу щеточно-коллекторного контакта.

Исключение составляет простая волновая обмотка, секции которой равномерно распределены под всеми полюсами машины, поэтому магнитная не симметрия машины не вызывает появления в этой обмотке уравнительных токов. Что же касается простой петлевой и всех видов сложных обмоток якоря, то в них всегда имеются причины к появлению уравнительных токов. Это приводит к необходимости применения в указанных обмотках так называемых уравнительных соединений, по которым замыкаются уравнительные токи, разгружая щеточно-коллекторный контакт от перегрузки. Уравнительные соединения усложняют изготовление обмотки якоря и ведут к дополнительному расходу обмоточной меди.

Комбинированная обмотка

В электрических машинах со значи­тельным током в обмотке якоря простые волновые обмотки неприменимы, так как в этих обмотках число параллельных ветвей не может быть более двух. Чтобы увеличить число параллельных ветвей и избежать нежелательного применения уравнительных соединений в машинах с большой токовой нагрузкой, используют комбинированную обмотку. Такая обмотка состоит из секций волновой и петлевой обмоток, а число параллельных ветвей в ней равно сумме параллельных ветвей петлевой и волновой обмоток

.
Необходимо, чтобы число параллельных ветвей волновой обмотки было равно числу ветвей петлевой обмотки. Поэтому в четырехполюсной машине комбинированную обмотку выполняют из простой петлевой (2а = 2р = 4) и сложной волновой (m = 2) обмоток. В этом случае число параллельных ветвей комбинированной обмотки равно 2акомб = 4 + 4 = 8. В такой обмотке ветви одной из составляющих обмоток служат уравнительными соединениями для другой. В итоге комбинированная обмотка с таким числом параллельных ветвей оказывается проще сложной петлевой обмотки.

Устройство обмоток

Обмотка якоря является важнейшим элементом машины и должна удовлетворять следующим требованиям: 1) обмотка должна быть рассчитана на заданные значения напряжения и тока нагрузки, соответствующие номинальной мощности; 2) обмотка должна иметь необходимую электрическую, механическую и термическую прочность, обеспечивающую достаточно продолжительный срок службы машины (до 15 – 20 лет); 3) конструкция обмотки должна обеспечить удовлетворительные условия токосъема с коллектора, без вредного искрения; 4) расход материала при заданных эксплуатационных показателях (коэффициенте полезного действия и других) должен быть минимальным; 5) технология изготовления обмотки должна быть по возможности простой.

В современных машинах постоянного тока якорная обмотка укладывается в пазах на внешней поверхности якоря. Такие обмотки называются барабанными. Обмотки якорей подразделяются на петлевые и волновые. Существуют также обмотки, которые представляют собой сочетание этих двух обмоток.

Основным элементом каждой обмотки якоря является секция, которая состоит из одного или некоторого числа последовательно соединенных витков и присоединена своими концами к коллекторным пластинам (рисунки 1 и 2).

Рисунок 1. Петлевая обмотка якоря. Одновитковая и двухвитковая секции петлевой обмоткиРисунок 2. Волновая обмотка якоря. Одновитковая и двухвитковая секции волновой обмотки

В обмотке обычно все секции имеют одинаковое число витков. На схемах обмоток секции для простоты изображаются всегда одновитковыми.

Для удобного расположения выходящих из пазов лобовых частей (смотрите рисунок 4, в статье «Устройство машины постоянного тока») обмотки якоря выполняются двухслойными. При этом в каждом пазу секции располагаются в два слоя (рисунок 3): одна сторона каждой секции – в верхнем слое одного паза, а другая – в нижнем слое другого паза. На схемах стороны секций, находящихся в верхнем слое, будем изображать сплошными линиями, а стороны, расположенные в нижнем слое, – штриховыми линиями (рисунок 4). Однослойные якорные обмотки по принципу устройства не отличаются от двухслойных и применяются только при Pн < 0,5 кВт.

Рисунок 3. Укладка обмотки в пазу 1 – сторона секции верхнего слоя; 2 – сторона секции нижнего слояРисунок 4. Соединение секций петлевой (а) и волновой (б) обмоток

Секции обмотки соединяются друг с другом в последовательную цепь (рисунок 4) таким образом, что начало (н) последующей секции присоединяется вместе с концом (к) предыдущей секции к общей коллекторной пластине. Обмотки – петлевая и волновая – названы по внешнему очертанию контуров, образуемых последовательно соединенными секциями.

Поскольку каждая секция имеет два конца и к каждой коллекторной пластине присоединены также два конца секций, то общее число пластин коллектора K равно числу секций обмотки S:

K = S .(1)

В простейшем случае в пазу находятся две секционные стороны: одна в верхнем и другая в нижнем слое. При этом число пазов якоря Z = S = K. Однако для уменьшения пульсаций выпрямленного тока и напряжения, а также во избежание возникновения чрезмерно большого напряжения между соседними коллекторными пластинами число пластин должно быть достаточно большим. Обычно при Uн = 110 – 220 В

K / 2p = 12 – 35 .

С другой стороны, изготовление якорей с большим числом пазов нецелесообразно, так как при этом пазы будут узкими, значительная часть их площади будет занята изоляцией секций от корпуса, для проводников останется мало места и в итоге получится проигрыш в мощности машины. Кроме того, большой расход изоляционных материалов и увеличение штамповочных работ вызовут удорожание машины, а мелкие зубцы будут непрочными.

По этим причинам обычно в каждом слое паза располагают несколько (uп = 2, 3, 4, 5) секционных сторон (на рисунке 3 uп = 3). При этом

K = S = uп × Z .(2)

В данном случае говорят, что в каждом реальном пазу имеется uп элементарных пазов, так что в каждом слое элементарного паза имеется одна секционная сторона. Очевидно, что общее число элементарных пазов якоря

Zэ = uп × Z = S = K .(3)

Когда uп > 1, либо все секции имеют равную ширину (рисунок 5, а), либо же часть секций имеет меньшую, а часть – большую ширину (рисунок 5, б). В первом случае обмотка называется равносекционной, а во втором – ступенчатой. При ступенчатой обмотке условия токосъема с коллектора улучшаются, однако эта обмотка сложнее и дороже и поэтому применяется реже, притом только в машинах большой мощности (Pн приблизительно равно 500 кВт и выше).

Рисунок 5. Укладка секций равносекционной (а) и ступенчатой (б) обмоток при uп = 2

В равносекционных обмотках uп секций, стороны которых лежат рядом в общих пазах, объединяются в катушку (рисунок 6) и имеют общую изоляцию от стенок паза. Одновитковые секции при больших токах изготовляются из стержней, концы которых на противоположной от коллектора стороне якоря запаиваются с помощью хомутиков после укладки в пазы. Стержни uп секций объединяются в полукатушку (рисунок 7). Секции ступенчатой обмотки являются всегда стержневыми.

Рисунок 6. Катушки петлевой (а) и волновой (б) обмоток

Рисунок 7. Полукатушки петлевой (а) и волновой (б) обмоток

На рисунке 8 приведены примеры выполнения изоляции пазовой части обмотки.

Рисунок 8. Пазовая изоляция класса А: а – полузакрытый паз 1 – клин гетинаксовый; 2 – изолированные проводники; 3 – прокладка из стеклоткани 0,18 мм; 4 – прокладка из электрокартона 0,2 мм; 5 – стеклоткань эскапоновая 0,18 мм; 6 – электрокартон 0,2 мм б – открытый паз 1 – клин деревянный; 2 – прокладка из электрокартона; 3 – изолированный проводник; 4 – микалента или синтетическая лента 0,13 мм; 5 – микафолий или синтетическая пленка 0,15 мм; 6 – телефонная бумага; 7 – электрокартон 0,2 мм; 8 – прокладка из электрокартона

В машинах малой мощности, когда ток параллельной ветви не превышает 60 – 75 А, катушки изготовляются из круглых изолированных проводников. В этом случае пазы делают трапециевидными (рисунок 8, а), чтобы получить зубцы с неизменным по высоте сечением и тем самым избежать сильного насыщения корня зубца. Проводники катушки при этом опускаются в паз по одному через узкую щель открытия паза. Такие пазы называются полузакрытыми, и изоляция таких обмоток чаще всего выполняется класса А и Е.

В случае применения проводников прямоугольного сечения паз также выполняется прямоугольным (рисунок 8, б). Такие обмотки изготовляются с различными классами изоляции. При изоляции классов А и Е проводники обмотки могут также опускаться в паз по одному, и тогда ширина открытия паза равна примерно половине ширины паза. Такие пазы называются полуоткрытыми. При изоляции классов B, F и H заранее полностью изолированные катушки укладываются в полностью открытые пазы (рисунок 8, б).

При Dа ≤ 40 см и vа ≤ 35 м/с обмотки в пазах укрепляются с помощью проволочных бандажей из стеклоленты, пропитанной лаком. Во всех остальных случаях применяются клинья из твердых пород дерева (бук и другие), гетинакса, текстолита, стеклотекстолита и других материалов.

Плотность тока в проводниках обмотки якоря при номинальной нагрузке находиться в пределах 4 – 10 А/мм². Меньшая цифра относится к крупным машинам, большая – к малым.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]