Твёрдость как характеристика свойств материала

Что такое твердость?

Каждое из известных науке веществ обладает целым рядом определенных физических свойств и качеств. В этой статье речь пойдет о том, что такое твердость. Это способность того или иного материала сопротивляться внедрению в него другого, более прочного тела (например, режущего или колющего инструмента).

Твердость веществ чаще всего измеряется в специальных единицах – кгс/мм2 (килограмм-сила на квадратный миллиметр площади). Обозначается она латинскими буквами HB, HRC или HRB, в зависимости от выбранной шкалы.

Самым твердым минералом на Земле считается алмаз. Если же говорить о материалах искусственного происхождения, то самым прочным является фуллерит. Это молекулярный кристалл, который образуется при высоких температурах (около 300 градусов по Цельсию) и чрезвычайно высоком давлении (свыше 90 000 атмосфер). Согласно исследованиям ученых, фуллерит примерно в полтора раза тверже алмаза.

Какой бывает твердость?

Различают три основных варианта твердости:

  • Поверхностная (определяется соотношением величины нагрузки к площади поверхности отпечатка).
  • Проекционная (отношение нагрузки к площади проекции отпечатка).
  • Объемная (отношение нагрузки к объему отпечатка).

Помимо этого, твердость физических тел измеряется в четырех диапазонах:

  1. Нанотвердость (величина нагрузки составляет менее 1 гс).
  2. Микротвердость (1 – 200 гс).
  3. Твердость при малых нагрузках (200 гс – 5 кгс).
  4. Макротвердость (более 5 кгс).

Твердость металлов

Из 104 элементов периодической системы Менделеева 82 являются металлами. А общее количество известных человеку сплавов достигает пяти тысяч! Область применения металлов в современном мире невероятно широка. Это военная и химическая промышленность, металлургия, электротехника, космическая отрасль, ювелирное дело, кораблестроение, медицина и т. д.

Среди всех физико-химических характеристик металлов твердость играет далеко не последнюю роль. Ведь она наглядно демонстрирует:

  • степень износоустойчивости металла;
  • сопротивляемость давлению;
  • его способность разрезать другие материалы.

Помимо всего прочего, твердость металла показывает, можно ли подвергать его обработке на тех или иных станках, поддается ли он шлифовке и тому подобное. Кстати, учеными уже давно доказано, что твердость металла во многом определяет и другие механические его свойства.

Какова твердость железа, меди и алюминия? И какой из металлов является самым твердым и прочным?

К наиболее мягким металлам причисляют магний и алюминий. Значения их твердости колеблются в пределах 5 кгс/мм2. Примерно вдвое тверже – никель и медь (около 10 кгс/мм2). Твердость железа оценивается в 30 кгс/мм2. Ну а к самым твердым металлам естественного происхождения относят титан, осмий и иридий.

Определение твердости: методы, способы и подходы

Как измеряют твердость физического тела? Для этого в образец внедряется так называемый индентор. Его роль может выполнять сверхпрочный металлический шарик, пирамида либо алмазный конус. После прямого контактного воздействия индентора на испытуемом образце остается отпечаток, по размеру которого и определяется твердость материала.

На практике применяют две группы методов измерения твердости:

  1. Динамические.
  2. Кинетические.

При этом прилагаемая нагрузка во время внедрения индентора в тело может быть осуществлена посредством царапания, вдавливания (чаще всего), разрезания или же отскока.

В наши дни существует несколько различных подходов по определению твердости:

  • по Роквеллу;
  • по Бринеллю;
  • по Виккерсу;
  • по Шору;
  • по Моосу.

Соответственно, есть ряд разных шкал твердости материалов, прямой взаимосвязи между которыми нет. Тот или иной метод измерения выбирают исходя из целого ряда факторов (например, свойств конкретного материала, условий проведения эксперимента, используемой аппаратуры и пр.). Приборы, определяющие твердость металлов или минералов, принято называть твердомерами.

Твердость – главный показатель качества инструмента

Выбирая инструмент для работы, мы сталкиваемся с такой его характеристикой как твердость, которая характеризует его качество.

Чем выше этот показатель, тем выше его способность сопротивляться пластической деформации и износу при воздействии на обрабатываемый материал.

Именно этот показатель определяет, согнется ли зуб пилы при распиловке заготовок, или какую проволоку смогут перекусить кусачки.

Метод Роквелла

Среди всех существующих методов определения твердости сталей и цветных металлов самым распространенным и наиболее точным является метод Роквелла.

Проведение измерений и определение числа твердости по Роквеллу регламентируется соответствующими документами ГОСТа 9013-59

.

Этот метод реализуется путем вдавливания в тестируемый материал инденторов – алмазного конуса или твердосплавного шарика.

Алмазные инденторы используются для тестирования закаленных сталей и твердых сплавов, а твердосплавные шарики – для менее твердых и относительно мягких металлов. Измерения проводят на механических или электронных твердомерах.

Методом Роквелла предусматривается возможность применения целого ряда шкал твердости A, B, C, D, E, F, G, H (всего – 54), каждая из которых обеспечивает наибольшую точность только в своем, относительно узком диапазоне измерений.

Для измерения высоких значений твердости алмазным конусом чаще всего используются шкалы «А», «С». По ним тестируют образцы из закаленных инструментальных сталей и других твердых стальных сплавов. А сравнительно более мягкие материалы, такие как алюминий, медь, латунь, отожженные стали испытываются шариковыми инденторами по шкале «В».

Пример обозначения твердости по Роквеллу: 58 HRC или 42 HRB.

Впереди стоящие цифры обозначают число или условную единицу измерения. Две буквы после них – символ твердости по Роквеллу, третья буква – шкала, по которой проводились испытания.

(!)

Два одинаковых значения от разных шкал – это не одно и то же, например, 58 HRC ≠ 58 HRA. Сопоставлять числовые значения по Роквеллу можно только в том случае, если они относятся к одной шкале.

Диапазоны шкал Роквелла по ГОСТ 8.064-94:

A70-93 HR
B25-100 HR
C20-67 HR

Слесарный инструмент

Инструменты для ручной обработки металлов (рубка, резка, опиливание, клеймение, пробивка, разметка) изготавливают из углеродистых и легированных инструментальных сталей. Их рабочие части подвергают закаливанию до определенной твердости, которая должна находиться в пределах:

Ножовочные полотна, напильники58 – 64 HRC
Зубила, крейцмессели, бородки, кернеры, чертилки54 – 60 HRC
Молотки (боек, носок)50 – 57 HRC

Монтажный инструмент

Сюда относятся различные гаечные ключи, отвертки, шарнирно-губцевый инструмент. Норму твердости для их рабочих частей устанавливают действующие стандарты. Это очень важный показатель, от которого зависит, насколько инструмент износостоек и способен сопротивляться смятию. Достаточные значения для некоторых инструментов приведены ниже:

Гаечные ключи с размером зева до 36 мм45,5 – 51,5 HRC
Гаечные ключи с размером зева от 36 мм40,5 – 46,5 HRC
Отвертки крестовые, шлицевые47 – 52 HRC
Плоскогубцы, пассатижи, утконосы44 – 50 HRC
Кусачки, бокорезы, ножницы по металлу56 – 61 HRC

Металлорежущий инструмент

В эту категорию входит расходная оснастка для обработки металла резанием, используемая на станках или с ручными инструментами. Для ее изготовления используются быстрорежущие стали или твердые сплавы, которые сохраняют твердость в холодном и перегретом состоянии.

Метчики, плашки61 – 64 HRC
Зенкеры, зенковки, цековки61 – 65 HRC
Сверла по металлу63 – 69 HRC
Сверла с покрытием нитрид-титанадо 80 HRC
Фрезы из HSS62 – 66 HRC

Примечание:

Некоторые производители фрез указывают в маркировке твердость не самой фрезы, а материала, который она может обрабатывать.

Крепежные изделия

Существует взаимосвязь между классом прочности крепежа и его твердостью. Для высокопрочных болтов, винтов, гаек эта взаимосвязь отражена в таблице:

Болты и винтыГайкиШайбы
Классы прочности 8.810.912.9 8 10 12Ст.Зак.ст.
d16 ммd16 мм
Твердость по Роквеллу, HRCmin2323323911192629.220.328.5
max343439443036363623.140.8

Если для болтов и гаек главной механической характеристикой является класс прочности, то для таких крепежных изделий как стопорные гайки, шайбы, установочные винты, твердость не менее важна.

Стандартами установлены следующие минимальные / максимальные значения по Роквеллу:

Стопорные кольца до Ø 38 мм47 – 52 HRC
Стопорные кольца Ø 38 -200 мм44 – 49 HRC
Стопорные кольца от Ø 200 мм41 – 46 HRC
Стопорные зубчатые шайбы43.5 – 47.5 HRB
Шайбы пружинные стальные (гровер)41.5 – 51 HRC
Шайбы пружинные бронзовые (гровер)90 HRB
Установочные винты класса прочности 14Н и 22Н75 – 105 HRB
Установочные винты класса прочности 33Н и 45Н33 – 53 HRC

Относительное измерение твердости при помощи напильников

Стоимость стационарных и портативных твердомеров довольно высока, поэтому их приобретение оправдано только необходимостью частой эксплуатации. Многие мастеровые по мере надобности практикуют измерять твердость металлов и сплавов относительно, при помощи подручных средств.

Опиливание образца напильником – один из самых доступных, однако далеко не самый объективный способ проверки твердости стальных деталей, инструмента, оснастки.

Напильник должен иметь не затупленную двойную насечку средней величины №3 или №4.

Сопротивление опиливанию и сопровождающий его скрежет позволяет даже при небольшом навыке отличить незакаленную сталь от умеренно (40 HRC) или твердо закаленной (55 HRC).

Для тестирования с большей точностью существуют наборы тарированных напильников, именуемые также царапающий твердомер. Они применяются для испытания зубьев пил, фрез, шестерен. Каждый такой напильник является носителем определенного значения по шкале Роквелла.

Твердость измеряется коротким царапанием металлической поверхности поочередно напильниками из набора. Затем выбираются два близко стоящие – более твердый, который оставил царапину и менее твердый, который не смог поцарапать поверхность.

Твердость тестируемого металла будет находиться между значениями твердости этих двух напильников.

Метод Роквелла

Величина твердости по Роквеллу определяется по глубине отпечатка алмазного конуса или металлического шарика, оставленного на поверхности тестируемого образца. Причем она является безразмерной и обозначается буквами HR. Слишком мягкие материалы могут иметь отрицательные значения твердости.

Так называемый твердомер Роквелла был изобретен в начале прошлого века американцами Хью Роквеллом и Стэнли Роквеллом. В следующем видеоролике вы можете увидеть, как он работает. Крайне важным фактором для этого метода является толщина тестируемого образца. Она не должна быть менее значения десятикратной глубины проникновения индентора в испытуемое тело.

В зависимости от типа индентора и прилагаемой нагрузки существуют три измерительные шкалы. Их обозначают тремя латинскими буквами: A, B и C. Значение твердости по Роквеллу имеет числовой вид. Например: 25,5 HRC (последняя буква обозначает шкалу, которая была использована в тесте).

Способы измерения твёрдости металла, резины, бетона

Первоисточник статьи — https://vostok-7.ru/articles/tverdost/

Единого общепринятого определения термина «ТВЁРДОСТЬ» не существует поскольку методы определения этой метрологической величины настолько разнообразны, что нет возможности их объединить в одной фразе или описании. При этом даже для одного типа материала (напр.

металлов) методов определения твердости существует более 5… Также именно по этой причине приборы для измерения твёрдости именуются не только твердомерами, но и другими названиями, указывающими на метод или материал измерения: дюрометр (для резин), склерометр (для минералов) и т.д.

Твёрдость минералов

Шкала твёрдости минералов Мооса (склерометры царапающие) – метод определения твёрдости минералов путём царапания одного минерала другим минералом для сравнительной диагностики твёрдости минералов между собой по системе мягче-твёрже. Испытываемый минерал либо не царапается другим минералом (эталоном Мооса или склерометром) и тогда его твёрдость по Моосу выше, либо царапается — и тогда его твёрдость по Моосу ниже.

Типы исследуемых материалов:

  • минералы (природные и искусственные), в т.ч. измеряется твёрдость камней горных пород
  • бетон и другие строительные материалы: твёрдость искусственных камней, плитки, стекла и др.

Молотки Шмидта (склерометры-молотки) – метод определения твёрдости и прочности на сжатие без разрушения строительный материалов: бетона, кирпичей, строительного раствора и пр. Оценка материалов происходит по предварительно установленной градуировочной зависимости между прочностью эталонных образцов и значением отскока бойка молотка Шмидта от поверхности материала.

Типы исследуемых материалов:

  • бетон
  • кирпич
  • строительный раствор
  • природные камни и горные породы

Твёрдость металлов

Твёрдость металлов – наиболее глубоко изученное и стандартизированное международной практикой измерение твёрдости. Наиболее распространены следующие методы:

Измерение твёрдости металлов по Бринеллю (твердомеры)

Один из старейших методов, твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Обозначается HB, где H — Hardness (твёрдость, англ.), B — Brinell (Бринелль, англ.)

Измерение твёрдости металлов по Роквеллу (твердомеры)

Это самый распространённый из методов начала XX века, твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Обозначается HR, где H — Hardness (твёрдость, англ.), R — Rockwell (Роквелл, англ.), а 3-й буквой идёт обозначение типа шкалы, напр. HRA, HRB, HRC и т.д.

Измерение твёрдости металлов по Виккерсу (твердомеры и микротвердомеры)

Самая широкая по охвату шкала, твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Обозначается HV, где H — Hardness (твёрдость, англ.), V — Vickers (Виккерс, англ.).

Измерение твёрдости металлов по Шору (твердомеры и склероскопы)

Данный метод крайне редко используется, твёрдость определяется по высоте отскока бойка от поверхности. Обозначается HS, где H — Hardness (твёрдость, англ.), S — Shore (Шор, англ.), а 3-й буквой идёт обозначение типа шкалы, напр. HSD

Измерение твёрдости металлов по Либу (твердомеры)

Это самый широко применяемый на сегодня метод в мире, твёрдость определяется как отношение скоростей до и после отскока бойка от поверхности. Обозначается HL, где H — Hardness (твёрдость, англ.), L — Leeb (Либ, англ.), а 3-й буквой идёт обозначение типа датчика, напр. HLD, HLC и т.д.

Твёрдость резины

Определить твердость резины сегодня можно несколькими методами:

Измерение твёрдости резины по Шору (твердомеры и дюрометры)

Самый широко применяемый на сегодня метод в мире, твёрдость резины определяется по глубине проникновения в материал специальной закаленной стальной иглы (индентора) под действием калиброванной пружины.

Твёрдость резины обозначается в международной практике как H, где H — Hardness (твёрдость, англ.), а 2-й буквой идёт обозначение типа шкалы, напр. HA, HB, HC, HD и т.д.

, в практике России пишется как «твёрдость по Шору тип А» или «твёрдость по Шору тип D».

Измерение твёрдости по Аскеру (твердомеры и дюрометры)

Это национальный японский метод, сходный с методом измерения твёрдости резины по Шору, но отличающийся от него типом инденторов, пружин и пр. Твёрдость резины обозначается в международной практике как Asker (Аскер, англ.), а далее идёт обозначение типа шкалы, напр. Asker С, Asker D и т.д. В России не применяется.

Измерение твёрдости по Роквеллу (твердомеры)

В этом случае используется стандартный твердомер Роквелла для измерения твёрдости металлов, но вместо индентора-конуса используются инденторы со стальными шариками. Твёрдость резины обозначается HR, где H — Hardness (твёрдость, англ.), R — Rockwell (Роквелл, англ.), а 3-й буквой идёт обозначение типа шкалы, напр. HRP, HRL, HRM или HRE.

Метод Бринелля

Величину твердости по Бринеллю определяют по диаметру отпечатка, оставленному стальным закаленным шариком на поверхности тестируемого металла. Единицей измерения служит кгс/мм2.

Метод предложил в 1900 году шведский инженер Юхан Август Бринелль. Испытание проводится следующим образом: вначале задается предварительная нагрузка индентора на образец, а уж затем – основная. Причем материал под этой нагрузкой выдерживают до 30 секунд, после чего измеряется глубина вдавливания. Твердость по Бринеллю (обозначается как HB) рассчитывается как отношение приложенной нагрузки к площади поверхности полученного отпечатка.

Некоторые значения твердости для различных материалов (по Бринеллю):

  • Древесина – 2,6-7,0 HB.
  • Алюминий – 15 HB.
  • Медь – 35 HB.
  • Мягкая сталь – 120 HB.
  • Стекло – 500 HB.
  • Инструментальная сталь – 650-700 HB.

Измерение твердости по Бринеллю

Метод измерения твердости по Бринеллю регламентирован ГОСТ 9012.

При определении твердости этим методом стальной шарик определенного диаметра D вдавливают в тестируемый образец под действием нагрузки Р, приложенной перпендикулярно к поверхности образца, в течение определенного времени. После снятия нагрузки измеряют диаметр отпечатка d. Число твердости по Бринеллю обозначается буквами НВ, и его определяют путем деления нагрузки Р на площадь поверхности сферического отпечатка F.

Для удобства имеются таблицы чисел твердости по Бринеллю и зависимости от диаметра шарика D, диаметра отпечатка d и нагрузки Р.

В качестве инденторов используют полированные (Ra <� 0,04 мкм) шарики из стали ШХ15 с номинальными диаметрами D =1; 2; 2,5; 5 и 10 мм, последние считаются более предпочтительными, как обеспечивающие большую точность измерения твердости.

Минимально допустимая толщина образца для корректного измерения твердости НВ должна быть не менее десятикратной глубины отпечатка h.

Испытания проводят при комнатной температуре в отсутствие вибраций и ударов. Время выдержки под нагрузкой т для черных металлов составляет 10…15 с, а для цветных металлов и сплавов от 10 до 180 с. Нагрузку на индентор выбирают с учетом соотношения К=Р/D2:

Металлы и сплавы К, кгс/мм2

Сталь, чугун и другие высокопрочные сплавы ………..30

Медь, никель и их сплавы………………………………………..10

Алюминий, магний и их сплавы…………………………………5

Например, при испытании сталей и чугунов при диаметре шарика D =10 мм нагрузка должна быть 3000 кгс, а время выдержки под нагрузкой 10…15 с. Число твердости в этом случае обозначается цифрами со стоящим после них символом НВ (например, 250 НВ). Иногда после букв НВ указывают условия испытаний — НВ D/P/τ, например: 250 НВ 5/750/25 — твердость по Бринеллю 250, полученная при диаметре шарика D =5 мм, нагрузке Р= 750 кгс и времени выдержки под нагрузкой т=25 с. Измерение твердости по Бринеллю не рекомендуется применять для стали с твердостью более 450 НВ, а для цветных металлов более 200 НВ

Метод Виккерса

Твердость по методу Виккерса определяется посредством вдавливания в образец алмазного наконечника, имеющего форму правильной четырехугольной пирамиды. После снятия нагрузки измеряют две диагонали, образовавшиеся на поверхности материала, и рассчитывают среднее арифметическое значение d (в миллиметрах).

Твердомер Виккерса достаточно компактен (см. фото ниже). Испытание проводится при комнатной температуре (+20 градусов). Значение твердости тела обозначается буквами HV.

Измерение микротвердости

Метод измерения микротвердости регламентирован ГОСТ 9450. Определение микротвердости (твердости в микроскопически малых объемах) проводят при исследовании отдельных структурных составляющих сплавов, тонких покрытий, а также при из­мерении твердости мелких деталей. Прибор для определения микротвердости состоит из механизма для вдавливания алмазной пи­рамиды под небольшой нагрузкой и металлографического микроскопа. В испытываемую поверхность вдавливают алмазную пира­миду под нагрузкой 0,05…5 Н.

Микротвердость измеряют путем вдавливания в образец (изделие) алмазного индентора под действием статической нагрузки Р в течении определенного времени выдержки т. Число твердости определяют (как и по Виккерсу) делением приложенной нагрузки в Н или кгс на условную площадь боковой поверхности полученного отпечатка в мм2.

Основным вариантом испытания является так называемый метод восстановленного отпечатка, когда размеры отпечатков определяются после снятия нагрузки. Для случая, когда требуется определение дополнительных характеристик материала (упругое восстановление, релаксация, ползучесть при комнатной температуре и др.) допускается проводить испытание по методу невосстановленного отпечатка. При этом размеры отпечатка определяют на глубине вдавливания индентора в процессе приложения нагрузки.

Практически микротвердость определяют по стандартным таблицам дня конкретной формы индентора, нагрузки Р и полученных в испытании размеров диагоналей отпечатка.

В качестве инденторов используют алмазные наконечники разных форм и размеров в зависимости от назначения испытании микротвердости. Основным и наиболее распространенным нконечником является четырехгранная алмазная пирамида с квадратым основанием (по форме подобна индентору, применяющемуся при определении твердости по Виккерсу).

Число микротвердости обозначают цифрами, характеризующими величину твердости со стоящим перед ними символом H с указанием индекса формы наконечника, например, Н□ =3000. Допускается указывать после индекса формы наконечника величину прилагаемой нагрузки, например: Н□ 0,196 =3000 — число микротвердости 3000 Н/мм2, полученное при испытании с четырех гранной пирамидой при нагрузке 0,196 Н. Размерность микротвердости (Н/мм2 или кгс/мм2) обычно не указывают. Если микротвердость определяли по методу невосстановленного отпечанка, то к индексу формы наконечника добавляют букву h (Н□h).

Соотношение значений твердости

При сопоставлении значений твердости, полученных разными методами, между собой и с механическими свойствами материалов необходимо помнить, что приводимые в литературных источниках таблицы или зависимости для такого сопоставительного перевода являются чисто эмпирическими. Физического смысла такой перевод лишен, так как при вдавливании paзличных по форме и размерам инденторов и с разной нагрузкой твердость определяется при совершенно различных напряженных состояниях материала. Даже при одном и том же способе измерения твердости значение сильно зависит от нагрузки: при меньших нагрузках значения твердости получаются более высокими.

Выше были рассмотрены основные методы контроля твердости. Существуют и другие методики контроля, которые основаны на косвенных измерениях значений механических свойств. Например электрические, магнитные, акустические и т.д. Все эти методы основаны на составлении экспериментальных корреляционных таблиц «измеряемый параметр — параметр механических свойств», где все параметры постоянны (химический состав металла, номер плавки, количество загрязнений), а меняются лишь табличные параметры. Такие методы на производстве практически не работают, т.к. например химический состав металлов по ГОСТам требуется в селекте, т.е. может быть в заданном пределе и меняться от плавки к плавке. Составление градуировочных таблиц на каждую партию металла — очень трудоёмкая работа.
Pla пластик растворитель — https://www.dcpt.ru

Метод Шора

Этот метод измерения твердости был предложен американским изобретателем Альбертом Шором. Его еще нередко называют «методом отскока». При измерении твердости по Шору боек стандартного размера и массы падает с определенной высоты на поверхность тестируемого материала. Ключевое значение данного опыта – высота отскока бойка, измеряемая в условных единицах.

Твердость по Шору измеряется в диапазоне от 20 до 140 единиц. Ста единицам соответствует высота отскока в 13,6 мм (± 0,5 мм). По стандарту эта величина является твердость закаленной углеродистой стали. Современный прибор для измерения твердости материалов по Шору называют склероскопом или дюрометром (его можно увидеть на фото ниже).

Определение твердости металлов

Твердость — свойство материала оказывать сопротивление упругой и пластической деформации или разрушению при внедре­нии в поверхностный слой материала другого, более твердого и не получающего остаточной деформации тела — индентора.

Способы определения твердости в зависимости от временного характера приложения нагрузки и измерения сопротивления вдав- ливанию индентора подразделяют на статические, динамические
икинетические
. Наиболее распространенными являются статические методы, при которых нагрузку к индентору прикладывают плавно и постепенно, а время выдержки под нагрузкой регламентируется стандартами на соответствующие методы.

При динамических методах

определения твердости индентор подействует на образец с определенной кинетической энергией, мтрачиваемой на упругую отдачу и/или формирование отпечатка, динамическую твердость часто называют также твердостью материала при ударе. Твердость при ударе характеризует сопротивление внедрению не только на поверхности образца, но и в некото­ром объеме материала.

Кинетические методы

определения твердости основываются на непрерывной регистрации процесса вдавливания индентора с за­писью диаграммы «нагрузка на индентор — глубина внедрения индентора. Особенность такого подхода заключается в регистрации всей кинетики процесса упругопластического деформирования материала при вдавливании индентора, а не только конечного результата испытаний, как при других методах.

По принципу приложения нагрузки способы определения твердости можно подразделить на способы вдавливания, отскока, царапания
ирезания
.

Способы вдавливания

являются наиболее распространенными. Твердость в этом случае определяется как сопротивление, которое оказывает испытуемое тело внедрению более твердого индентора и отражает преимущественно сопротивление поверхностных слоев материала пластической деформации. Способы
отскока
основаны на измерении твердости по высоте отскока бойка, падающего на испытуемую поверхность. Твердость при этом отражает преиму­щественно сопротивление упругой деформации. Измерение твердости способом отскока широко применяют для контроля качест­ва прокатных валков, больших изделий и конструкций с использо­ванием переносных приборов.

Способами царапания
ирезания
твердость определяется соответственно как сопротивление материала царапанию или резанию. Способ царапания разработал Моос в начале XIX в.; им были предложена шкала твердости минералов по способности одного наносить царапины на поверхности другого. Эта десятибалльная шкала (от талька № 1 до алмаза № 10) используется в минералогии, а также для оценки твердости технической керамики и моно» кристаллов.

При определении твердости всеми методами (кроме микротвердости) измеряют интегральное значение твердости материала (усредненное для всех структурных составляющих). Поэтому получающийся после снятия нагрузки отпечаток должен быть по размеру значительно больше размеров зерен и других структурных составляющих тестируемого материала.

Значения твердости нельзя однозначно переводить в значения других механических свойств материала (см. ниже). Однако определение твердости является эффективным способом сравнения друг с другом однотипных материалов и контроля их качества. Металлопродукцию из меди и медных сплавов в состоянии поставки разделяют по твердости на пять видов (см. ниже).

Твердость по Бринеллю

При практическом определении твердости разными методами нагрузку P по настоящее время принято задавать в кгс.

Метод измерения твердости по Бринеллю регламентирован ГОСТ 9012.

При определении твердости этим методом стальной шарик определенного диаметра D вдавливают в тестируемый образец под действием нагрузки Р, приложенной перпендикулярно к поверхности образца, в течение определенного времени (Рис. 1). После снятия нагрузки измеряют диаметр отпечатка d. Число твердости по Бринеллю обозначается буквами НВ, и его определяют путем деления нагрузки Р на площадь поверхности сферического отпечатка F.

Для удобства имеются таблицы чисел твердости по Бринеллю и зависимости от диаметра шарика D, диаметра отпечатка d и нагрузки Р.

Рис. 1. Схема измерения твердости по Бринеллю

В качестве инденторов используют полированные (Ra < 0,04 мкм) шарики из стали ШХ15 с номинальными диаметрами D

= 1; 2; 2,5; 5 и 10 мм, последние считаются более предпочтительными, как обеспечивающие большую точность измерения твердости (особенно при измерении твердости чугуна или крупнозернистых сплавов).

Минимально допустимая толщина образца для корректного измерения твердости НВ должна быть не менее десятикратной глубины отпечатка h

.

Испытания проводят при комнатной температуре в отсутствие вибраций и ударов. Время выдержки под нагрузкой т для черных металлов составляет 10…15 с, а для цветных металлов и сплавов от 10 до 180 с. Нагрузку на индентор выбирают с учетом соотношения К = Р/D2:

Металлы и сплавы К, кгс/мм2

Сталь, чугун и другие высокопрочные сплавы ………….30

Медь, никель и их сплавы………………………………….10

Алюминий, магний и их сплавы………………………….. 5

Например, при испытании сталей и чугунов при диаметре шарика D = 10 мм нагрузка должна быть 3000 кгс, а время выдержки под нагрузкой 10…15 с. Число твердости в этом случае обозначается цифрами со стоящим после них символом НВ (например, 250 НВ). Иногда после букв НВ указывают условия испытаний — НВ D/P/τ, например: 250 НВ 5/750/25 — твердость по Бринеллю 250, полученная при диаметре шарика D = 5 мм, нагрузке Р = 750 кгс и времени выдержки под нагрузкой т = 25 с.

Измерение твердости по Бринеллю не рекомендуется применять для стали с твердостью более 450 НВ, а для цветных металлов более 200 НВ.

Твердость по Виккерсу

Метод измерения твердости по Виккерсу регламентируется ГОСТ 2999. Метод используют для определения твердости деталей и металлопродукции малой толщины, а также тонких поверхностных слоев, имеющих высокую твердость.

Твердость по Виккерсу измеряют путем вдавливания в образец (изделие) алмазного наконечника в форме правильной четырехгранной пирамиды под действием нагрузки Р в течение времени выдержки τ (Рис. 2). После снятия нагруби измеряют диагонали оставшегося на поверхности материала отпечатка –d1, d2 и вычисляют их среднее арифметическое значение — d, мм.

Значения твердости по Виккерсу при стандартных нагрузках н зависимости от длины диагонали d (мм) даны в соответствующих таблицах.

При испытаниях применяют следующие нагрузки Р, кгc: 1; 2; 2,5; 3; 5; 10; 20; 30; 50; 100.

Число твердости по Виккерсу обозначают цифрами, характеризующими величину твердости со стоящим после них символом HV (например, 200 HV). Иногда после символа HV указывают нагрузку и время выдержки, например: 200 HV 10/40 — твердость по Виккерсу, полученная при нагрузке Р= 10 кгс и времени выдержки под нагрузкой т = 40 с.

В ГОСТе сказано, что точного перевода чисел твердости по Виккерсу на числа твердости, полученные другими методами, или на механические свойства при растяжении не существует и таких переводов (за исключением частных случаев) следует избегать.

Рис 2. Схема измерения твердости по Виккерсу

Твердость по Роквеллу

Метод измерения твердости по Роквеллу регламентирован ГОСТ 9013. При определении твердости этим методом (Рис. 3) тестируемый образец (изделие) под действием двух последовательно прилагаемых нагрузок — предварительной P0 (обычно Р0 = 10 кгс) и общей Р — вдавливают индентор (алмазный конус или стальной шарик). При этом общая нагрузка равна сумме предварительной P0 и основной Р1 нагрузок:

P = P0+P1

После выдержки под приложенной общей нагрузкой Р в течение 3…5 с основную нагрузку Р1 снимают и измеряют глубину проникновения индентора в материал А под действием общей нагрузки Р затем снимают оставшуюся предварительную нагрузку P0.

Твердость по Роквеллу измеряют в условных единицах. За единицу твердости принята величина, соответствующая осевому перемещению индентора на 0,002 мм. Число твердости опре­деляется по шкале индикатора (как правило, часового типа). Индикатор показывает результат вычитания разности глубин (h –h0

), на которые вдавливается индентор под действием двух последовательно приложенных нагрузок, из некоторой константы. Величина
h0
— глубина внедрения индентора в испыту­емый образец под действием предварительной нагрузки P0 (см. Рис 3).

В зависимости от формы индентора и прилагаемой нагрузки введены три измерительные шкалы: А, В, С (Табл. 1). Наиболее часто используемыми шкалами являются А и С.

Число твердости по Роквеллу обозначается цифрами, характеризующими величину твердости, со стоящим после них символом HIRA, HRB или HRC (в зависимости от используемой шкалы измерения), например: 25,5 HRC

Рис. 3. Схема измерения твердости по Роквеллу
Шкала

Применяемый индикаторНагрузка, кгсОбласть применения
P — общаяP0 — предварит.P1 — основная
А Алмазный конус601050 Материалы с твердостью HRA 70 — 85
B Стальной шарик1001090 Низко- и среднеуглеродистые стали, латуни, бронзы и другие матреиалы с твердостью HRB 25 — 100
C Алмазный конус15010140 Стали и сплавы с твердостью HRC 20 — 67

Таб. 1. Шкалы, использующиеся при измерении твердости по Роквеллу

Твердость по Шору

Метод измерения твердости по Шору регламентирован ГОСТ 23273. Это — основной метод определения твердости поверхности прокатных валков при их изготовлении, поставке на металлургическое предприятие, а также в процессе эксплуатации валков на прокатных станах.

При измерении твердости по Шору боек определенной массы с алмазным индентором на конце свободно падает по вертикали с определенной высоты hпадения = 19,0 ± 0,5 мм на испытуемую поверхность материала (Рис. 4). Индентор представляет собой алмазный наконечник в виде тела вращения с радиусом закруглений рабочего конца R = 1,0 ± 0,1 мм. Масса бойка вместе с алмазным индентором составляет 36,0 г.

За характеристику твердости принимается высота отскока бойка h (см. Рис. 4), измеряемая в условных единицах. За 100 единиц твердости по Шору принимается определенная величина отскока бойка h100= 13,6 ± 0,5 мм. Такая твердость соответствует максимальной твердости стабилизированной после закалки на мартенсит углеродистой эвтектоидной инструментальной стали по ГОСТ 1435. Согласно стандарту твердость по Шору измеряют в диапазоне от 20 до 140 единиц (HSD).

Число твердости по Шору обозначается цифрами, характеризующими величину твердости, со стоящим после них символом HSD, например 95 HSD. Число твердости указывается с округлением до целого числа.

Величина твердости по Шору не имеет точного перевода на другие величины твердостей или на прочностные свойства, получаемые при механических испытаниях.

Рис. 4 Схема измерения твердости по Шору

Микротвердость

Метод измерения микротвердости регламентирован ГОСТ 9450. Определение микротвердости (твердости в микроскопически малых объемах) проводят при исследовании отдельных структурных составляющих сплавов, тонких покрытий, а также при измерении твердости мелких деталей. Прибор для определения микротвердости состоит из механизма для вдавливания алмазной пирамиды под небольшой нагрузкой и металлографического микроскопа. В испытываемую поверхность вдавливают алмазную пира­миду под нагрузкой 0,05…5 Н.

Микротвердость измеряют путем вдавливания в образец (изделие) алмазного индентора под действием статической нагрузки Р н течение определенного времени выдержки т (см. Рис. 5). Число твердости определяют (как и по Виккерсу) делением приложенной нагрузки в Н или кгс на условную площадь боковой поверхности полученного отпечатка в мм2.

Основным вариантом испытания является так называемый ме

тод восстановленного отпечатка, когда размеры отпечатков определяются после снятия нагрузки. Для случая, когда требуется определение дополнительных характеристик материала (упругое восстановление, релаксация, ползучесть при комнатной температуре и др.) допускается проводить испытание по методу невосстановленного отпечатка. При этом размеры отпечатка определяют на глубине вдавливания индентора в процессе приложения нагрузки.

Практически микротвердость определяют по стандартным таблицам дня конкретной формы индентора, нагрузки Р и полученных в испытании размеров диагоналей отпечатка.

В качестве инденторов используют алмазные наконечники разных форм и размеров в зависимости от назначения испытании микротвердости. Основным и наиболее распространенным намниконечником является четырехгранная алмазная пирамида с квадратым основанием (по форме подобна индентору, применяющемуся при определении твердости по Виккерсу — см. Рис. 2).

Число микротвердости обозначают цифрами, характеризующими величину твердости со стоящим перед ними символом H с указанием индекса формы наконечника, например, Н□ = 3000 Допускается указывать после индекса формы наконечника величину прилагаемой нагрузки, например: Н□ 0,196 = 3000 — число микротвердости 3000 Н/мм2, полученное при испытании с четырех гранной пирамидой при нагрузке 0,196 Н. Размерность микротвердости (Н/мм2 или кгс/мм2) обычно не указывают. Если микротвердость определяли по методу невосстановленного отпечанка, то к индексу формы наконечника добавляют букву h (Н□h).

Соотношение значений твердости

При сопоставлении значений твердости, полученных разными методами, между собой и с механическими свойствами материалов необходимо помнить, что приводимые в литературных источниках таблицы или зависимости для такого сопоставительного перевода являются чисто эмпирическими. Физического смысла такой перевод лишен, так как при вдавливании paзличных по форме и размерам инденторов и с разной нагрузкой твердость определяется при совершенно различных напряженных состояниях материала.

Даже при одном и том же способе измерения твердости значение сильно зависит от нагрузки: при меньших нагрузках значения твердости получаются более высокими (Рис. 5).

Рис. 5. Зависимость твердости по Виккерсу (HV) от испытательной нагрузки

То же самое справедливо и для сопоставления значений твердости с механическими свойствами материала, определяемыми при растяжении или других формах нагружения. Кроме того, традиционные механические характеристики материала (предел пропорциональности, предел текучести, предел прочности, относительное удлинение и др.) являются интегральными характеристиками всего испытуемого образца материала и зависят от формы образца и условий испытаний. Они, в частности, отражают различие в протекании процессов структурной самоорганизации во внутренних и приповерхностных слоях материала, поэтому на них оказывают сильное влияние состояние и структура поверхностных слоев материала, в том числе поверхностная обработка, наличие покрытий, топографическая структура поверхности и т. д. Например, в зависимости от состояния поверхности предел текучести для одного и того же материала может различаться на 50% и более. Значения же твердости, напротив, отражают свойства материала при локальном нагружении вдавливанием индентора. Естественно, что интегральные свойства материала в принципе нельзя полностью вынести из локальных.

В связи с отмеченным пользоваться переводом чисел твердос­ти, полученных разными методами, следует очень осторожно и преимущественно для предварительной оценки относительного изменения свойств материала. Тем не менее, в ряде конкретных случаев и для одного и того же или очень близких по свойствам и структуре материалов такой перевод может оказаться достаточно точным и может служить основой оперативных методов неразру­шающего контроля. Ориентировочный перевод значений твердости, определяемый различными методами, приведен в табл. 2.

Твердость по Бринеллю (D= 10 мм, Р= 3000 кгс), НВТвердость по Роквеллу (шкала С, Р = 150 кгс), HRCТвердость по Виккерсу, HVТвердость по Шору, HSD
14314323
14914924
15615526
163216227
170417128
179717829
187918630
1971219731
2071420833
2171721734
2292022836
2412324038
2552525540
2692727042
2852928544
3023130346
3213332049
3413634451
3633938054
3884140157
14314323
14914924
15615526
163216227
170417128
179717829
187918630
1971219731
2071420833
2171721734
2292022836
2412324038
2552525540
2692727042
2852928544
3023130346
3213332049
3413634451
3633938054
3884140157
4154343561
4444647464
4774953468
5145258773
5555665078
6006074684
6536486891
6826694194
71268102298
745701116102
780721220106

Табл. 2. Ориентировочный перевод чисел твердости, определяемых различными методами (по М.Л. Бернштейну, А.Г. Рахштадту и др.)

По твердости в состоянии поставки металлопрокат тяжелых цветных металлов и сплавов отечественных заводов ОЦМ раз­деляют на следующие виды в зависимости от степени холодной деформации после отжига: мягкий (М) — ε = 0, четвертьтвердый (Ч) — ε = 5… 10%, полутвердый (ПТ) — ε = 15…25%, твердый (Т) — ε = 35…50%, особотвердый (ОТ) — ε > 50

Поскольку твердость косвенно связана с другими показателями механических свойств, то прокат определенной твердости имеет но многих случаях и вполне определенные для данного состояния прочность, пластичность или упругость.

Однако, как было показано выше, в явном виде связи между твердостью и другими механическими свойствами не существует. Поэтому готовый прокат подвергают различным механи­ческим испытаниям (например, на растяжение), выполня­ют технологические пробы на выдавливание лунки, на перегиб и др.

Шкала Мооса

Шкала твердости по Моосу является относительной и применяется она исключительно для минералов. В качестве эталонных выбрано десять минералов, которые были расположены в порядке возрастания их твердости (на фотосхеме ниже). Соответственно, шкала имеет 10 баллов (от 1 до 10).

Минералогическая шкала твердости была предложена немецким ученым Фридрихом Моосом еще в 1811 году. Тем не менее в геологии она используется до сих пор.

Как определить твердость конкретного минерала по шкале Мооса? Это можно сделать при помощи внимательного рассмотрения царапины, оставленной образцом. При этом удобно пользоваться ногтем, медной монетой, куском стекла или стальным ножом.

Итак, если тестируемый минерал пишет по бумаге, не царапая ее, то его твердость равна единице. Если камень легко царапается ногтем, его твердость – 2. Три балла имеют минералы, которые легко царапаются ножом. Если же нужно приложить некоторые усилия, чтобы оставить на камне отметку, то его твердость равна 4 или 5. Минералы с твердостью 6 или выше сами оставляют царапины на лезвии ножа.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]