Карбид алюминия — Aluminium carbide — Wikipedia

Химическое соединение, имеющее формулу Al₄C₃, называется карбидом алюминия. Его внешний вид представлен желтоватым кристаллоидным веществом. Соединение является очень устойчивым к воздействию внешней среды, температура плавления алюмокарбида — 1400 °С, а относительная плотность составляет 2,36 г/см³. Структурная решетка Al₄C₃ сложно устроена, в её состав входят атомы углерода. Они выступают там в виде анионов. Карбид алюминия, как и другие неорганические соединения, имеет множество сфер применения. Это вещество относится к первой группе, отличие которой состоит в неизменённой валентности, типичной для металла в норме.

Карбид алюминия: получение вещества

Вещество можно получить при соединении металла с углеродом, которые необходимо поместить в дуговую печку. В составе карбида кальция тоже имеется незначительное содержание Al₄C₃. При получении электролитов соединение является продуктом коррозии графита. Реакция оксида алюминия с углеродом образует Al₄C₃. Следующим способом получения этого вещества является одновременное прокаливание кокса и алюминия при температуре от 1800 градусов. Его добывают специально обученные пиротехники и химики. Нельзя пытаться получить карбид алюминия в домашних условиях, а также в лабораториях, не предназначенных для этого.

КАРБИДЫ

КАРБИДЫ

(от латинского carbo – уголь) – соединения углерода с металлами, а также с бором и кремнием. Эти соединения обладают удивительным разнообразием физических и химических свойств. Так, карбид золота Au2C2 взрывается уже при попытке пересыпать его с листочка фильтровальной бумаги, на котором он был высушен. С другой стороны, карбиды некоторых элементов (например, бора и тантала) не разлагаются даже при температуре белого каления и настолько химически инертны, что на них не действует царская водка, а по твердости они приближаются к алмазу!
Также по теме:
ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ

Впервые необычное соединение металла с углеродом (К2С2) получил в 1809 знаменитый английский химик Гемфри Дэви. В 1863 французский химик Марселен Бертло изучил свойства другого карбида – очень неустойчивого и легко взрывающегося карбида одновалентной меди Cu2C2. В 1878 немецкий металлург Ф.Мюллер, растворив образцы стали в разбавленной серной кислоте, выделил карбид железа Fe3C. Но только в конце 19 в. французский химик Анри Муассан, прославившийся получением фтора, синтезировал многие из этих необычных соединений и изучил их свойства. Он получал карбиды, нагревая до очень высокой температуры смеси древесного угля с разными металлами, их оксидами или карбонатами. Для этого он использовал жар вольтовой дуги в электрической печи собственной конструкции.

Карбиды, как оказалось, можно получить не только в лаборатории. Еще до работ Муассана австрийский ученый Э.Вайнсхенк в 1889 открыл в метеоритах минерал когенит, представляющий собой смешанный карбид железа, кобальта и никеля состава (FeNiCo)3C. А сам Муассан в 1904 обнаружил в метеорите, привезенном из каньона Диабло в штате Аризона, темно-зеленый минерал, представляющий собой карбид кремния SiC. Этот минерал в честь ученого назвали муассанитом.

Также по теме:

УГЛЕРОД

Раньше карбиды классифицировали по их устойчивости к действию воды и кислот, а также по тому, какие газы выделяются при их разложении. Современная классификация учитывает тип химической связи между атомами в карбидах – именно от этого зависят в основном физические и химические свойства. В соответствии с этой классификацией, карбиды можно разделить на три группы, которые довольно сильно отличаются по своим свойствам.

К первой группе относятся так называемые солеобразные карбиды с ионной связью. Эти карбиды образуют щелочные и щелочноземельные металлы, алюминий, редкоземельные элементы, а также актиноиды. Их состав иногда соответствует типичным валентностям металлов (Al4C3), а иногда – нет (Ве2С). Многие ионные карбиды можно получить непосредственно из элементов (Са + 2С ® СаС2) или восстановлением оксидов углеродом (СаО + 3С ® СаС2 + СО). Ионный характер связи приводит к высокой температуре плавления; например, карбид кальция СаС2 плавится при 2300°С, карбид тория ThC2 – при 2655°С. Водой или разбавленными кислотами ионные карбиды легко разлагаются – гидролизуются. При этом образуются различные углеводороды и гидроксид металла. Самый известный пример – получение ацетилена гидролизом карбида кальция: СаС2 + 2Н2О ® Ca(OH)2 + С2Н2. Ацетилен выделяется также при гидролизе Na2C2, К2С2 и др. Поэтому такие карбиды можно рассматривать как производные ацетилена, в которых атомы водорода замещены атомами металла. При этом катионы металла и анионы С2–2 размещаются в соответствующих узлах кристаллической решетки. Солеобразный характер этих карбидов подтверждается возможностью их электролиза в расплавленном состоянии. Интересно отметить, что чистый карбид кальция – бесцветные кристаллы, хотя увидеть их непросто, так как обычный технический продукт имеет цвет от бурого до черного.

Взаимодействие карбидов щелочных металлов с водой протекает исключительно бурно. Так, если карбид калия просто облить водой, произойдет бурная реакция, которая сопровождается взрывом такой силы, что выделяющийся ацетилен сразу же разлагается с выделением угля. Чтобы провести реакцию К2С2 + 2Н2О ® 2КОН + С2Н2, надо медленно пропускать над карбидом водяной пар.

В ряде случаев карбиды ионного типа образуются непосредственно при пропускании ацетилена через растворы солей металлов. Так карбиды серебра, меди(I), золота и ртути, которые чаще называют ацетиленидами. Ацетилениды щелочных металлов можно получить действием ацетилена на свободные металлы. В сухом виде ацетилениды тяжелых металлов легко разлагаются со взрывом. Гидролиз ионных карбидов других металлов показывает, что они «происходят» из других углеводородов. Например, при гидролизе карбида алюминия выделяется метан: Al4C3 + 12H2O ® 4Al(OH)3 + 3CH4 (так же гидролизуется карбид бериллия Ве2С), а при гидролизе карбида магния получается метилацетилен: Mg2C3 + 4H2O ® 2Mg(OH)2+ НС≡С–СН3. Интересно, что карбид магния другого состава, MgC2, дает при гидролизе только ацетилен. Иногда при гидролизе ионных карбидов углеводороды выделяются совместно с водородом, который частично гидрирует непредельные углеводороды. С выделением почти равных количеств водорода и метана разлагается карбид марганца: Mn3C + 6H2O ® 3Mn(OH)2 + CH4 + H2. Карбиды редкоземельных металлов и тория при разложении разбавленными кислотами выделяют не чистый ацетилен, а его смесь с метаном, этиленом и другими углеводородами. Например, при гидролизе карбида церия СеС2 получается смесь ацетилена с метаном в соотношении 4:1, а также немного этилена и жидких и твердых углеводородов (состав продуктов зависит от условий проведения реакции). Еще больше жидких и твердых углеводородов дает при гидролизе карбид урана.

Выделение углеводородов при гидролизе карбидов позволило Д.И.Менделееву выдвинуть так называемую карбидную теорию происхождения нефти в глубинах Земли из неорганических веществ. По представлению Менделеева, в глубинах земного шара должны быть расплавленные металлы, в основном железо, которое с углеродом дает карбид. Во время горообразования в земной коре образуются трещины, по которым в глубины проникает вода. Воздействуя на карбид железа и карбиды других металлов, вода (в виде пара) образует углеводороды, например: 2FeC + 3H2O ® Fe2O3 + C2H4. Газообразные углеводороды по тем же трещинам поднимаются ближе к поверхности, где скапливаются в пористых пластах. Однако когда в 60-е гг. 20 в. был подробно изучен состав углеводородов нефти, оказалось, что смесь «искусственных углеводородов», образующихся при гидролизе карбидов, по своему составу резко отличается от природной смеси. Кроме того, все нефти, полученные неорганическим путем, оптически неактивны, тогда как природная нефть оптически активна. На основании этих, а также ряда других фактов неорганическая теория происхождения нефти была подвергнута критике, и в настоящее время многие ученые полагают, что нефть имеет биологическое происхождение.

Ко второй группе относятся карбиды, которые образуют переходные металлы IV–VII групп, а также кобальт, железо и никель. Это металлоподобные соединения с другой структурой. В них атомы углерода, имеющие небольшие размеры, не связаны друг с другом и располагаются в пустотах между атомами металлов. Различная упаковка атомов металла в кристаллической решетке приводит к разному составу карбидов даже для одного и того же металла; например, хром образует карбиды состава Cr3C2, Cr4C, Cr7C3 и др. Эти карбиды (их называют карбидами внедрения) часто отличаются большой твердостью и очень высокими температурами плавления. Например, карбиды тантала и гафния TaC и HfC – наиболее тугоплавкие из известных веществ (плавятся при 3985 и 3890°С соответственно).

Металлоподобные карбиды обладают высокой электропроводностью и очень высокой химической стойкостью к агрессивным средам (многие из них не растворяются даже в царской водке). Они используются для упрочнения чугуна и стали (карбиды железа, хрома, вольфрама, молибдена), а также для производства очень твердых сплавов, которые применяют для обработки металлов резанием (карбиды WC, TiC, TaC, VC, Cr3C2). Например, твердые наконечники резцов, сверл делают из победита – спеченного порошка карбида вольфрама WC с добавкой металлического кобальта. Очень важную роль играет карбид железа Fe3C (цементит) – твердые кристаллы, входящие в структуру чугуна и стали.

Карбид вольфрама WC используют также для изготовления буровых коронок, деталей аппаратуры для производства синтетических алмазов, для нанесения износостойких покрытий на поверхности металлов. Карбид титана интересен ярким проявлением нестехиометрии: состав этого соединения выражается формулой TiCх

, где
х
колеблется в пределах от 0,49 до 1 (
см
. СТЕХИОМЕТРИЯ). Это вещество, как и карбид вольфрама, используют как компонент жаропрочных, жаростойких и твердых сплавов, для получения износостойких покрытий, для изготовления тугоплавких тиглей, в которых можно плавить почти любые металлы (сам карбид плавится при 3257°С). Карбидом титана выкладывают внутренние стенки высокотемпературных печей.

К третьей группе относятся ковалентные карбиды. Их образуют кремний и бор – соседи углерода по периодической таблице, близкие к нему как по размеру атомов, так и по электроотрицательности. Карбид кремния SiC (техническое название – карборунд) в чистом виде – бесцветные кристаллы, но примеси часто окрашивают его в различные цвета, вплоть до черного. По своей структуре это соединение аналогично алмазу; решетку карбида кремния можно получить, если в немного расширенной решетке алмаза заменить половину атомов углерода на атомы кремния. Это вещество обладает очень высокой твердостью; помимо этого оно имеет свойства полупроводника. Из него делают шлифовальные бруски и круги, огнеупорные материалы для печей и литейных машин, нагревательные элементы для электропечей, полупроводниковые диоды.

Бор образует по два карбида с точно известной структурой – В4С и В13С2. Наибольшее значение имеет первый из них – черные блестящие кристаллы, которые по твердости уступают лишь алмазу и нитриду бора BN. Этот карбид применяют для изготовления абразивных и шлифовальных материалов и в качестве полупроводника. Карбид, обогащенный изотопом 10В, используется как поглотитель нейтронов в ядерных реакторах.

Илья Леенсон

Физические и химические свойства

Основным свойством вещества является его способность к взаимодействию с водой, кислородом и гидроксидом натрия. Кроме того, карбид алюминия может плавиться, преломляться и растворяться. Он имеет энтальпию образования ∆Н = -209 (S = 88,95), энергию Гиббса = -196 т, мольную теплоёмкость = 116,8. Показатель преломления карбида алюминия = 2,7 для 20 градусов. Al₄C₃ может вступать в связь со многими химическими элементами, образуя всем известные соединения, необходимые в промышленности. Примером является один из природных газов – метан. Его можно получить, если смешать карбид алюминия с водой. При этом Н2О выступает в качестве растворителя для металла, в результате основное соединение разлагается.

Структура

Карбид алюминия имеет необычную кристаллическую структуру, состоящую из чередующихся слоев алюминия.2C и Al2C2. Каждый атом алюминия координирован с 4 атомами углерода, образуя тетраэдрическое расположение. Атомы углерода существуют в 2 различных связывающих средах; один — деформированный октаэдр из 6 атомов Al на расстоянии 217 вечера. Другой — искаженная тригонально-бипирамидальная структура из 4 атомов Al при 190–194 пм и пятого атома Al при 221 пм.[3][4]Прочие карбиды (ИЮПАК номенклатура: метиды) также имеют сложную структуру.

Реакции

Карбид алюминия гидролизуется с выделением метан. Реакция протекает при комнатной температуре, но быстро ускоряется при нагревании.[5]

Al4C3 + 12 часов2O → 4 Al (OH)3 + 3 канала4

Аналогичные реакции происходят с другими протонными реагентами:[1]

Al4C3 + 12 HCl → 4 AlCl3 + 3 канала4

Реактивное горячее изостатическое прессование (опрокидывание) при ≈40 МПа соответствующих смесей Ti, Al4C3 графита, в течение 15 часов при 1300 ° C дает преимущественно однофазные образцы Ti2AlC0.5N0.5, 30 часов при 1300 ° C дает преимущественно однофазные образцы Ti2AlC (Карбид алюминия титана).[6]

Сферы применения карбида алюминия


Al₄C₃ используется в различных видах промышленности. При получении алюмокарбида с помощью частиц графита образуется очень прочный материал. Инструменты, в состав которых входит это соединение, имеют такую же твёрдость, как топаз. Обычно алюмокарбид добавляют в режущие предметы, используемые на станках, в качестве медицинского оборудования и т. д. Помимо этого, данное соединение — необходимый материал в пиротехнике. Оно используется в указанной сфере с давнего времени, и до сих пор не нашлось ему замены. Здесь алюмокарбид необходим для получения искр. Его присутствие в пиротехнических работах зависит от того, для чего и в каком количестве используется порох. Ещё одной сферой применения вещества является химическая промышленность, где соединение необходимо для образования различных продуктов, в частности органических газов.

Что такое метан?

Данное соединение относится к группе органических, по структуре оно является простым углеводородом и имеет формулу СН4. Метан мало реагирует с водой, не имеет запаха и цвета. Газ относится к группе алканов, достаточно устойчив к воздействию различных химических реакций. Считается, что метан неопасен для здоровья человека, тем не менее некоторые учёные утверждают обратное. У людей, имеющих постоянный контакт с газом, наблюдаются изменения со стороны центральной нервной системы. Метан является взрывоопасным, поэтому на промышленных производствах необходимо тщательно следить за его концентрацией в воздухе. В связи с тем, что газ не имеет запаха, заметить утечку достаточно трудно. По этой причине на предприятиях устанавливают специальные датчики, регистрирующие его уровень.

Способы получения метана


В связи с тем, что газ является природным соединением, его не всегда добывают лабораторным путём. Метан получается в анаэробных условиях, это осуществляется в результате бродильных процессов в болотах, кишечнике животных, чересчур влажной земле. По словам учёных, один из спутников Сатурна содержит на своей поверхности жидкие смеси, содержащие этот газ. Также метан является одной из составляющих частей атмосфер крупных планет. Самое большое содержание метана наблюдается в природном, рудничном и болотном газах. В промышленных условиях газ получают путём гидрирования и коксования угля.
Добыча метана осуществляется и в лабораториях. Один из способов его получения – это нагревание уксусной кислоты и гидроксида натрия (или извести). Последнее вещество также соединяют с ацетатом в результате плавления, в результате чего тоже образуется метан. Оба способа не требуют присутствия воды. Третий метод получения газа – это гидролиз, которому подвергается карбид алюминия. Метан в этом случае образуется быстрее. Метод гидролиза является также менее затратным, так как не требует воздействия высоких температур.

Применения карбида алюминия в производственной химии

Помимо гидролиза соединения, его можно использовать и в качестве реагента. Такое применение карбида алюминия необходимо для определения содержания некоторых веществ. В частности, так можно обнаружить ценный газ — тритий, который присутствует в воде. Помимо этого, из карбида алюминия можно получить комбинированную соль. Она получается, как и метан, путём соединения вещества с водой. Данная соль называется тетрагидроксоалюминат натрия. Она необходима для придания окраски тканям. Производство и применение карбида очень важны для различных сфер промышленности, поэтому затраты на его получение достаточно велики. Средства на приобретение вещества выделяются государством.

Карбид кальция реакция с водой

Рассматриваемое сырье чаще всего применяется для соединения с водой, в результате чего получается ацетилен. Взаимодействие карбида кальция с водой становится причиной появления газа с неприятным запахом и достаточно большим количеством различных примесей. В чистом виде получить подобное вещество можно только при его многоэтапной очистке.

Реакция карбида кальция с водой может быть проведена опытным путем. К особенностям подобной процедуры отнесем следующие моменты:

  1. В качестве емкости применяется 1,5-литровая бутылка.
  2. После ее заполнения водой добавляется несколько кусочков кристаллического материала.
  3. Протекание реакции приводит к появлению избыточного давления.
  4. После того как карбид кальция больше не вступает в реакцию, на бутылку помещается горящая бумага. В результате взаимодействия между карбидом кальция и водой образуется газ, который взрывается. При рассматриваемом опыте образуется огненное облако.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]