Общие сведения:
100 | Общие сведения | |
101 | Название | Алюминий |
102 | Прежнее название | |
103 | Латинское название | Aluminium |
104 | Английское название | Aluminium, Aluminum (в США и Канаде) |
105 | Символ | Al |
106 | Атомный номер (номер в таблице) | 13 |
107 | Тип | Металл |
108 | Группа | Амфотерный, лёгкий, цветной металл |
109 | Открыт | Ханс Кристиан Эрстед, Дания, 1825 г. |
110 | Год открытия | 1825 г. |
111 | Внешний вид и пр. | Мягкий, лёгкий и пластичный металл серебристо-белого цвета |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | |
115 | Температура и иные условия перехода аллотропных модификаций друг в друга | |
116 | Конденсат Бозе-Эйнштейна | |
117 | Двумерные материалы | |
118 | Содержание в атмосфере и воздухе (по массе) | 0 % |
119 | Содержание в земной коре (по массе) | 8,1 % |
120 | Содержание в морях и океанах (по массе) | 5,0·10-7 % |
121 | Содержание во Вселенной и космосе (по массе) | 0,005 % |
122 | Содержание в Солнце (по массе) | 0,006 % |
123 | Содержание в метеоритах (по массе) | 0,91 % |
124 | Содержание в организме человека (по массе) | 0,00009 % |
Состав и структура алюминия
Алюминий – это самый распространенный в земной коре металл. Его относят к легким металлам. Он обладает небольшой плотностью и массой. Кроме того, у него довольно низкая температура плавления. В то же время он обладает высокой пластичностью и показывает хорошие тепло- и электропроводные характеристики.
Кристаллическая решетка алюминия
Структура алюминия
Предел прочности чистого алюминия составляет всего 90 МПа. Но, если в расплав добавить некоторые вещества, например, медь и ряд других, то предел прочности резко вырастает до 700 МПа. Такого же результат можно достичь, применяя термическую обработку.
Алюминий, обладающий предельно высокой чистотой – 99,99% производят для использования в лабораторных целях. Для применения в промышленности применяют технически чистый алюминий. При получении алюминиевых сплавов применяют такие добавки, как – железо и кремний. Они не растворяются в расплаве алюминия, а из добавка снижает пластичность основного материала, но в то же время повышает его прочность.
Внешний вид простого вещества
Структура этого металла состоит из простейших ячеек, состоящих из четырех атомов. Такую структуру называют гранецентрической.
Проведенные расчеты показывают, что плотность чистого металла составляет 2,7 кг на метр кубический.
Свойства атома алюминия:
200 | Свойства атома | |
201 | Атомная масса (молярная масса) | 26,9815386(8) а.е.м. (г/моль) |
202 | Электронная конфигурация | 1s2 2s2 2p6 3s2 3p1 |
203 | Электронная оболочка | K2 L8 M3 N0 O0 P0 Q0 R0 |
204 | Радиус атома (вычисленный) | 118 пм |
205 | Эмпирический радиус атома* | 125 пм |
206 | Ковалентный радиус* | 121 пм |
207 | Радиус иона (кристаллический) | Al3+ 53 (4) пм, 67,5 (6) пм (в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле) |
208 | Радиус Ван-дер-Ваальса | 184 пм |
209 | Электроны, Протоны, Нейтроны | 13 электронов, 13 протонов, 14 нейтронов |
210 | Семейство (блок) | элемент p-семейства |
211 | Период в периодической таблице | 3 |
212 | Группа в периодической таблице | 13-ая группа (по старой классификации – главная подгруппа 3-ей группы) |
213 | Эмиссионный спектр излучения |
Химические свойства алюминия:
300 | Химические свойства | |
301 | Степени окисления | 0, +1, +2, +3 |
302 | Валентность | III |
303 | Электроотрицательность | 1,61 (шкала Полинга) |
304 | Энергия ионизации (первый электрон) | 577,54 кДж/моль (5,985769(3) эВ) |
305 | Электродный потенциал | Al3+ + 3e— → Al, Eo = -1,663 В |
306 | Энергия сродства атома к электрону | 41,762(5) кДж/моль (0,43283(5) эВ) |
Кристаллические решетки металлов
Металлы обычного способа производства имеют кристаллическое строение. Вкристаллахатомы расположены строго упорядоченным образом так, что, если через их центры провести воображаемые линии вдоль трех координатных осей, они образуют пространственную (кристаллическую) решетку (рис. 1.2.1).
Рис. 1.2.1. Пространственная кристаллическая решетка
Основное свойство кристаллических решеток – их
пространственная периодичность. Это значит, что любую кристаллическую решетку можно представить состоящей из множества одинаковых соприкасающихся микрообъемов, называемых элементарными ячейками. В общем случаеэлементарная ячейка представляет собой параллелепипед, построенный на трех векторах , , (рис. 1.2.1).
Тип кристаллической решетки определяется формой элементарной ячейки и характером расположения в них атомов.
Количественно кристаллические решетки описываются тремя основными характеристиками:
1.Период (или параметр) решетки – расстояние между соседними узлами решетки вдоль трех координатных осей. В общем случае решетка характеризуется тремя параметрами – скалярными величинами а, в, с
(рис. 1.2.1.).
В случае простой кубической решетки (рис. 1.2.2) имеется один параметр решетки, равный ребру элементарной ячейки (куба).
α |
Рис. 1.2.2. Элементарная ячейка простой кубической решетки (а) и схема упаковки в ней атомов (б)
Очевидно, что величина параметра решетки очень мала (в металлах ≈0,2…0,6 нм; 1 нм = 10-9м) и определяется рентгеноструктурным анализом.
2.
Координационное число (К)
– число ближайших соседей, окружающих данный атом и находящихся от него на одинаковых расстояниях. Для оценки величины К нужно представить, что элементарная ячейка со всех сторон окружена себе подобными (рис. 1.2.3).
Рис. 1.2.3. Определение координационного числа и относительной плотности упаковки в простой кубической решетке
Видно, что в простой кубической решетке К = 6.
3.Относительная плотность упаковки решетки атомами (q)
– отношение объема, занимаемого атомами в ячейке, к объему самой ячейки, т.е.
q = %, (1.2.1)
где r
– радиус атома,
а
– параметр решетки (см. рис. 1.2.2),
n
– число целых атомов, приходящихся на одну ячейку.
Очевидно, что в простой кубической решетке n
= (см. рис. 1.2.3), поэтому легко подсчитать (учитывая, что
а
= 2
r
), что в простой кубической решетке
q
= 52 %. Такая решетка является «рыхлой», так как 48 % ее объема приходится на межатомные пустоты.
Металлическим элементам свойственны плотноупакованные решетки с высокой степенью компактности, т.е. с большими значениями К
и
q
.
Многие металлы имеют объемноцентрированную
(ОЦК) и
гранецентрированную
(ГЦК) решетки, их характеристики приведены на рис. 1.2.4.
Рис. 1.2.4. Объемноцентрированная (ОЦК) и гранецентрированная (ГЦК) решетки
Например, ОЦК решетку имеет Feα (или α–Fe), а ГЦК решетку – Feγ (или γ–Fe). Такаяспособность некоторых веществ иметь различный тип решетки называется полиморфизмом.
Полиморфизм железа играет важнейшую роль в формировании структуры и свойств железоуглеродистых сплавов – сталей и чугунов (Темы 2.1 и 2.2 «Опорного конспекта»).
Металлы обычного способа производства имеют кристаллическое строение. Вкристаллахатомы расположены строго упорядоченным образом так, что, если через их центры провести воображаемые линии вдоль трех координатных осей, они образуют пространственную (кристаллическую) решетку (рис. 1.2.1).
Рис. 1.2.1. Пространственная кристаллическая решетка
Основное свойство кристаллических решеток – их
пространственная периодичность. Это значит, что любую кристаллическую решетку можно представить состоящей из множества одинаковых соприкасающихся микрообъемов, называемых элементарными ячейками. В общем случаеэлементарная ячейка представляет собой параллелепипед, построенный на трех векторах , , (рис. 1.2.1).
Тип кристаллической решетки определяется формой элементарной ячейки и характером расположения в них атомов.
Количественно кристаллические решетки описываются тремя основными характеристиками:
1.Период (или параметр) решетки – расстояние между соседними узлами решетки вдоль трех координатных осей. В общем случае решетка характеризуется тремя параметрами – скалярными величинами а, в, с
(рис. 1.2.1.).
В случае простой кубической решетки (рис. 1.2.2) имеется один параметр решетки, равный ребру элементарной ячейки (куба).
α |
Рис. 1.2.2. Элементарная ячейка простой кубической решетки (а) и схема упаковки в ней атомов (б)
Очевидно, что величина параметра решетки очень мала (в металлах ≈0,2…0,6 нм; 1 нм = 10-9м) и определяется рентгеноструктурным анализом.
2.
Координационное число (К)
– число ближайших соседей, окружающих данный атом и находящихся от него на одинаковых расстояниях. Для оценки величины К нужно представить, что элементарная ячейка со всех сторон окружена себе подобными (рис. 1.2.3).
Рис. 1.2.3. Определение координационного числа и относительной плотности упаковки в простой кубической решетке
Видно, что в простой кубической решетке К = 6.
3.Относительная плотность упаковки решетки атомами (q)
– отношение объема, занимаемого атомами в ячейке, к объему самой ячейки, т.е.
q = %, (1.2.1)
где r
– радиус атома,
а
– параметр решетки (см. рис. 1.2.2),
n
– число целых атомов, приходящихся на одну ячейку.
Очевидно, что в простой кубической решетке n
= (см. рис. 1.2.3), поэтому легко подсчитать (учитывая, что
а
= 2
r
), что в простой кубической решетке
q
= 52 %. Такая решетка является «рыхлой», так как 48 % ее объема приходится на межатомные пустоты.
Металлическим элементам свойственны плотноупакованные решетки с высокой степенью компактности, т.е. с большими значениями К
и
q
.
Многие металлы имеют объемноцентрированную
(ОЦК) и
гранецентрированную
(ГЦК) решетки, их характеристики приведены на рис. 1.2.4.
Рис. 1.2.4. Объемноцентрированная (ОЦК) и гранецентрированная (ГЦК) решетки
Например, ОЦК решетку имеет Feα (или α–Fe), а ГЦК решетку – Feγ (или γ–Fe). Такаяспособность некоторых веществ иметь различный тип решетки называется полиморфизмом.
Полиморфизм железа играет важнейшую роль в формировании структуры и свойств железоуглеродистых сплавов – сталей и чугунов (Темы 2.1 и 2.2 «Опорного конспекта»).
Физические свойства алюминия:
400 | Физические свойства | |
401 | Плотность* | 2,70 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело), 2,375 г/см3 (при температуре плавления 660,32 °C и иных стандартных условиях, состояние вещества – жидкость), 2,289 г/см3 (при 1000 °C и иных стандартных условиях, состояние вещества –жидкость) |
402 | Температура плавления* | 660,32 °C (933,47 K, 1220,58 °F) |
403 | Температура кипения* | 2470 °C (2743 K, 4478 °F) |
404 | Температура сублимации | |
405 | Температура разложения | |
406 | Температура самовоспламенения смеси газа с воздухом | |
407 | Удельная теплота плавления (энтальпия плавления ΔHпл)* | 10,71 кДж/моль |
408 | Удельная теплота испарения (энтальпия кипения ΔHкип)* | 284 кДж/моль |
409 | Удельная теплоемкость при постоянном давлении | 0,903 Дж/г·K (при 25 °C) |
410 | Молярная теплоёмкость* | 24,20 Дж/(K·моль) |
411 | Молярный объём | 9,993 см³/моль |
412 | Теплопроводность | 237 Вт/(м·К) (при стандартных условиях), 237 Вт/(м·К) (при 300 K) |
413 | Коэффициент теплового расширения | 23,1 мкм/(М·К) (при 25 °С) |
414 | Коэффициент температуропроводности | |
415 | Критическая температура | |
416 | Критическое давление | |
417 | Критическая плотность | |
418 | Тройная точка | |
419 | Давление паров (мм.рт.ст.) | |
420 | Давление паров (Па) | |
421 | Стандартная энтальпия образования ΔH | |
422 | Стандартная энергия Гиббса образования ΔG | |
423 | Стандартная энтропия вещества S | |
424 | Стандартная мольная теплоемкость Cp | |
425 | Энтальпия диссоциации ΔHдисс | |
426 | Диэлектрическая проницаемость | |
427 | Магнитный тип | |
428 | Точка Кюри | |
429 | Объемная магнитная восприимчивость | |
430 | Удельная магнитная восприимчивость | |
431 | Молярная магнитная восприимчивость | |
432 | Электрический тип | |
433 | Электропроводность в твердой фазе | |
434 | Удельное электрическое сопротивление | |
435 | Сверхпроводимость при температуре | |
436 | Критическое магнитное поле разрушения сверхпроводимости | |
437 | Запрещенная зона | |
438 | Концентрация носителей заряда | |
439 | Твёрдость по Моосу | |
440 | Твёрдость по Бринеллю | |
441 | Твёрдость по Виккерсу | |
442 | Скорость звука | |
443 | Поверхностное натяжение | |
444 | Динамическая вязкость газов и жидкостей | |
445 | Взрывоопасные концентрации смеси газа с воздухом, % объёмных | |
446 | Взрывоопасные концентрации смеси газа с кислородом, % объёмных | |
446 | Предел прочности на растяжение | |
447 | Предел текучести | |
448 | Предел удлинения | |
449 | Модуль Юнга | |
450 | Модуль сдвига | |
451 | Объемный модуль упругости | |
452 | Коэффициент Пуассона | |
453 | Коэффициент преломления |
Кристаллические решетки
Кристаллической решеткой называют пространственное расположение атомов или ионов в кристалле. Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.
Кристаллические решетки подразделяют на молекулярные, атомные, ионные и металлические.
Очень важно не перепутать вид химической связи и кристаллической решетки. Помните, что кристаллические решетки отражают пространственное расположение атомов.
Молекулярная кристаллическая решетка
В узлах молекулярной решетки расположены молекулы. При обычных условиях молекулярную решетку имеют большинство газов и жидкостей. Связи чаще всего ковалентные полярные или неполярные.
Классическим примером вещества с молекулярной решеткой является вода, так что ассоциируйте свойства этих веществ с водой. Вещества с молекулярной решеткой непрочные, имеют небольшую твердость, летучие, легкоплавкие, способны к возгонке, для них характерны небольшие температуры кипения.
Примеры: NH3, H2O, Cl2, CO2, N2, Br2, H2, I2. Особо хочется отметить белый фосфор, ромбическую, пластическую и моноклинную серу, фуллерен. Эти аллотропные модификации мы подробно изучили в статье, посвященной классификации веществ.
Ионная кристаллическая решетка
В узлах ионной решетки находятся атомы, связанные ионной связью. Этот тип решетки характерен для веществ, обладающих ионной связь: соли, оксиды и гидроксиды металлов.
Ассоциируйте этот ряд веществ с поваренной солью — NaCl. Веществе с ионной решеткой имеют высокие температуры плавления и кипения, легко растворимы в воде, хрупкие, твердые, их растворы и расплавы проводят электрический ток.
Примеры: NaCl, MgCl2, NH4Br, KNO3, Li2O, Na3PO4.
Металлическая кристаллическая решетка
В узлах металлической решетки находятся атомы металла. Этот тип решетки характерен для веществ, образованных металлической связью.
Ассоциируйте свойства этих веществ с медью. Они обладают характерным металлическим блеском, ковкие и пластичные, хорошо проводят электрический ток и тепло, имеют высокие температуры плавления и кипения.
Примеры: Cu, Fe, Zn, Al, Cr, Mn.
Атомная кристаллическая решетка
В узлах атомной решетки находятся атомы, связанные ковалентной полярной или неполярной связью.
Ассоциируйте эти вещества с песком. Они очень твердые, очень тугоплавкие (высокая температура плавления), нелетучие, прочные, нерастворимы в воде.
Примеры: SiO2, B, Ge, SiC, Al2O3. Особенно хочется выделить: алмаз и графит (C), красный и черный фосфор (P).
© Беллевич Юрий Сергеевич 2018-2022
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию
.
Кристаллическая решётка алюминия:
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | |
512 | Структура решётки | Кубическая гранецентрированная |
513 | Параметры решётки | 4,050 Å |
514 | Отношение c/a | |
515 | Температура Дебая | 394 К |
516 | Название пространственной группы симметрии | Fm_ 3m |
517 | Номер пространственной группы симметрии | 225 |