Принцип работы
Каким же образом работает наш стабилизатор сетевого напряжения, который легко делается своими руками?
После того, как включается питание конденсатор С1 находится в разряженном состоянии, транзистор VT2 открыт, а VT2 является закрытым. Также закрытым является транзистор VT3. Именно через него будет подаваться ток на каждый светодиод и симисторный оптотрон.
Поскольку этот транзистор является закрытым, светодиоды не светятся, каждый симистор является закрытым и нагрузка отключена. В это время электрический ток проходит через резистор R1 и попадает в С1. Далее происходит зарядка этого конденсатора.
Интервал задержки длится всего лишь три секунды. За это время осуществляются все переходные процессы, и после окончания происходит срабатывание триггера Шмитта, основу которого составляют транзисторы VT1 и VT2.
Далее открывается третий транзистор и включается нагрузка.
Напряжение, которое выходит с третьей обмотки Т1, выпрямляется диодом VD2 и конденсатором С2. Далее ток проходит через делитель R13…14. Из R14 напряжение, уровень которого является пропорциональным количеству вольт в сети, входит в каждый неинвертирующий вход компараторов.
Количество компараторов равняется восьми и все они находятся на микросхемах DA2 и DA3. В этот же момент на инвертирующий вход каждого компаратора входит постоянный образцовый ток. Его подают резисторные делители R15…23.
После этого в игру вступает контроллер, который осуществляет обработку сигнала на входе у каждого компаратора.
- https://electricadom.com/stabilizator-napryazheniya-kak-vse-sdelat-svoimi-rukami-video.html
- https://amperof.ru/sovety-elektrika/sxema-stabilizatora-napryazheniya-220v.html
- https://lifehacker.ru/how-to-make-steadycam/
- https://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html
- https://fb.ru/article/360616/shema-stabilizatora-napryajeniya-v-svoimi-rukami-dlya-doma
- https://generatorvolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html
Простейший регулятор оборотов электродвигателя своими руками
Изготавливая различные самоделки, приходится сталкиваться с рядом проблем и поиском их решений. Так и в случае с различными приспособлениями, которые имеют в своей конструкции коллекторный электродвигатель. Очень часто нужно сделать так, чтобы двигатель имел регулируемые обороты. Для этих целей используется регулятор (контроллер) оборотов двигателя, который можно собрать своими руками.
Представленный ниже регулятор для электродвигателей позволяет не только обеспечить плавный пуск мотора и степень регулировки оборотов, но и защитить двигатель от перегрузок. Работать контроллер может не только от 220 Вольт, но и от пониженного напряжения, вплоть от 110 Вольт.
Как сделать диагностику без снятия?
Не рекомендуется проводить такую проверку, так как нет возможности оценить состояние щеточного узла. Но случаи бывают разные, поэтому даже такая диагностика может дать свои плоды. Для работы вам потребуется мультиметр или, если такового нет, лампа накаливания. Для вас главное – это провести замер напряжения в бортовой сети автомобиля, определить, нет ли скачков. Но их можно заметить и при езде. Например, мигание света при изменении оборотов коленчатого вала двигателя.
Но точнее окажутся измерения, проведенные с использованием мультиметра или вольтметра с растянутой шкалой. Заведите двигатель и включите ближний свет. Подключите мультиметр к клеммам аккумуляторной батареи. Напряжение не должно превышать 14,8 Вольт. Но и нельзя, чтобы оно опускалось ниже 12. Если оно находится не в дозволенном интервале, то имеется поломка регулятора напряжения. Не исключено, что нарушены контакты в местах соединения прибора с генератором, либо окислены контакты проводов.
Что такое регулятор напряжения 220 В
Сокращенное название рассматриваемого прибора — РН 0–220 В. Самый простой такой аппарат — это диммер для ламп накаливания. Устройство настраивает сетевые параметры напряжения, повышает/понижает степень выходного сигнала на диапазоне, зависимом от значения разности потенциалов на его выходе. Поддерживает заданный вольтаж цепи потребителя.
Аппарат регулирует (плавно или ступенчато) именно саму величину напряжения, вольтаж, от которого также зависит мощность в диапазоне возможностей подключенного агрегата. Работает с нагрузкой реактивной, активной, только надо уточнять, подходит ли конкретная сборка, особенно для последней. А также всегда надо сопоставлять, на какую обслуживаемую мощность (Ватты) рассчитана схема.
РН изменяет согласно настройкам пользователя уровень выходного сигнала из сети 220 В, подаваемый на подключенную к нему нагрузку. Таким образом, устанавливается параметр, подходящий для запитывания конкретного прибора, а чаще для регулировки его работы (снижение/повышение оборотов маломощных электромоторов, яркости света).
Регулятор напряжения применяют:
- для изменения оборотов небольших моторчиков бытовых устройств (скорости блендера, фена), реже, поскольку не все схемы подходят, — для более мощных двигателей (например, дрели);
- для других приборов, работу которых можно настраивать. А чаще (и это наиболее корректное и эффективное использование) для уровня освещенности (диммер), громкости звука, нагрева ТЭНов, паяльника,
- во всех случаях, если на цепи надо создать определенное напряжение, например, 12 В.
Чаще всего бытовой РН 0–220 В применяется для плавного вкл./выкл. приборов.
В заводских моделях обычно также есть микросхема для стабилизации напряжения при его скачках, обеспечивающая работу приборов в любом режиме. Тиристорный регулятор по англоязычным стандартам именуют Voltage Controller. РН снабжают универсальные блоки питания, на которых можно настраивать вольтаж.
Виды, принцип работы, особенности
РН по нашей теме предназначен только для переменного напряжения, то есть для обычной домашней сети 220 В.
Чаще всего собирают на базе таких деталей:
- тиристоры;
- симисторы;
- транзисторы.
В схемах присутствуют также конденсаторы, резисторы постоянные, настроечные. Именно селекторами последних осуществляется регулировка. Сложные сборки могут включать микросхемы.
РН максимально результативные для резистивных (активных, омических) нагрузок, то есть являющихся частью потребляемой мощности подсоединяемого/отключаемого потребителя. Это сопротивление движению тока, например, в виде резистора, на точке, где электричество преобразовывается в тепло.
Резистивная нагрузка — это нагревательные элементы, ТЭНы, лампы накаливания (не «экономки»).
В индуктивной нагрузке ток (там он значительно ниже, чем при резистивной) отстает от напряжения, создается реактивная мощность. Это асинхронные электродвигатели, электромагниты, дроссели, трансформаторы, выпрямители. С ними РН не будут работать или будут, но не эффективно, создавая риск поломки оборудования. Там регуляторы напряжения не всегда целесообразные.
Тиристорный прибор нельзя использовать со светодиодными (экономными) и люминисцентными лампами. Конденсаторные регуляторы не позволяют плавно менять напряжение.
Простые схемы
Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).
Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.
При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.
Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.
Симисторный вид
Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.
Для сборки схемы понадобится:
Наименование | Номинал | Аналог |
Резистор R1 | 470 кОм | |
Резистор R2 | 10 кОм | |
Конденсатор С1 | 0,1 мкФ х. 400 В | |
Диод D1 | 1N4007 | 1SR35–1000A |
Светодиод D2 | BL-B2134G | BL-B4541Q |
Динистор DN1 | DB3 | HT-32 |
Симистор DN2 | BT136 | КУ 208 |
Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.
Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.
Реле напряжения
Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.
Собранная схема своими руками реле-регулятора напряжения должна:
- работать в широком диапазоне температур;
- выдерживать скачки напряжения;
- иметь возможность отключения во время запуска мотора;
- обладать малым падением разности потенциалов.
Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.
Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.
Практические примеры для повторения
Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.
Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.
Доминирующая схема
Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.
Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.
При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.
Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.
Контроллер нагрева паяльника
Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.
Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.
Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.
Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.
Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.
В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.
Виды современных устройств
Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.
На сегодняшний момент производство выпускает следующие типы приборов:
- Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
- Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
- Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
- Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.
При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:
- плавность регулировки;
- рабочую и пиковую подводимую мощность;
- диапазон входного рабочего сигнала;
- КПД.
Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.
Тиристорный прибор управления
Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.
Читать также: Самодельный лодочный мотор из шуруповерта
Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.
Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.
Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.
Симисторный преобразователь мощности
Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.
Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.
Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.
Фазовый способ трансформации
Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.
Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.
При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.
Назначение
Вольтодобавочные трансформаторы (линейные регуляторы) применяются для регулирования напряжения в отдельных линиях или в группе линий. Их применяют, например, для улучшения работы сетей, в которых используются трансформаторы без регулирования под нагрузкой. Линейные регуляторы позволяют создать в сети дополнительную ЭДС, которая складывается с вектором напряжения сети и изменяет его. На рис. 1 показано схематическое изображение вольтодобавочного трансформатора (линейного регулятора).
Рисунок 1 – Схемное изображение линейного регулятора
Установка вольтодобавочного трансформатора позволяет выравнивать напряжение в электросети; устранять несимметрию напряжения на определенном участке цепи; снижать опасные последствия отгорания нулевого проводника
Преимущества и недостатки регулирования посредством РПН
Преимущества регулирования без отключения нагрузки в возможности поддержания параметров сети на выходе трансформатора на заданном уровне при изменении характеристик подаваемого напряжения. Также это устройство позволяет регулировать параметры, с учётом необходимой величины. Выполнение указанных функций достигается без отключения агрегата.
Недостатки связаны с необходимостью усложнения конструкции трансформатора, связанной с использованием дополнительных элементов. Одновременно снижается надёжность работы агрегата, увеличивается его масса и габаритные размеры.
Контакты микросхемы
Изготовляется в универсальном транзисторном корпусе, позволяющем размещать его на плате или теплоотводе. Наиболее распространённая модель LM317 встречается в корпусе TO-220 с буквой «Т» в конце маркировки. Буква «t» обозначает тип корпуса.
Цоколевка стабилизатора LM317 производится по трем контактам. Если смотреть на устройство спереди, то первый контакт слева (Adj) — это регулируемый вывод, средний (Vout) – выход и последний справа (Vin) — вход.
- Vin — это вывод, на него подается входное напряжение, которое нужно регулировать. Например, на него может подаваться 12 В, которое устройство будет понижать до 10 В на Vout.
- Vout — это вывод, на который выводится напряжение. Поверхность радиатора соединена с этим выводом микросхемы.
- Регулируемый (Adj) — это вывод, который позволяет регулировать выходное напряжение через подстрочный резистор.
Встречается в различных видов корпусов.
Номера контактов разных типов корпусов микросхемы.
Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.
Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.
Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.
Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.
Необходимые детали:
- 2 Конденсатора
- 2 переменных резистора
Соединяем части:
- Подключаем конденсаторы к самому регулятору.
- Первый резистор подключается с минусом регулятора, второй на массу.
Теперь менять скорость двигателя у прибора по желанию пользователя.
Регулятор напряжения на 14 вольт готов.
Простой регулятор напряжения 12 вольт
Основные функции регулятора оборота
Использование подобных преобразователей позволяет достичь многих целей, а именно:
- возможность ступенчатого разгона и снижения оборотов электродвигателя, что ведет к уменьшению нагрузок и меньшему потреблению электрической энергии;
- можно осуществить плавный запуск, а при мгновенном максимальном разгоне мотор получает сверхвысокие нагрузки, перегрев обмотки и иных приводов;
- как средство дополнительной защиты электронных механизмов;
- сокращение расходов на техобслуживание силовых агрегатов и насосов, так как снижаются риски поломок привода, а также отдельных механизмов.
Без похожих встроенных устройств не обходятся сварочные аппараты, стабилизаторы напряжения, ПК, телевизоры и т.д.
Конструкция и детали
Теперь перейдем к конструкции прибора. Диодные мостики, конденсатор, резистор R2 и диод VD6 устанавливаются на монтажной плате размером 55×35 мм, выполненной из фольгированного ге-тинакса или текстолита толщиной 1…2 мм (рис. 9.7).
В устройстве можно использовать следующие детали. Транзистор — КТ812А(Б), КТ824А(Б), КТ828А(Б), КТ834А(Б,В), КТ840А(Б), КТ847А или КТ856А. Диодные мосты: VD1…VD4 — КЦ410В или КЦ412В, VD6 — КЦ405 или КЦ407 с любым буквенным индексом; диод VD5 — серии Д7, Д226 или Д237.
Переменный резистор — типа СП, СПО, ППБ мощностью не менее 2 Вт, постоянный — ВС, MJIT, ОМЛТ, С2-23. Оксидный конденсатор — К50-6, К50-16. Сетевой трансформатор — ТВЗ-1-6 от ламповых телевизоров, ТС-25, ТС-27 — от телевизора «Юность» или любой другой маломощный с напряжением вторичной обмотки 5…8 В.
Предохранитель рассчитан на максимальный ток 1 А. Тумблер — ТЗ-С или любой другой сетевой. ХР1 — стандартная сетевая вилка, XS1 — розетка.
Все элементы регулятора размещаются в пластмассовом корпусе с габаритами 150x100x80 мм. На верхней панели корпуса устанавливаются тумблер и переменный резистор, снабженный декоративной ручкой. Розетка для подключения нагрузки и гнездо предохранителя крепятся на одной из боковых стенок корпуса.
С той же стороны сделано отверстие для сетевого шнура. На дне корпуса установлены транзистор, трансформатор и монтажная плата. Транзистор необходимо снабдить радиатором с площадью рассеяния не менее 200 см2 и толщиной 3…5 мм.
Рис. Печаная плата мощного регулятора сетевого напряжения 220В.
Регулятор не нуждается в налаживании. При правильном монтаже и исправных деталях он начинает работать сразу после включения в сеть.
Теперь несколько рекомендаций тем, кто захочет усовершенствовать устройство. Изменения в основном касаются увеличения выходной мощности регулятора. Так, например, при использовании транзистора КТ856 мощность, потребляемая нагрузкой от сети, может составлять 150 Вт, для КТ834 — 200 Вт, а для КТ847 — 250 Вт.
Если необходимо еще больше увеличить выходную мощность прибора, в качестве регулирующего элемента можно применить несколько параллельно включенных транзисторов, соединив их соответствующие выводы.
Вероятно, в этом случае регулятор придется снабдить небольшим вентилятором для более интенсивного воздушного охлаждения полупроводниковых приборов. Кроме того, диодный мост VD1…VD4 потребуется заменить на четыре более мощных диода, рассчитанных на рабочее напряжение не менее 600 В и величину тока в соответствии с потребляемой нагрузкой.
Для этой цели подойдут приборы серий Д231…Д234, Д242, Д243, Д245 ..Д248. Необходимо будет также заменить VD5 на более мощный диод, рассчитанный на ток до I А. Также больший ток должен выдерживать предохранитель.
Симисторные регуляторы мощности работают, используя фазовое управление. Они могут применяться, для изменения мощности различных электрических устройств работающих используя переменное напряжение.
Среди приборов могут быть электрические лампы накалывания, нагревательные приборы, электродвигатели переменного тока, трансформаторные сварочные аппараты, и многие другие. Они имеют большой диапазон регулировки, что дает им большой диапазон применения, в том числе и в быту.
Динистор и 4 типа проводимости.
Это устройство, называется тригерным диодом. Обладает небольшой мощностью. В его внутренности нет электродов.
Динистор открывается при наборе напряжения. Скорость набора напряжения определяется конденсатором и резисторами. Вся регулировка производится через него. Работает на постоянном и переменном токе. Его можно не покупать, он находится в энергосберегающих лампах и его легко оттуда достать.
В схемах используется не часто, но чтобы не затрачивать деньги на диоды, применяют динистор.
Он содержит 4 типа: P N P N. Это сама электрическая проводимость. Между 2 прилегающими друг к другу областями образуется электронно-дырочный переход. В динистре таких переходов 3.
Схема:
Подключаем конденсатор. Он начинает заряжаться с помощью 1 резистора, напряжение почти равно тому, что в сети. Когда напряжение в конденсаторе достигнет уровня динистора, он включится. Прибор начинает работать. Не забываем про радиатор, иначе всё перегреется.
Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)
Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.
Корпус подберите любой
Простые схемы на тиристоре
При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н
Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий
Проверен не раз
Этот вариант рабочий. Проверен не раз.
Схема регулятора температуры для паяльника на тиристоре
При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².
Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.
На других элементах но тоже без помех
Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.
Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации
Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.
На тиристоре с высокой чувствительностью
Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.
Регулятор мощности для паяльника без помех
Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).
Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.
Если собрали, но напряжение не регулируется
Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).
Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника
Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника. Второй вариант решения — аналоговая схема управления, а это уже другая схема.
Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.
Что получилось
Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.
Обсудить статью ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ
Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА.
На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора.
В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А.
Примечания
Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более.
Читать также: Регулировка карбюратора бензопилы хускварна 365 своими руками
Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность – это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор.
Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему.
Вычисления
Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866.
Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35.
TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт.
Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом. 871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться.
Тестирование и ошибки
Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки.
Читать также: Фигурное выпиливание электролобзиком рисунки и схемы
Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер.
Регулируемый стабилизатор напряжения от 0 до 12 вольт и током нагрузки до 1-го ампера представлен на рисунке 1.
Переменное напряжение 12 вольт выпрямляется диодным мостиком VD1…VD4, сглаживается фильтром С1 С2, подается на параметрический стабилизатор на стабилитроне VD1. Напряжение 12 вольт, выделенное на стабилитроне, приложено к резистору R2. С движка переменного резистора R2 напряжение подается на аналоговый ключ VT1 VT2, включенного по схеме составного транзистора. Степень открытия ключа зависит от положения движка переменного резистора R2, т.е. в нижнем по схеме положении регулятора, напряжение на базе равно нулю и транзисторы VT1 VT2 закрыты, напряжение в нагрузку не поступает. В верхнем по схеме положении регулятора R2, напряжение не базе максимально. Транзисторы открыты полностью, а напряжение с выпрямителя приложено к нагрузке, за исключением падения на переходе коллектор – эмиттер транзистора VT1.
В схеме регулируемого стабилизатора на рисунке 1 заложена схема защиты по току на транзисторе VT3. Если ток на резисторе R4 превысит значение 1,2 ампера, за счет падения напряжения на нем открывается транзистор VT3, шунтируя тем самым переходом коллектор – эмиттер резистор R2, напряжение на R2 уменьшается, вызывая закрытие транзисторов VT1 VT2.
Порог срабатывания защиты по току подбирается сопротивлением R4, и при его сопротивлении 0,5 ома примерно равен 1,1…1,25 ампера.
Регулятор напряжения генератора
Генератор преобразует электричество. Без генератора не работала бы вся бортовая система машины. К обмотке магнита подключён специальный датчик. Простые пружины являются задающим устройством. Для устройства сравнения используется маленький рычаг. Группа контактов играет роль исполнительного устройства. Постоянное сопротивление представляет собой орган регулировки, который часто используется в машинах.
Во время работы генератора на его выходе возникает ток. Возникший ток переходит в обмотку магнитного реле. В результате появляется магнитное поле и под его воздействием плечо рычага раздвигается. На него начинает действовать пружина, и играет роль сравнивающего устройства. Когда ток превышает положенные значения, на магнитном реле контакты раздвигаются. В это время отключается постоянное сопротивление в цепи. Меньший ток поступает на обмотку.
Пожалуй, всем полезно знать, что такое класс точности электросчетчика.
От сети
Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.
Коллекторные машины
Такие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения. Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.
Если есть подходящий ЛАТР, можно все это делать при помощи его.
Двухфазный двигатель
Аппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством. Есть две возможности контролирования числа оборотов:
- Менять амплитуду напряжения питания (Uy),
- Фазное – меняем емкость конденсатора.
Такие агрегаты широко распространены в быту и на производстве.
Обычные асинхронники
Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.
Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.
Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.
Особенности регулировки
Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:
- постоянное или переменное напряжение надо регулировать;
- какова максимальная величина тока в нагрузке;
- величина разности потенциалов перед регулятором;
- параметры напряжения на нагрузке в диапазоне регулирования.
Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора – это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее. Внутри этого прямоугольника может быть та или иная схема, которая соответствует дополнительным данным, упомянутым выше. Простейшим регулятором является переменный резистор. Он позволяет без искажений регулировать переменное напряжение. Также такой резистор применим и при постоянном токе.
Схема с переменным резистором.
Элементарная схема регулятора Схема с переменным резистором
Если разность потенциалов на входе значительно больше 12 вольт на выходе, в регуляторе будет теряться энергия. На переменном резисторе будет выделяться тепло. Чтобы избежать потерь тепла, на переменном токе надо применить переменную индуктивность, которой может стать ЛАТР. Его пропускная способность ограничивается, как и в переменном резисторе, конструкцией подвижного контакта. Но если допустимо переключение путем переставления между витками перемычки с надежными контактами, можно получать значительную силу тока.
Индуктивный регулятор
Другим способом регулирования своими руками переменного напряжения 12 вольт может быть изменение индуктивности регулятора. Для этого вручную изменяется либо зазор, либо число витков, специально предназначенных для этого. По такому принципу устроен регулируемый сварочный трансформатор, используемый для электропитания вольтовой дуги. Если регулятор напряжения 12 вольт не обладает свойствами стабилизатора и управляется своими руками, разность потенциалов на нагрузке необходимо контролировать вольтметром.
Переменный резистор и переменная индуктивность могут быть использованы и как регулятор тока. В этом случае необходимо контролировать ток в нагрузке амперметром. Если параметры напряжения на нагрузке не оговорены, за исключением его величины в 12 В, регулировать можно диммером. Это может быть мощный регулятор, поскольку он обычно выполнен на основе тиристора. А современные тиристоры выпускаются для очень широкого диапазона разности потенциалов и тока.
Как избежать 3 частых ошибок при работе с симистором.
- Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
- Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
- При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.