Углеводороды, содержащие тройную связь, называются алкинами. К алкинам часто применяют название ацетилены по названию первого члена гомологического ряда. Они образуют гомологический ряд с общей формулой CnH2n-2. По номеклатуре IUPAC названия алкинов образуют путем замены окончания «-ан» в названии соответствующего алкана окончанием «-ин»:
Соответствующие алкинам одновалентные радикалы называются алкинил
,
пропаргил
.
HC≡C–CH2–
В ряду ацетиленов наблюдается структурная изомерия положения тройной связи в углеродной цепи и изомерия алкильных радикалов, связанных с алкинилом.
Пентин-2
В промышленности ацетилен применяется весьма широко и разработан способ его получения термолизом метана
или гидрированием углерода при 3000 °С:
Реакцию проводят, используя электрическую дугу между угольными электродами в токе водорода, т.к. время нагревания должно быть очень коротким во избежание обратного процесса разложения ацетилена на элементы.
Существует также карбидный способ получения некоторых ацетиленов:
Эта реакция представляет собой фактически гидролиз ацетиленидов, которыми по сути являются карбиды металлов.
Среди лабораторных способов получения ацетиленов можно отметить разнообразные реакции элиминирования, среди которых чаще всего используют дегидрогалогенирование виц-
дигалогенидов
Следует иметь в виду, что в щелочной среде алкины склонны к перегруппировкам с миграциейй тройной связи:
Поэтому для элиминирования рекомендуется использовать амид натрия в жидком аммиаке. В этих условиях образуются в основном терминальные ацетилениды, причем в качестве исходных можно применять и гем-
дигалогениды:
Другие способы синтеза подразумевают превращения одних алкинов в другие, они будут рассмотрены ниже.
Атомы углерода в ацетилене имеют sp-гибридизацию и соединены между собой одной s- и двумя p-связями. Поэтому молекула ацетилена линейна (валентный угол 180°). Длина связи СºС составляет 121 пм (для сравнения – в этане 154 пм, в этилене 134 пм), длина связи С-Н – 106 пм (в этане 110 пм, в этилене 107 пм).
Энергия тройной углерод-углеродной связи равна 833 кДж/моль, что меньше, чем суммарная величина энергии для трех σ-связей (339х3=1017 кДж/моль) и комбинации одной σ- и двух π-связей (339 + 2 · 272 = 883 кДж/моль). Это можно рассматривать как результат взаимного отталкивания связывающих электронов трех связей, которые вынуждены быть сближенными в пространстве. Молекулу ацетилена можно представить себе в виде цилиндра, образованного орбиталями π-связей, из торцов которого выходят σ-связи С-Н. Атомы водорода имеют более короткую связь с С-атомами, чем в алкенах и алканах, потому что углеродный атом в гибридном состоянии sp
наиболее электроотрицателен. Причина укорочения связи С-Н в алкинах по сравнению с алкенами и алканами состоит в том, что
sp
-орбиталь, как имеющая больший вклад s-характера (50%), изначально лежит ниже по энергии, чем
sp2
– (33.3%) и
sp3
– (75%) орбитали. Это приводит к увеличению прочности С-Н-связи в ацетиленах (энергия гомолитической диссоциации 502 кДж/моль) относительно прочности С-Н-связей в алканах и алкенах (414 кДж/мол и 439 кДж/моль соответственно). Ацетиленовый протон в значительной степени дезэкранирован, поскольку электронная пара смещена к атому углерода в большей мере, чем к таковым в гибридных состояниях sp 2 и sp 3 . Можно рассматривать sp-атом углерода как более электроотрицательный, чем углерод в других валентных состояниях.
Две вырожденные ВЗМО ацетилена (Е = -1088,6 кДж/моль) лежат ниже, чем ВЗМО этилена (Е = -963 кДж/моль).
Исходя из этих представлений, можно объяснить основные свойства ацетиленов:
– характерными для ацетиленов являются реакции электрофильного и нуклеофильного присоединения;
– терминальным алкинам свойственная повышенная С-Н-кислотность (более высокая, чем в алканах и алкенах).
Основным промышленным способом получения ацетилена является электро- или термокрекинг метана, пиролиз природного газа и карбидный метод.
Карбидный метод (промышленный способ)
Прокаливанием в электрических печах смеси оксида кальция с коксом при 1800—2000°С получают карбид кальция:
При действии на полученный карбид воды образуется гидроксид кальция и ацетилен:
Пиролиз углеводородов (промышленный способ)
Суть способа заключается в пропускании над специальной огнеупорной насадкой смеси природного газа с воздухом, который сгорая поднимает температуру до 1500 °C. Затем на насадке происходит пиролиз метана:
Читать также: Усилитель с микрофонным входом
Крекинг природного газа (промышленный способ)
Метод заключается в пропускании метана между двумя металлическими электродами с огромной скоростью. Температура 1500—1600°С. С химической точки зрения метод аналогичен методу пиролиза, отличаясь лишь технологическим и аппаратным исполнением.
В этом методе используется частичное окисление метана благодаря использованию теплоты, образующейся при его сгорании:
Метод прямого синтеза
Углерод напрямую взаимодействует с водородом при очень высоких температурах:
Этот метод имеет чисто историческое значение (получение ацетилена в 1863 году М. Бертло).
Электролиз солей непредельных карбоновых кислот
В 1864 году Кекуле получил ацетилен электролизом фумарата и малеата натрия:
Аналогично получается ацетилен и из акрилата натрия.
Этот метод носит чисто историческое значение.
Дегидрогалогенирование галогеналканов и галогеналкенов (лабораторный способ)
Реакция дегидрогалогенирования проводят действием сильного основания на дигалогеналканы:
В качестве дегидрогалогенирующего агента удобно использовать амид натрия в жидком аммиаке:
Получение Ацетилена
В лаборатории ацетилен получают действием воды на карбид кальция.
CaC2+ 2 Н2О = С2Н2↑ + Са(ОН)2
а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения:
Учись учиться, не учась!
10080 – | 7747 – или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock! и обновите страницу (F5)
очень нужно
Бесцветный газ, слаборастворимый в воде, несколько легче атмосферного воздуха, относящийся к классу алкинов и представляющий собой ненасыщенный углерод называют ацетиленом. В его структуре все атомы имеют между собой тройную связь. Это вещество закипает при температуре — 830 °С. Формула ацетилена говорит о том, что в его состав входят только углерод и водород.
Ацетилен – это опасное вещество, которое при неаккуратном обращении с ним может взорваться. Именно поэтому для хранения этого вещества используют специально оснащенные емкости. Газ при соединении с кислородом горит, и температура может достигать 3150 °С.
Получение ацетилена
Ацетилен можно получить в лабораторных и промышленных условиях. Для получения ацетилена в лаборатории достаточно на карбид кальция (это его формула — СаС2) капнуть небольшое количество воды. после этого начинается бурная реакция выделения ацетилена. Для ее замедления допустимо использовать поваренную соль (формула NaCl).
В промышленных условиях все несколько сложнее. Для производства ацетилена применяют пиролиз метана, а так же пропана, бутана. В последнем случае формула ацетилена будет содержать большое количество примесей.
Карбидный способ производства ацетилена обеспечивает производство чистого газа. Но, такой метод получения продукта должен быть обеспечен большим количеством электроэнергии.
Пиролиз не требует большого количества электричества, все дело в том, что для производства газа, необходимо выполнить нагрев реактора и для этого используют газ, циркулирующий в первом контуре реактора. Но в потоке, который там перемещается, концентрация газа довольно мала.
Выделение ацетилена с чистой формулой во втором случае не самая простая задача и ее решение обходится довольно дорого. Существует несколько способов производства формулы ацетилена в промышленных условиях.
Электрический крекинг
Превращение метана в ацетилен происходит в электродуговой печи, при этом ее нагревают до температуры в 2000-3000 °С. При этом, напряжение на электродах достигает 1 кВ. Метан разогревают до 1600 °С. Для получения одной тонны ацетилена необходимо затратить 13 000 кВт×ч. Это существенный недостаток производства формулы ацетилена.
Технологическая схема крекинга
Пиролиз окислительный
Этот способ основан на перемешивании метана и кислорода. После производства смеси, часть ее отправляют на сжигание и полученное тепло отправляют на нагревание сырья до температуры в 16000 °С. Такой процесс отличается непрерывностью и довольно скромными затратами электрической энергии. На сегодня этот метод чаще всего можно встретить на предприятиях по производству ацетилена.
Технологическая схема процесса окислительного пиролиза
Кроме перечисленных технологий производства формулы ацетилена применяют такие как — гомогенный пиролиз, низкотемпературную плазму. Все они отличаются количеством энергетических затрат и в итоге разными характеристиками получаемого газа и его формулой.
Читать также: Горизонтально сверлильный станок 2р82
Производство ацетилена
При производстве ацетилена необходимо учитывать его высокую способность к взрывчатому распаду. Распад происходит экзотермически по уравнению
С2Н2→2С+ Н2
и определяется в первую очередь температурой и давлением. С повышением температуры взрывчатость ацетилена резко возрастает.
Газообразные примеси, образующие с ацетиленом легковоспламеняющиеся смеси, увеличивают способность ацетилена к взрывчатому распаду. К таким примесям можно отнести воздух, кислород, фосфористый водород и др. Смеси ацетилена с воздухом, кислородом и фосфористым водородом даже при незначительном их содержании взрываются при атмосферном давлении, если температура в какой-либо точке смеси достигает температуры воспламенения. Для ацетилено-воздушных смесей (2,2-81 % ацетилена) температура воспламенения находится в пределах 305-407 °С; ацетиленокислородных (2,8-93% ацетилена) 197-306 С; ацетилена с фосфористым водородом 100-200 °С. Содержание газообразных примесей, способствующих взрывчатому распаду ацетилена, снижают при его производстве до минимально возможных пределов: воздуха до 0,5-1,5%, фосфористого водорода до 0,08%, сероводорода до 0,08-1,5%.
Газообразные примеси, не вступающие с ацетиленом в химические реакции, понижают его способность взрываться. К ним относятся азот, оксид углерода, метан, пары воды и др. Это объясняется разобщенностью молекул ацетилена молекулами газообразных примесей.
Аналогичное действие оказывает растворение ацетилена в жидкостях. Наиболее высокая растворимость ацетилена из доступных жидкостей — в ацетоне.
Граница взрывчатого распада ацетилена снижается при наличии катализаторов — оксидов меди, железа и других соединений. Поэтому стенки аппаратуры при производстве ацетилена и его потреблении не должны иметь оксидов.
Ацетилен при определенных температурах и давлении может взаимодействовать с медью и некоторыми другими металлами с образованием взрывчатых соединений — ацетиленнидов. Наличие их приведет к взрывчатому распаду ацетилена. Поэтому в аппаратуре для ацетилена запрещено применять сплавы, содержащие более 70 % Сu.
Ацетилен получают из карбида кальция и воды в специальных аппаратах, называемых ацетиленовыми генераторами.
Экзотермическая реакция протекает по уравнению СаС2 + 2Н20 = С2Н2 + Са(ОН)2 + Q.
Теоретически выход ацетилена из 1 кг карбида кальция составляет 372, 5 л (при 20 °С и 0,1 МПа). Реальный выход ацетилена значительно меньший и в зависимости от сорта карбида колеблется в пределах 235—285 л/кг.
Для производства ацетилена применяют различные конструкции генераторов. В основу их типизации и классификации положены следующие признаки: производительность, способ установки, давление вырабатываемого ацетилена, система регулирования и взаимодействия карбида кальция с водой.
По способу установки генераторы подразделяют на передвижные и стационарные. Производительность передвижных генераторов не должна превышать 5 м3/ч.
По давлению вырабатываемого ацетилена генераторы делятся на три группы: низкого (до 0,01 МПа включительно), среднего (свыше 0,01—0,15 МПа) и высокого (свыше 0,15 МПа) давления.
По системам регулирования и взаимодействия карбида кальция с водой различают генераторы с количественным регулированием реагирующих веществ и повременном. Количественное регулирование ацетилена осуществляют периодической дозировкой либо карбида кальция при постоянном объеме воды в зоне реакции (система «карбид в воду»), либо дозировкой воды при загрузке всего карбида кальция (система «вода на карбид»). Широко применяют и комбинированную систему генераторов с дозировкой обоих реагирующих веществ — карбида кальция и воды. Повременное регулирование количества ацетилена в газосборнике осуществляется периодической дозировкой времени контактирования карбида кальция с водой. Такие системы генераторов называют «контактными». Если подвижным компонентом служит карбид кальция, то такая система носит название «погружения», если подвижной системой является вода, то «вытеснения».
Существуют также системы генераторов, в которых сочетается количественная и повременная система регулирования (рис. 25.1).
Рис. 25.1. Схема ацетиленового генератора комбинированного типа: 1 — зарядник; 2 — газосборник 3 — бак с водой; 4 — отбор газа
Ацетиленовые генераторы независимо от системы имеют следующие основные элементы (рис. 25.1): зарядник 7, газосборник 2, предохранительные устройства против повышения давления в газосборнике и защиты генератора от обратных ударов пламени.
Указанные узлы могут быть сосредоточены в одной конструкции или разобщены и связаны между собой трубопроводами. Стационарные генераторы в ряде случаев снабжают химическими очистителями.
Зарядник предназначен для загрузки карбида кальция в генератор. В генераторах системы «вода на карбид», контактных и комбинированных, в зарядниках происходит реакция карбида кальция с водой с образованием ацетилена. Поэтому их часто называют газообразователями. В генераторах систем «карбид в воду» газообразование происходит вне зарядника. В этом случае зарядник имеет устройства для дозировки карбида кальция, подаваемого в воду. Зарядиики, в которых происходит газообразование, должны хорошо охлаждаться водой и быть удобными для удаления известкового ила и промывки.
Газосборник предназначен для собирания ацетилена, поступающего из газообразователя, и отбора к месту потребления. Наличие газосборника позволяет компенсировать несоответствие между выходом ацетилена и его потреблением, в также уменьшать колебания давления при неравномерном расходовании газа. В конструкциях ацетиленовых генераторов встречаются газосборники трех видов: с плавающим колоколом, в виде сообщающихся сосудов и постоянного объема.
Предохранительные устройства в ацетиленовых генераторах применяют двух типов: для выпуска ацетилена в атмосферу при повышении давления сверх допустимого и защиты генератора от проникновения в газосборник пламени при обратном ударе. Обратным ударом называют проникание фронта пламени внутрь канала сопла горелки и распространение его навстречу потоку горячей смеси.
Возможность обратного удара определяется соотношением скорости истечения смеси и скорости ее воспламенения. Обратные удары возникают при чрезмерном нагреве горелки, малом расстоянии мундштука от поверхности нагрева, при закупоривании мундштука и др. Предохранительные устройства против повышения давления ацетилена зависят от конструкции газосборника генератора.
Предохранительные устройства для защиты генератора от обратных ударов пламени представляют собой водяные затворы (рис. 25.2, а, б). Корпус 3 затвора заполняют водой до уровня контрольного крана КК- Ацетилен подводится по трубке 7, проходит через обратный клапан 2, расположенный в нижней части корпуса. В верхнюю часть корпуса газ проходит через отражатель 4. Ацетилен отводится к месту потребления через расходный кран Р/С. В верхней части корпуса имеется трубка, закрытая мембраной 5 из алюминиевой фольги. При обратном ударе пламени мембрана разрывается, и взрывчатая смесь выходит наружу. Давление взрыва через воду передается на клапан 2, который закрывает подвод газа от генератора.
Рис. 25.2. Схема водяного затвора закрытого тина: а — нормальная работа затвора; б — обратный удар в затворе; в — схема сухого затвора (пламягасителя)
В последнее время для защиты от обратного удара пламени применяют сухие универсальные затворы типа ЗСУ-1 (рис. 25.2, е). Затвор состоит из двух самостоятельных блоков: пламягашения и клапанного Б, установленного внутри первого с помощью резьбового соединения и уплотнительного кольца. Наличие двух блоков позволяет легко разбирать затвор и осуществлять ремонтные работы. Блок пламягашения состоит из наружного корпуса 1, крышки 4 и заключенных между ними пламяотбойника 3 и пламягасящего элемента 2.
После проверки уплотнений 5 корпус и крышку пломбируют. Блок клапанов состоит из корпуса 6, в котором установлены отсечной 8 и обратный 7 клапаны. По входному штуцеру горячий газ поступает в полость клапанного блока через открытый отсечной клапан. Далее газ через обратный клапан попадает в блок А. Отбор газа производится через выходной штуцер. При возникновении обратного удара перекрывается отсечной клапан и прекращается подача газа. Горящая смесь гасится в пористых каналах пламягасителя. После ликвидации обратного удара пружина возвращает клапан в исходное положение.
Химические очистители предназначены для очистки ацетилена. Вредные примеси в ацетилене (сероводород и фосфористый водород), проходя через пористую массу (геротоль), окисляются и переходят в нелетучие соединения. В качестве окислителя в геротоле обычно используют соединения хрома.
Питание сварочных постов ацетиленом осуществляется следующими способами: непосредственно на рабочем месте от передвижных ацетиленовых генераторов или ацетиленовых баллонов; централизованно по газопроводам от баллонных станций.
Качество ацетилена в передвижных генераторах, как правило, невысокое. Поэтому для непосредственного питания газосварочных постов наиболее целесообразно использовать баллонный ацетилен.
Для ацетилена используют стандартные баллоны вместимостью 40 л. Баллоны заполняют предварительно пористой массой (активированный уголь зернистостью 1—3,5 мм) и заливают ацетоном. При заполнении ацетилен растворяется в ацетоне и разобщается в капиллярах пористой массы. Такой способ заполнения исключает возможность взрывчатого распада ацетилена даже при самых неблагоприятных условиях. В 1 л ацетона растворяется при атмосферном давлении 23 л газообразного ацетилена. При давлении 1,9 МПа и пористости массы 70 % и баллоне вместимостью 40 л растворяется около 6 м3 ацетилена.
Централизованное питание ацетиленом применяется обычно для десяти газосварочных постов. При небольшом числе постов используют ацетиленовые баллонные рампы. Типоразмерный ряд включает рампы, состоящие из 2×6, 2×9 и 2×15 баллонов. На крупных и средних машиностроительных предприятиях централизованное питание постов осуществляется от заводских ацетиленовых станций.
Промышленность выпускает автоматизированные ацетиленовые станции различной производительности, позволяющие получать как газообразный, так и растворенный ацетилен.
Преимущества
Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую температуру горения пламени. Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий. Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.
Применение ацетилена позволяет получить следующие преимущества:
- максимальная температура пламени;
- существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
- довольно низкая стоимость, в сравнении с другими горючими газами.
Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.
Ацетилен: применение в строительстве и промышленности
Пиролиз метана: понятие, реакция, уравнение, продукты
Автогенные и сварочные работы сопровождают практически все этапы строительства. Именно в этих видах работ применяется ацетилен. В специальном устройстве под названием горелка происходит смешивание газов и непосредственно сама реакция горения. Наивысшая температура данной реакции достигается при содержании ацетилена 45 % от всего объема баллона.
Баллоны с этим газом маркируют следующим образом: окрашивают в белый цвет и большими красными буквами наносят надпись: «Ацетилен»
Строительные работы проводятся в основном на открытом воздухе. Применение ацетилена и его гомологов в этих условиях не должно проходить под воздействием прямых солнечных лучей. Небольшие перерывы должны сопровождаться перекрыванием вентилей на горелке, а длительные – перекрыванием вентилей на самих баллонах.
В химической промышленности очень востребован ацетилен. Применение его заключается в использовании данного вещества в процессе получения продуктов органического синтеза. Это синтетический каучук, пластмассы, растворители, уксусная кислота и т.д.
Ацетилен, являясь универсальным горючим, часто используется в процессах, сопровождающихся газопламенной обработкой
Важно, что применение ацетилена в промышленности возможно только при соблюдении мер безопасности, так как он является взрывоопасным газом
Формула ацетилена
Строение молекулы ацетилена
Ацетилен имеет простую формулу — С2Н2. Относительно дешевый способ его получения путем перемешивания воды и карбида кальция сделал его самым применяемым газом для соединения металлов. Температура с которой горит смесь кислорода и ацетилена вынуждает выделяться твердые частицы углерода.
Ацетилен можно доставить к месту выполнения работ в специальных емкостях (газовых баллонах), а можно получить его непосредственно на рабочем месте используя для этого специально сконструированный реактор. Где происходит смешивание воды и карбида кальция.
Химические и физические свойства
Некоторые химические свойства
Свойства ацетилена во многом определены его формулой. То есть наличием атомов углерода и водорода связанных между собой.
Смешивание ацетилена с водой, при добавлении катализаторов типа солей ртути, приводит к получению уксусного альдегида. Тройная связь атомов, содержащихся в молекуле ацетилена приводит к тому, что при сгорании она выделяет 14 000 ккал/куб. м. В процессе сгорания температура поднимается до 3000 °C.
Этот газ, при соблюдении определенных условий, может превращаться в бензол. Для этого необходимо разогреть его до 4000 °С и добавить графит.
Водород, содержащийся в молекулах показывает кислотные свойства. То есть они довольно легко отрываются от молекулы в виде протонов. Ацетилен в состоянии обесцвечивает воду содержащую бром и раствор «марганцовки».
Молярная масса ацетилена составляет 26,04 г/моль. Плотность ацетилена 1,1 кг/м³.
Физические свойства
В стандартных условиях ацетилен представляет собой бесцветный газ, который практически не растворяется в воде. Он начинает кипеть в -830 °С. При сжимании он начинает разлагаться с выделением большого количества энергии. Поэтому для его хранения применяют стальные баллоны способные хранить газ под высоким давлением.
Этот газ недопустимо выпускать в атмосферу. Его формула может отрицательно сказываться на окружающей среде.
Химические свойства ацетилена
Углеводороды предельные и непредельные: метан, этан, этилен, ацетилен — первоначальные сведения об органических веществах
Исходя из тройной связи ацетилена, для него будут характерны реакции присоединения и реакции полимеризации. Атомы водорода в молекуле ацетилена могут замещаться другими атомами или группами. Поэтому можно сказать, что ацетилен проявляет кислотные свойства. Разберем химические свойства ацетилена на конкретных реакциях.
Реакции присоединения:
Гидрирование. Осуществляется при высокой температуре и в присутствии катализатора (Ni, Pt, Pd). На палладиевом катализаторе возможно неполное гидрирование.
Галогенирование. Может быть как частичным, так и полным. Идет легко даже без катализаторов или нагревания. На свету хлорирование идет с взрывом. При этом ацетилен полностью распадается до углерода.
Присоединение к уксусной кислоте и этиловому спирту. Реакции идут только в присутствии катализаторов.
Присоединение синильной кислоты.
CH≡CH + HCN → CH2=CH-CN
Реакции замещения:
Взаимодействие ацетилена с металл-органическими соединениями.
CH≡CH + 2C2H5MgBr → 2C2H6 + BrMgC≡CMgBr
Взаимодействие с металлическим натрием. Необходима температура 150 °C или предварительное растворение натрия в аммиаке.
2CH≡CH + 2Na → 2CH≡CNa + H2
Взаимодействие с комплексными солями меди и серебра.
Взаимодействие с амидом натрия.
CH≡CH + 2NaNH2 → NaC≡CNa + 2NH3
Реакции полимеризации:
- Димеризация. При этой реакции две молекулы ацетилена объединяются в одну. Необходим катализатор — соль одновалентной меди.
- Тримеризация. В этой реакции три молекулы ацетилена образуют бензол. Необходим нагрев до 70 °C, давление и катализатор.
- Тетрамеризация. В результате реакции получается восьмичленный цикл — циклооктатетраен. Для этой реакции также требуется небольшой нагрев, давление и соответствующий катализатор. Обычно это комплексные соединения двухвалентного никеля.
Это далеко не все химические свойства ацетилена.
Ацетилен сегодня: способы получения
В промышленности ацетилен часто получают действием воды на карбид кальция. Сейчас широко применяются методы получения ацетилена из природного газа – метана: электрокрекинг (струю метана пропускают между электродами при температуре 1600°С и быстро охлаждают, чтобы предотвратить разложение ацетилена); термоокислительный крекинг (неполное окисление), где в реакции используют теплоту частичного сгорания ацетилена.
Технология и режимы сварки
Ацетилено — кислородные смеси применяют для соединения деталей из углеродистых и низколегированных сталей. Например, этот метод широко применяют для создания неразъемных соединений трубопроводов. Например, труб диаметром 159 мм с толщиной стенок не более 8 мм. Но существуют и некоторые ограничения, так соединение таким методом сталей марок 12×2M1, 12×2МФСР недопустимо.
Выбор параметров режима
Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.
Расход смеси с формулой кислород/ацетилен составляет 100-130 дм 3 /час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр
Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.
Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:
- толщину стенки свариваемых заготовок;
- вид сварки — левый, правый;
Читать также: Укладка сигнальной ленты над кабелем
На основании этого можно определить диаметр присадочной проволоки и подобрать расход ацетилена. К примеру, толщина составляет 5-6 мм, для выполнения работ будет использован наконечник № 4. То есть на основании табличных данных диаметр проволоки будет составлять для левой сварки 3,5 мм, для правой 3. Расход ацетилена в таком случае будет составлять при левом способе 60 -780 дм 3 /час, при правом 650-750 дм 3 /час.
Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва. По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй. Его укладывают только после того, как выполнен корень шва по всей заданной длине.
Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.
Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.
При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.
Виды ацетилена
Промышленность выпускает два вида ацетилена — твердый и в виде газа.
Газообразный
Ацетилен обладает резким запахом и это дает определённые преимущества при его утечке. По своей массе он близок к атмосферному воздуху.
Жидкий
Жидкий ацетилен не обладает ни каким цветом. У него есть одна особенность он преломляет цвет. Ацетилен и жидкий, и газообразный, представляет собой опасное вещество. То есть при нарушении правил обращения с ним взрыв может произойти в любую секунду, даже при комнатной температуре. Для повышения безопасности при обращении с ним, применяют так называемую флегматизацией. То есть в ёмкости, предназначенной для хранения ацетилена размещают пористое вещество. Которое снижает его опасность