Затяжка болтов динамометрическим ключом: таблицы, способы определения усилий

Выход из строя резьбовых соединений при чрезмерной затяжке может произойти из-за разрушения стержня болта или из-за срыва резьбы гайки и/или болта.

Болт или винт в сборе с гайкой соответствующего класса предназначены для создания соединений, которые можно затянуть до установленного значения пробной нагрузки болта без срыва резьбы. Пробная нагрузка обычно составляет 85-95% от предела текучести и определяется как максимальное растягивающее усилие, которое можно приложить к болту и которое не приведет к его пластической деформации.

Значение крутящего момента для конкретного размера болта зависит от:

  1. Материала и класса прочности болта.
  2. Материала соединяемых деталей (сталь, цветной металл или пластик).
  3. Наличия или отсутствия антикоррозийного покрытия у винта.
  4. Является ли крепеж сухим или в смазке.
  5. Длины резьбы.

Таблицы ниже даны только для ознакомления, так как приведенные в них значения являются приблизительными. Из-за множества факторов, влияющих на соотношение крутящего момента и натяжения, единственный способ определить правильный крутящий момент — это провести эксперименты в реальных условиях соединения и сборки.

Таблица 1. Моменты затяжки – винт (болт) без покрытия (черный), коэффициент трения 0,14.

Крупная резьба

Диаметр резьбыКласс прочности
5.68.810.912.9
Nmft lb.Nmft lb.Nmft lb.Nmft lb.
М30.60.441.371.011.921.422.31.7
М41.371.013.12.294.43.055.253.87
М52.71.996.154.548.656.3810.47.6
М64.63.310.57.715111813
М77.65.617.512.92518.42921.3
М8118.1261936264331
М102216513772538764
М123928896512592150110
М146245141103198146240117
М169570215158305224365269
М1813095295217420309500368
М20184135420309590435710523
М22250184570420800590960708
М2431523272553410207521220899
М2747034610707891510111318101334
М30635468145010692050151124501806
М33865637197014522770204233302455
М361111819253018653560262542803156
М3914401062329024264620340755507093

Мелкая резьба

Диаметр резьбыКласс прочности
8.810.912.9
Nmft lb.Nmft lb.Nmft lb.
М8х1271938284533
М10х1,25523873538864
М12х1,25957013599160118
М14х1,5150110210154250184
М16х1,5225165315232380280
М18х1,5325239460339550405
М20х1,5460339640472770567
М22х1,56104498606341050774
М24х278057511008111300958

Механические свойства болтов, винтов и шпилек

Клас прочности болта

временное сопротивление, МПа

мин. макс

.

предел текучести, МПа, мин. относительное удлинение, %

мин.

ударная вязкость, Нм/см2 твердость по Бринеллю HB

мин. макс.

3.63049202590150
4.6405524255,5110170
4.840553214110170
5.6507030205,0140215
5.850704010140215
6.6608036164,0170245
6.86080488170245
6.960805412170245
8.88010064126,0225300
10.91001209094,0280365
12.912014010884,0330425
14.914016012673,0390

Разрушающие нагрузки болтов

резьба болтарабочая площадь поперечного сечения, ммКласс прочности болта
Минимальная разрушающая нагрузка, кН
3.64.64.85.65.86.88.89.810.912.9
М514,24,695,685,967,17,388,5211,3512,814,817,3
М620,16,638,048,441010,412,116,118,120,924,5
М728,99,5411,612,114,41517,323,12620,135,3
М836,612,114,615,418,3192229,232,938,144,6
М105819,123,224,42930,234,846,452,260,370,8
М1284,327,833,735,442,243,850,667,475,987,7103
М14115384648,357,559,86992104120140
М1615751,862,865,978,581,694125141160192
М1819263,476,880,69699,8115159200234
М2024580,898103122127147203255299
М22303100121127152158182252315370
М24353116141148176184212293367431
М27459152184193230239275381477560
М30561185224236280292337466583684
М33694229278292347361416576722847
М36817270327343408425490678850997
М3997632239041048850858681010201200

Класс прочности болта обозначен двумя числами. Первое число, умноженное на 100, определяет величину минимального сопротивления болта в Мпа; второе число, умноженное на 10, определяет отношение предела текучести болта к временному сопротивлению в %; произведение чисел, умноженное на 10, определяет величину предела текучести болта в МПа.

Крутящие моменты затяжки электрооцинкованных болтов

Приведенные крутящие моменты болтов являются допустимыми, уровень нагрузки при этом соответствует примерно 60-70% предела текучести.

Размеры под ключ для болтов и гаек

резьбаБолты и гайки по стандарту DIN931, DIN933, DIN934 DIN912
М473
М584
М6105
М711
М8136
М1017(16)8
М1219(18)10
М1422(21)12
М162414
М182714
М203017
М2232(34)17
М243619
М274119
М304622
М3350
М365527
М3960
М4875

Размеры в скобках действительны для новых стандартов ISO

Шаг резьбы болтов и гаек для основной и мелкой однозаходной резьбы, мм

резьбаосновная резьбамелкая резьбамелкая2 резьбасупермелкая резьба
М10,250,20
М1,20,250,20
М1,40,300,20
М1,60,350,2
М1,80,350,02
М20,400,25
М2,20,450,25
М2,50,450,35
М30,500,35
М3,50,600,35
М40,700,50
М50,800,50
М61,000,750,50
М81,251,000,750,50
М101,501,251,000,75
М121,751,501,251,00
М142,001,501,251,00
М162,001,501,251,00
М182,502,001,501,00
М202,502,001,501,00
М222,502,001,501,00
М243,002,001,501,00
М273,002,001,501,00
М303,502,001,501,00
М33694229278292
М364,003,002,001,50
М394,003,002,001,50
М424,503,002,001,50
М454,503,002,001,50
М485,003,002,001,50
М525,003,002,001,50
М565,504,003,001,50
М605,504,003,001,50
М646,004,003,002,00
М686,004,003,002,00

Таблица 2. Моменты затяжки – винт электролитически оцинкованный, коэффициент трения 0,125.

Крупная резьба

Диаметр резьбыКласс прочности
5.68.810.912.9
Nmft lb.Nmft lb.Nmft lb.Nmft lb.
М30.560.411.280.941.81.332.151.59
М41.280.942.92.144.13.024.953.65
М52.51.845.754.248.15.979.77.15
М64.33.19.97.31410.316.512.1
М77.75.216.512.12316.92719.9
М810.57.72417.734254029
М102115483567498159
М123626836111786.2140103
М14584213297185136220162
М168864200147285210340250
М1812189275202390287470346
М20171126390287550405660486
М22230169530390745549890656
М242952176754979607081140840
М274353209957331400103216801239
М3059043513509951900140122801681
М33800590183013492580190230902278
М361030759236017403310244139802935
М391340988305022494290316351503798

Мелкая резьба

Диаметр резьбыКласс прочности
8.810.912.9
Nmft lb.Nmft lb.Nmft lb.
М8х1251835254230
М10х1,25493668508260
М12х1,25886412592150110
М14х1,5140103195143235173
М16х1,5210154295217350258
М18х1,5305224425313510376
М20х1,5425313600442720531
М22х1,5570420800590960708
М24х272053110007371200885

Что происходит при затягивании болта?

Прилагаемый к гайке крутящий момент, заставляет ее скользить вверх по наклонной плоскости резьбы. При этом уменьшается расстояние между опорными поверхностями болта и гайки. Этот размер представляет собой длину захвата болтового соединения.

При дальнейшей затяжке на болт действует нагрузка на растяжение. Его материал, чаще всего сталь, сопротивляется этому этому растяжению и создает усилие зажима на скрепляемых компонентах. Точно так же материалы подложки сопротивляются сжатию, чтобы сбалансировать давление зажима. Создаваемое напряжение называется предварительным натягом крепежа

.

Конструктивные соединения, относящиеся к категории ответственных, требуют затяжки до определенного крутящего момента для обеспечения правильного предварительного натяга.

  • Правильно затянутый болт
    немного растягивается, но не выходит за область своей упругой деформации. Находясь под постоянным напряжением, он сохраняет усилие затяжки и проявляет устойчивость к усталостному разрушению.
  • Чрезмерно затянутый болт
    растягивается за границы упругого удлинения, что приводит к его необратимой пластической деформации и последующему разрушению.
  • Недостаточно затянутый болт
    допускает незначительный зазор между соединяемыми заготовками, который будет увеличиваться после постоянной динамической нагрузки или других рабочих нагрузок. Зазор в соединении означает отсутствие предварительного натяжения, что неизбежно приведет к разрушению соединения.

Таким образом, момент затяжки — это оптимальный крутящий момент, приложенный к гайке, чтобы болт мог надежно удерживать нагрузку, не деформируясь и не ломаясь. Единица измерения в системе СИ: Н·м (Ньютон-метр).

Момент силы предварительной затяжки резьбового соединения является расчетным значением и составляет 75-80% от величины пробной нагрузки. Последняя же служит в качестве контрольного показателя, который винт должен выдержать в ходе испытаний. Если вы превысите значение пробной нагрузки при затягивании, вы рискуете вывести из строя крепежный элемент.

Расчет нагрузки на болт

Маркировка головки болта обычно содержит следующие данные:

— клеймо завода изготовителя (JX, THE, L, WT, и т.п.); — класс прочности; — стрелка «против часовой стрелки» (если левая резьба).

Первая цифра обозначает номинальное временное сопротивление (предел прочности на разрыв): 1/100 Мпа (1/100 Н/мм²;

1/10 кг/мм²). Пример: (класс прочности 9.8) 9*10=900 Мпа (900 Н/мм²; 91,71 кг/мм²).

Вторая цифра обозначает процентное отношение предела текучести к временному сопротивлению (пределу прочности на разрыв): 1/10%. Пример: (класс прочности 9.8) 9*8=720 Мпа (720 Н/мм²; 73,37 кг/мм²).

Значение предела текучести — это максимально допустимая рабочая нагрузка болта, при превышении которой происходит невосстанавливаемая деформация. При расчётах нагрузки используют 1/2 или 1/3 от предела текучести, с двукратным или трёхкратным запасом прочности соответсвенно.

По действующей международной классификации к высокопрочным болтам относятся изделия, временное сопротивление которых больше или равно 800 Мпа (800 Н/мм²; 81,52 кг/мм²). Соответсвенно начиная с 8.8 для болтов и 8 для гаек.

Примеры текучести материала

Примером может послужить обычная кухонная вилка. Изогнув её в одном направлении, можно получить совершенно другой предмет, значит нарушилась ее текучесть, что привело к деформации. Материал при этом только деформировался, но не сломался, что свидетельствует о большой степени упругости стали. Вывод: максимальная прочность намного выше текучести.

Другое кухонное оборудование, например нож, сломается при попытках изменить его форму. Вывод: у ножа одинаковая сила текучести и прочности, такое изделие можно назвать хрупким, несмотря на то, что оно изготовлено из стали.

Аналогичным практическим примером может послужить вкручивание гайки: сам болт увеличивает длину только после определенного действия над ним. При неблагоприятном исходе эксперимента может состояться срыв резьбы на креплении.

Можно просмотреть тематический ролик, который покажет способ испытания болтов.

Процент удлинения — это среднестатистический показатель, который демонстрирует длину деформированной детали еще до начало поломки. Образно, можно называть такого рода болты гибкими, имея ввиду именно способность к удлинению.

Техническая терминология на этот счет довольно простая: относительное удлинение — это не что иное, как процент увеличения образца по сравнению с первоначальным размером.

Еще одно преимущество предварительного натяга

При первом взгляде на болтовой узел создается впечатление, что резьбовой крепеж сам несет все нагрузки, действующие извне в процессе эксплуатации. Но это не так. Когда к предварительно нагруженному соединению, прикладывается внешняя нагрузка, болт воспринимает неполное ее действие, а обычно только небольшую ее часть. Когда же рабочая нагрузка прикладывается к крепежному узлу, который не был предварительно нагружен, вся величина нагрузки ложится только на болт, что повышает вероятность его отказа.

Но это правило работает только в том случае, когда дополнительные внешние нагрузки не превышают предварительную нагрузку болтов, в противном случае нагрузка на резьбовой крепеж возрастает.

Что такое текучесть материала

Для наглядного примера понятия текучести металла можно взять два предмета кухонного инвентаря — вилку и нож. Изгибая вилку любом направлении мы деформируем изделие. Материал ложки всего-навсего изменил свою форму, изделие не сломалось — это говорит о высокой упругости материала, из которого изготовлена вилка. В данном примере прочность материала вилки значительно выше ее текучести.

Стальной нож при подобном воздействии сломается. У материала, из которого изготовлено это изделие, текучесть примерно одинакова с прочностью. Несмотря то, что нож изготовлен из прочной стали его в данном примере можно считать хрупким.

Другим примером из практики может послужить процесс вкручивания гайки в болт, который способен увеличить свою длину только при определенном воздействии на него. При чрезмерном усилии при закручивании гайки произойдет не увеличение длины болта, ка срыв резьбы на креплении.

Следующий показатель, используемый при расчете прочности болтов — процент удлинения. Он показывает длину деформированной детали до выхода ее со строя. Каждый болт в определенной степени можно считать гибким и способным удлиняться до определенного показателя не нарушая своих качеств. Измеряется этот показатель в процентах, на сколько может удлиняться деталь, по сравнению с первоначальными параметрами.

Роль сил трения и смазки в соединении

Для определения затягивающего усилия используются несколько специальных методов расчета, учитывающих не только класс прочности и диаметр резьбы винта, но и влияние гальванических покрытий, специальных смазочных материалов или эффект твердых и гладких сопрягаемых поверхностей и т. д.

Следует иметь в виду, что табличные данные являются грубым расчетом, не учитывающим сколько в реальных условиях сборки будет потеряно крутящего момента из-за трения.

При сухой сборке и грубых поверхностях приблизительно 90% приложенного крутящего момента приходится на преодоление сил трения: 50% на опорную поверхность гайки и 40 % между сопрягаемыми витками резьбы. Таким образом, для создания напряжения используется всего порядка 10% усилия затяжки.

Но выход найден! — Уменьшить трение за счет смазки. При смазанной резьбе потребуется на 15-25% меньший крутящий момент для достижения того же напряжения, кроме того, это снизит вероятность поломки крепежного изделия во время установки и продлит срок его службы. Производители смазочных материалов обычно указывают значение коэффициента трения крепежа, который обеспечивает смазка.

Также можно использовать болты с заданным коэффициентом трения, например, с цинковым покрытием, которое снижает сопротивление при завинчивании.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]