Алюминий, свойства атома, химические и физические свойства


Общие сведения:

100Общие сведения
101НазваниеАлюминий
102Прежнее название
103Латинское названиеAluminium
104Английское названиеAluminium, Aluminum (в США и Канаде)
105СимволAl
106Атомный номер (номер в таблице)13
107ТипМеталл
108ГруппаАмфотерный, лёгкий, цветной металл
109ОткрытХанс Кристиан Эрстед, Дания, 1825 г.
110Год открытия1825 г.
111Внешний вид и пр.Мягкий, лёгкий и пластичный металл серебристо-белого цвета
112ПроисхождениеПриродный материал
113Модификации
114Аллотропные модификации
115Температура и иные условия перехода аллотропных модификаций друг в друга
116Конденсат Бозе-Эйнштейна
117Двумерные материалы
118Содержание в атмосфере и воздухе (по массе)0 %
119Содержание в земной коре (по массе)8,1 %
120Содержание в морях и океанах (по массе)5,0·10-7 %
121Содержание во Вселенной и космосе (по массе)0,005 %
122Содержание в Солнце (по массе)0,006 %
123Содержание в метеоритах (по массе)0,91 %
124Содержание в организме человека (по массе)0,00009 %

Состав и структура алюминия

Алюминий – это самый распространенный в земной коре металл. Его относят к легким металлам. Он обладает небольшой плотностью и массой. Кроме того, у него довольно низкая температура плавления. В то же время он обладает высокой пластичностью и показывает хорошие тепло- и электропроводные характеристики.


Кристаллическая решетка алюминия


Структура алюминия

Предел прочности чистого алюминия составляет всего 90 МПа. Но, если в расплав добавить некоторые вещества, например, медь и ряд других, то предел прочности резко вырастает до 700 МПа. Такого же результат можно достичь, применяя термическую обработку.

Алюминий, обладающий предельно высокой чистотой – 99,99% производят для использования в лабораторных целях. Для применения в промышленности применяют технически чистый алюминий. При получении алюминиевых сплавов применяют такие добавки, как – железо и кремний. Они не растворяются в расплаве алюминия, а из добавка снижает пластичность основного материала, но в то же время повышает его прочность.

Внешний вид простого вещества

Структура этого металла состоит из простейших ячеек, состоящих из четырех атомов. Такую структуру называют гранецентрической.

Проведенные расчеты показывают, что плотность чистого металла составляет 2,7 кг на метр кубический.

Свойства атома алюминия:

200Свойства атома
201Атомная масса (молярная масса)26,9815386(8) а.е.м. (г/моль)
202Электронная конфигурация1s2 2s2 2p6 3s2 3p1
203Электронная оболочкаK2 L8 M3 N0 O0 P0 Q0 R0
204Радиус атома (вычисленный)118 пм
205Эмпирический радиус атома*125 пм
206Ковалентный радиус*121 пм
207Радиус иона (кристаллический)Al3+
53 (4) пм,

67,5 (6) пм

(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

208Радиус Ван-дер-Ваальса184 пм
209Электроны, Протоны, Нейтроны13 электронов, 13 протонов, 14 нейтронов
210Семейство (блок)элемент p-семейства
211Период в периодической таблице3
212Группа в периодической таблице13-ая группа (по старой классификации – главная подгруппа 3-ей группы)
213Эмиссионный спектр излучения

Химические свойства алюминия:

300Химические свойства
301Степени окисления0, +1, +2, +3
302ВалентностьIII
303Электроотрицательность1,61 (шкала Полинга)
304Энергия ионизации (первый электрон)577,54 кДж/моль (5,985769(3) эВ)
305Электродный потенциалAl3+ + 3e— → Al, Eo = -1,663 В
306Энергия сродства атома к электрону41,762(5) кДж/моль (0,43283(5) эВ)

Кристаллические решетки металлов

Металлы обычного способа производства имеют кристаллическое строение. Вкристаллахатомы расположены строго упорядоченным образом так, что, если через их центры провести воображаемые линии вдоль трех координатных осей, они образуют пространственную (кристаллическую) решетку (рис. 1.2.1).


Рис. 1.2.1. Пространственная кристаллическая решетка

Основное свойство кристаллических решеток – их
пространственная периодичность. Это значит, что любую кристаллическую решетку можно представить состоящей из множества одинаковых соприкасающихся микрообъемов, называемых элементарными ячейками. В общем случаеэлементарная ячейка представляет собой параллелепипед, построенный на трех векторах , , (рис. 1.2.1).
Тип кристаллической решетки определяется формой элементарной ячейки и характером расположения в них атомов.

Количественно кристаллические решетки описываются тремя основными характеристиками:

1.Период (или параметр) решетки – расстояние между соседними узлами решетки вдоль трех координатных осей. В общем случае решетка характеризуется тремя параметрами – скалярными величинами а, в, с

(рис. 1.2.1.).

В случае простой кубической решетки (рис. 1.2.2) имеется один параметр решетки, равный ребру элементарной ячейки (куба).

α

Рис. 1.2.2. Элементарная ячейка простой кубической решетки (а) и схема упаковки в ней атомов (б)
Очевидно, что величина параметра решетки очень мала (в металлах ≈0,2…0,6 нм; 1 нм = 10-9м) и определяется рентгеноструктурным анализом.

2.
Координационное число (К)
– число ближайших соседей, окружающих данный атом и находящихся от него на одинаковых расстояниях. Для оценки величины К нужно представить, что элементарная ячейка со всех сторон окружена себе подобными (рис. 1.2.3).

Рис. 1.2.3. Определение координационного числа и относительной плотности упаковки в простой кубической решетке

Видно, что в простой кубической решетке К = 6.

3.Относительная плотность упаковки решетки атомами (q)

– отношение объема, занимаемого атомами в ячейке, к объему самой ячейки, т.е.

q = %, (1.2.1)

где r

– радиус атома,
а
– параметр решетки (см. рис. 1.2.2),
n
– число целых атомов, приходящихся на одну ячейку.

Очевидно, что в простой кубической решетке n

= (см. рис. 1.2.3), поэтому легко подсчитать (учитывая, что
а
= 2
r
), что в простой кубической решетке
q
= 52 %. Такая решетка является «рыхлой», так как 48 % ее объема приходится на межатомные пустоты.

Металлическим элементам свойственны плотноупакованные решетки с высокой степенью компактности, т.е. с большими значениями К

и
q
.

Многие металлы имеют объемноцентрированную

(ОЦК) и
гранецентрированную
(ГЦК) решетки, их характеристики приведены на рис. 1.2.4.

Рис. 1.2.4. Объемноцентрированная (ОЦК) и гранецентрированная (ГЦК) решетки

Например, ОЦК решетку имеет Feα (или α–Fe), а ГЦК решетку – Feγ (или γ–Fe). Такаяспособность некоторых веществ иметь различный тип решетки называется полиморфизмом.

Полиморфизм железа играет важнейшую роль в формировании структуры и свойств железоуглеродистых сплавов – сталей и чугунов (Темы 2.1 и 2.2 «Опорного конспекта»).

Металлы обычного способа производства имеют кристаллическое строение. Вкристаллахатомы расположены строго упорядоченным образом так, что, если через их центры провести воображаемые линии вдоль трех координатных осей, они образуют пространственную (кристаллическую) решетку (рис. 1.2.1).

Рис. 1.2.1. Пространственная кристаллическая решетка

Основное свойство кристаллических решеток – их
пространственная периодичность. Это значит, что любую кристаллическую решетку можно представить состоящей из множества одинаковых соприкасающихся микрообъемов, называемых элементарными ячейками. В общем случаеэлементарная ячейка представляет собой параллелепипед, построенный на трех векторах , , (рис. 1.2.1).
Тип кристаллической решетки определяется формой элементарной ячейки и характером расположения в них атомов.

Количественно кристаллические решетки описываются тремя основными характеристиками:

1.Период (или параметр) решетки – расстояние между соседними узлами решетки вдоль трех координатных осей. В общем случае решетка характеризуется тремя параметрами – скалярными величинами а, в, с

(рис. 1.2.1.).

В случае простой кубической решетки (рис. 1.2.2) имеется один параметр решетки, равный ребру элементарной ячейки (куба).

α

Рис. 1.2.2. Элементарная ячейка простой кубической решетки (а) и схема упаковки в ней атомов (б)
Очевидно, что величина параметра решетки очень мала (в металлах ≈0,2…0,6 нм; 1 нм = 10-9м) и определяется рентгеноструктурным анализом.

2.
Координационное число (К)
– число ближайших соседей, окружающих данный атом и находящихся от него на одинаковых расстояниях. Для оценки величины К нужно представить, что элементарная ячейка со всех сторон окружена себе подобными (рис. 1.2.3).

Рис. 1.2.3. Определение координационного числа и относительной плотности упаковки в простой кубической решетке

Видно, что в простой кубической решетке К = 6.

3.Относительная плотность упаковки решетки атомами (q)

– отношение объема, занимаемого атомами в ячейке, к объему самой ячейки, т.е.

q = %, (1.2.1)

где r

– радиус атома,
а
– параметр решетки (см. рис. 1.2.2),
n
– число целых атомов, приходящихся на одну ячейку.

Очевидно, что в простой кубической решетке n

= (см. рис. 1.2.3), поэтому легко подсчитать (учитывая, что
а
= 2
r
), что в простой кубической решетке
q
= 52 %. Такая решетка является «рыхлой», так как 48 % ее объема приходится на межатомные пустоты.

Металлическим элементам свойственны плотноупакованные решетки с высокой степенью компактности, т.е. с большими значениями К

и
q
.

Многие металлы имеют объемноцентрированную

(ОЦК) и
гранецентрированную
(ГЦК) решетки, их характеристики приведены на рис. 1.2.4.

Рис. 1.2.4. Объемноцентрированная (ОЦК) и гранецентрированная (ГЦК) решетки

Например, ОЦК решетку имеет Feα (или α–Fe), а ГЦК решетку – Feγ (или γ–Fe). Такаяспособность некоторых веществ иметь различный тип решетки называется полиморфизмом.

Полиморфизм железа играет важнейшую роль в формировании структуры и свойств железоуглеродистых сплавов – сталей и чугунов (Темы 2.1 и 2.2 «Опорного конспекта»).

Физические свойства алюминия:

400Физические свойства
401Плотность*2,70 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело),
2,375 г/см3 (при температуре плавления 660,32 °C и иных стандартных условиях, состояние вещества – жидкость),

2,289 г/см3 (при 1000 °C и иных стандартных условиях, состояние вещества –жидкость)

402Температура плавления*660,32 °C (933,47 K, 1220,58 °F)
403Температура кипения*2470 °C (2743 K, 4478 °F)
404Температура сублимации
405Температура разложения
406Температура самовоспламенения смеси газа с воздухом
407Удельная теплота плавления (энтальпия плавления ΔHпл)*10,71 кДж/моль
408Удельная теплота испарения (энтальпия кипения ΔHкип)*284 кДж/моль
409Удельная теплоемкость при постоянном давлении0,903 Дж/г·K (при 25 °C)
410Молярная теплоёмкость*24,20 Дж/(K·моль)
411Молярный объём9,993 см³/моль
412Теплопроводность237 Вт/(м·К) (при стандартных условиях),
237 Вт/(м·К) (при 300 K)
413Коэффициент теплового расширения23,1 мкм/(М·К) (при 25 °С)
414Коэффициент температуропроводности
415Критическая температура
416Критическое давление
417Критическая плотность
418Тройная точка
419Давление паров (мм.рт.ст.)
420Давление паров (Па)
421Стандартная энтальпия образования ΔH
422Стандартная энергия Гиббса образования ΔG
423Стандартная энтропия вещества S
424Стандартная мольная теплоемкость Cp
425Энтальпия диссоциации ΔHдисс
426Диэлектрическая проницаемость
427Магнитный тип
428Точка Кюри
429Объемная магнитная восприимчивость
430Удельная магнитная восприимчивость
431Молярная магнитная восприимчивость
432Электрический тип
433Электропроводность в твердой фазе
434Удельное электрическое сопротивление
435Сверхпроводимость при температуре
436Критическое магнитное поле разрушения сверхпроводимости
437Запрещенная зона
438Концентрация носителей заряда
439Твёрдость по Моосу
440Твёрдость по Бринеллю
441Твёрдость по Виккерсу
442Скорость звука
443Поверхностное натяжение
444Динамическая вязкость газов и жидкостей
445Взрывоопасные концентрации смеси газа с воздухом, % объёмных
446Взрывоопасные концентрации смеси газа с кислородом, % объёмных
446Предел прочности на растяжение
447Предел текучести
448Предел удлинения
449Модуль Юнга
450Модуль сдвига
451Объемный модуль упругости
452Коэффициент Пуассона
453Коэффициент преломления

Кристаллические решетки

Кристаллической решеткой называют пространственное расположение атомов или ионов в кристалле. Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.

Кристаллические решетки подразделяют на молекулярные, атомные, ионные и металлические.

Очень важно не перепутать вид химической связи и кристаллической решетки. Помните, что кристаллические решетки отражают пространственное расположение атомов.

Молекулярная кристаллическая решетка

В узлах молекулярной решетки расположены молекулы. При обычных условиях молекулярную решетку имеют большинство газов и жидкостей. Связи чаще всего ковалентные полярные или неполярные.

Классическим примером вещества с молекулярной решеткой является вода, так что ассоциируйте свойства этих веществ с водой. Вещества с молекулярной решеткой непрочные, имеют небольшую твердость, летучие, легкоплавкие, способны к возгонке, для них характерны небольшие температуры кипения.

Примеры: NH3, H2O, Cl2, CO2, N2, Br2, H2, I2. Особо хочется отметить белый фосфор, ромбическую, пластическую и моноклинную серу, фуллерен. Эти аллотропные модификации мы подробно изучили в статье, посвященной классификации веществ.

Ионная кристаллическая решетка

В узлах ионной решетки находятся атомы, связанные ионной связью. Этот тип решетки характерен для веществ, обладающих ионной связь: соли, оксиды и гидроксиды металлов.

Ассоциируйте этот ряд веществ с поваренной солью — NaCl. Веществе с ионной решеткой имеют высокие температуры плавления и кипения, легко растворимы в воде, хрупкие, твердые, их растворы и расплавы проводят электрический ток.

Примеры: NaCl, MgCl2, NH4Br, KNO3, Li2O, Na3PO4.

Металлическая кристаллическая решетка

В узлах металлической решетки находятся атомы металла. Этот тип решетки характерен для веществ, образованных металлической связью.

Ассоциируйте свойства этих веществ с медью. Они обладают характерным металлическим блеском, ковкие и пластичные, хорошо проводят электрический ток и тепло, имеют высокие температуры плавления и кипения.

Примеры: Cu, Fe, Zn, Al, Cr, Mn.

Атомная кристаллическая решетка

В узлах атомной решетки находятся атомы, связанные ковалентной полярной или неполярной связью.

Ассоциируйте эти вещества с песком. Они очень твердые, очень тугоплавкие (высокая температура плавления), нелетучие, прочные, нерастворимы в воде.

Примеры: SiO2, B, Ge, SiC, Al2O3. Особенно хочется выделить: алмаз и графит (C), красный и черный фосфор (P).

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию

.

Кристаллическая решётка алюминия:

500Кристаллическая решётка
511Кристаллическая решётка #1
512Структура решёткиКубическая гранецентрированная
513Параметры решётки4,050 Å
514Отношение c/a
515Температура Дебая394 К
516Название пространственной группы симметрииFm_ 3m
517Номер пространственной группы симметрии225
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]