Такой знакомый всем школьный мелок, сколько веселых воспоминаний он хранит… Только вот за кажущейся его простотой прячется целая история развития планеты. «Как это может быть?» — спросите вы. Ответ на этот вопрос в данной статье. Вы не только изучите физические свойства мела и его применение, но и ознакомитесь с процессами образования в земной коре залежей известняковых осадочных пород, сформировавших современный облик Земли.
Минералы и породы биогенного происхождения
Примерно 130–65 млн лет назад, в меловом периоде мезозойской эры, моря древней планеты были заполнены планктонными и бентосными видами фораминифер, а также моллюсками, напоминавшими современных устриц, морских гребешков и наутилусов. В своих наружных скелетах и раковинах они накапливали соединения кальция, фосфора, магния и, отмирая, образовывали на дне водоемов наслоения известнякового ила. Под действием высокого давления и в результате химических процессов из него сформировались залежи известняка и мела. Физические свойства и состав этих осадочных пород очень похожи между собой, но имеют и черты различия. Геологические процессы, которые происходили на Земле, вызывали подъемы отдельных участков океанического дна и опускание материковых зон. К чему же это приводило?
Механические свойства меди
Свойства Состояние Деформированное Отожженное Предел прочности на разрыв, σ МПа340 — 450220 — 245 Относительное удлинение после разрыва, δ ψ%4 — 645 — 55 Относительное сужение, после разрыва, %40 — 6065 — 80 Твердость по Бринеллю, НВ90 — 11035 — 55 При отрицательных температурах медь имеет более высокие прочностные свойства и более высокую пластичность, чем при температуре 20°С. Признаков холодноломкости техническая медь не имеет. С понижением температуры увеличивается предел текучести меди и резко возрастает сопротивление пластической деформации. Применение меди Такие свойства меди, как электропроводность и теплопроводность, обусловили основную область применения меди — электротехническая промышленность, в частности, для изготовления проводов, электродов и т. д. Для этой цели применяется чистый металл (99,98-99,999%), прошедший электролитическое рафинирование. Медь обладает многочисленными уникальными свойствами: устойчивостью к коррозии, хорошей технологичностью, достаточно долгим сроком службы, прекрасно сочетается с деревом, природным камнем, кирпичом и стеклом. Благодаря своим уникальным свойствам, с древнейших времен этот металл используется в строительстве: для кровли, украшения фасадов зданий. Срок службы медных строительных конструкций исчисляется сотнями лет. Кроме этого, из меди изготовлены детали химической аппаратуры и инструмент для работы с взрывоопасными или легковоспламеняющимися веществами. Очень важная область применения меди — производство сплавов. Один из самых полезных и наиболее употребляемых сплавов — латунь (или желтая медь). Ее главные составные части: медь и цинк. Добавки других элементов позволяют получать латуни с самыми разнообразными свойствами. Латунь тверже меди, она ковкая и вязкая, потому легко прокатывается в тонкие листы или выштамповывается в самые разнообразные формы. Одна беда: она со временем чернеет. С древнейших времен известна бронза. Интересно, что бронза более легкоплавка по сравнению с медью, но по своей твердости превосходит отдельно взятые чистые медь и олово. Если еще 30-40 лет назад бронзой называли только сплавы меди с оловом, то сегодня уже известны алюминиевые, свинцовые, кремниевые, марганцевые, бериллиевые, кадмиевые, хромовые, циркониевые бронзы. Медные сплавы, так же как и чистая медь, с давних пор используются для производства различных орудий, посуды, применяются в архитектуре и искусстве. Медные чеканки и бронзовые статуи украшали жилище людей с древних времен. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Большими мастерами в области бронзового литья были японцы. Гигантская фигура Будды в храме Тодайдзи, созданная в VIII веке, весит более 400 тонн. Чтобы отлить такую статую, требовалось поистине выдающееся мастерство.
Экскурс в геологию
Перераспределение поверхности литосферы и водной оболочки планеты обусловило появление горных цепей и хребтов, состоящих из осадочных пород. Это Альпы, горы Кавказа, Гималаи, Пиренеи. А скалы Дувра и вовсе состоят из чистого мела. Они придают английской береговой линии неповторимый вид и издавна служат для кораблей сигналом о приближении к туманному Альбиону. В России уникальные пейзажи на фоне меловых скал можно увидеть в поселке Сторожевом вблизи Воронежа. Ознакомившись с географией распространения биогенных горных пород, теперь самое время более подробно изучить физические свойства мела.
От чего зависят характерные особенности природных соединений
Внутреннее пространственное расположение атомов и молекул тела — кристаллическая решетка — полностью определяет агрегатное состояние, температуры плавления и кипения, плотность и т. д. Это параметры, которые относятся к физическим свойствам. Молекулярной формуле CaCO3 соответствует сразу несколько кристаллических соединений, содержащих в узлах решеток заряженные частицы — ионы. Это мрамор, арагонит, исландский шпат, известняк и мел. Такое явление в химии называется полиморфизмом и объясняется именно формой кристалла. Отсюда следует вывод: физические свойства меди, золота, мела, уксусной кислоты и любого другого вещества определяются его агрегатным состоянием, зависящим от внутреннего строения соединения.
Медь. Химия меди и ее соединений
Положение в периодической системе химических элементов
Медь расположена в 11 группе (или в побочной подгруппе II группы в короткопериодной ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение меди
Электронная конфигурация меди в основном состоянии :
+29Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 1s
2s 2p
3s
3p 4s 3d
У атома меди уже в основном энергетическом состоянии происходит провал (проскок) электрона с 4s-подуровня на 3d-подуровень.
Физические свойства
Медь
– твердый металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Медь относительно легко поддается механической обработке. В природе встречается в том числе в чистом виде и широко применяется в различных отраслях науки, техники и производства.
Изображение с портала zen.yandex.com/media/id/5d426107ae56cc00ad977411/uralskaia-boginia-liubvi-5d6bcceda660d700b075a12d
Температура плавления 1083,4 о С, температура кипения 2567 о С, плотность меди 8,92 г/см 3 .
Медь — ценный металл в сфере вторичной переработки. Сдав лом меди в пункт приема, Вы можете получить хорошее денежное вознаграждение. Подробнее про прием лома меди.
Нахождение в природе
Медь
встречается в земной коре (0,0047-0,0055 масс.%), в речной и морской воде. В природе медь встречается как в соединениях, так и в самородном виде. В промышленности используют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Также распространены и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2 (OH) 2 CO 3 . Иногда медь встречается в самородном виде, масса которых может достигать 400 тонн .
Способы получения меди
Медь получают из медных руд и минералов. Основные методы получения меди — электролиз, пирометаллургический и гидрометаллургический.
- Гидрометаллургический метод: р астворение медных минералов в разбавленных растворах серной кислоты, с последующим вытеснением металлическим железом.
Например , вытеснение меди из сульфата железом:
CuSO4 + Fe = Cu + FeSO4
- Пирометаллургический метод : получение меди из сульфидных руд. Это сложный процесс, который включает большое количество реакций. Основные стадии процесса:
2CuS + 3O2 = 2CuO + 2SO2
2) восстановление меди из оксида, например, водородом:
CuO + H2 = Cu + H2O
- Электролиз растворов солей меди:
Качественные реакции на ионы меди (II)
Качественная реакция на ионы меди +2 – взаимодействие солей меди (II) с щелочами . При этом образуется голубой осадок гидроксида меди(II).
Например , сульфат меди (II) взаимодействует с гидроксидом натрия:
Соли меди (II) окрашивают пламя в зеленый цвет.
Химические свойства меди
В соединениях медь может проявлять степени окисления +1 и +2.
1. Медь — химически малоактивный металл. При нагревании медь может реагировать с некоторыми неметаллами: кислородом, серой, галогенами.
1.1. При нагревании медь реагирует с достаточно сильными окислителями , например , с кислородом , образуя CuО, Cu2О в зависимости от условий:
2Cu + О2 → 2CuО
1.2. Медь реагирует с серой с образованием сульфида меди (II):
1.3. Медь взаимодействует с
галогенами . При этом образуются галогениды меди (II):
2Cu + I2 = 2CuI
1.4. С азотом, углеродом и кремнием медь
не реагирует:
Cu + N2 ≠
Cu + C ≠
Cu + Si ≠
1.5. Медь не взаимодействует с водородом.
1.6. Медь взаимодействует с кислородом с образованием оксида:
2Cu + O2 → 2CuO
2. Медь взаимодействует и со сложными веществами:
2.1. Медь в сухом воздухе и при комнатной температуре не окисляется, но во влажном воздухе, в присутствии оксида углерода (IV) покрывается зеленым налетом карбоната гидроксомеди (II):
2.2. В ряду напряжений медь находится правее водорода и поэтому не может вытеснить водород из растворов минеральных кислот (разбавленной серной кислоты и др.).
Виды известняков
Специалисты могут различать до 4 форм вещества, в зависимости от его структуры и физических особенностей. Так, чистый карбонат кальция имеет мелкодисперсную зернистую поверхность, при контакте с поверхностью легко оставляет белый след и содержит всего до 5 % примесей, в основном в виде сернокислого магния или кальция. Глинистый песчаный мел бежево-белого цвета, тоже тонкозернистой структуры, однако имеет более высокую вязкость и содержит до 10 % посторонних соединений, например, сульфат кальция, оксид кремния или алюминия. Зеленый, желтый или серый меловый мергель имеет еще больше примесей, а мелоподобный известняк легко узнать по крупным кристаллам желтого или белого цвета с плотноцементирующими свойствами. Нужно отметить, что на уроках химии, отвечая на задание: «охарактеризуйте физические свойства мела», следует ориентироваться на первый вид вещества. Чистый, природный карбонат кальция, содержащий минимум балластных примесей, является веществом, которое предлагается ученикам в качестве изучаемого соединения.
Физические свойства
При плотности 8920 кг/куб.м медь является одним из тяжелых металлов с температурой плавления 1083,4 С. Она кристаллизуется в гранецентрированную кубическую систему (ГЦК) и имеет твердость по Моосу от 2,5 до 3. Медь очень хорошо проводит электричество. Немного хуже, чем серебро, и значительно лучше золота. Кроме того, медь является очень хорошим проводником тепла.
Однако алюминий является лучшим электрическим проводником на грамм вещества, чем медь. Но он более объемный, так что медь на квадратный сантиметр сечения кабеля проводит электричество лучше, по сравнению с аналогичным сечением провода из алюминия.
Чистая металлическая медь имеет ярко-красный цвет с розовым отливом. На воздухе медь приобретает красновато-коричневый оттенок. Из-за дальнейшего окисления и коррозии очень медленно (часто в течение столетий) на поверхности меди образуется патина. Металлический блеск теряется, а цвет меняется с красновато-коричневого на голубовато-зеленый.
Как знакомить детей со свойствами мела
Впервые о карбонате кальция учащиеся узнают на вводных уроках химии, на которых дается понятие о чистых веществах и смесях, а также рассматриваются основные способы их разделения. Например, при проведении лабораторной работы учитель предлагает отделить друг от друга металлические опилки и древесную стружку с помощью магнита. Раствор сахара подвергают выпариванию и получают чистое кристаллическое вещество, а физические свойства мела и угля изучают после разделения двух веществ отстаиванием с последующим фильтрованием взвеси карбоната кальция в воде. Дидактический принцип преемственности и последовательности в изучении нового материала используется при ознакомлении учащихся с физическими явлениями и химическими реакциями. Проводится следующий опыт: в одну пробирку сливают растворы технической соды и хлорида кальция. Наблюдают помутнение раствора, а затем образование осадка. Это мел, его отфильтровывают и к полученному белому порошку по каплям добавляют хлоридную кислоту. Реакция идет с бурным выделением пузырьков углекислого газа. Как видим, программа по химии, 8 класс, физические свойства мела изучает вместе с главной химической особенностью вещества – его способностью к реакции с сильными кислотами, идущей с выделением CO2.
Характеристика углекислого кальция
Вещество, рассматриваемое нами, относится к группе средних солей. Оно, обычно, белого цвета, и, как мы говорили, является природной полускальной породой биогенного происхождения. В его состав входят частицы раковин, мелкие кристаллы кварцита, карбонаты магния и кальция, а также оксиды этих металлов. Мел впитывает и удерживает воду, при этом его прочность снижается. Он не растворяется в воде, а образует в ней мутную взвесь. При решении экспериментальных задач по химии физические свойства мела, в частности, его нерастворимость в воде, используются для обнаружения углекислого газа. При пропускании CO2 через известковую воду происходит ее помутнение вследствие образования нерастворимого осадка карбоната кальция. Данная реакция является качественной и применяется в аналитической химии.
Как повысить вязкость и пластичность известняка
К чему приводит наводнение залежей меловой породы подземными грунтовыми водами? Если влажность породы незначительна — не больше 2 %, то прочность кристаллов снижается. Однако при сильном намокании пластов CaCO3, например на 25 %, прочность вещества на сжатии возрастает почти в 3 раза. При этом физические свойства мела, в особенности пластичность и вязкость, усиливаются. Это сильно осложняет технологию его добычи. По этой причине верхние и более сухие слои месторождений, хоть и с низким содержанием чистого карбоната кальция, используются для его получения в промышленных масштабах.
Где и как применяют мел
Наибольшее количество вещества идет на получение негашеной извести, гидроксида кальция и углекислого газа. Для этого карбонат кальция выжигают, образуются оксид кальция и диоксид карбона. Первое вещество еще называют негашеной известью или кипелкой. Его соединяют с водой, процесс идет с выделением большого количества теплоты, в результате получают гашеную известь – важное сырье для строительной промышленности. В комплексе с песком и водой гидроксид кальция используют для оштукатуривания и скрепления кирпичей при возведении стен. Известкование закисленных почв – хорошо известный и экономически дешевый метод мелиоративных работ, повышающий плодородие грунта и не имеющий негативного влияния на видовой состав почвенных организмов.
В данной работе были изучены физические свойства мела и рассмотрены области его применения в промышленности и сельском хозяйстве.
Распространение меди в природе
Среднее содержание меди в земной коре 4,7·10-3 % (по массе), в нижней части земной коры, сложенной основными породами, ее больше (1·10-2%), чем в верхней (2·10-3%), где преобладают граниты и другие кислые изверженные породы. Медь энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды Меди, имеющие большое промышленное значение. Среди многочисленных минералов Меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная Медь, карбонаты и оксиды.
Медь — важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание меди в живом веществе 2·10-4%, известны организмы — концентраторы меди. В таежных и других ландшафтах влажного климата медь сравнительно легко выщелачивается из кислых почв, здесь местами наблюдается дефицит меди и связанные с ним болезни растений и животных (особенно на песках и торфяниках). В степях и пустынях (с характерными для них слабощелочными растворами) медь малоподвижна; на участках месторождений Медь наблюдается ее избыток в почвах и растениях, отчего болеют домашние животные.
В речной воде очень мало меди, 1·10-7%. Приносимая в океан со стоком медь сравнительно быстро переходит в морские илы. Поэтому глины и сланцы несколько обогащены медью (5,7·10-3%), а морская вода резко недосыщена медью (3·10-7%).
В морях прошлых геологических эпох местами происходило значительное накопление меди в илах, приведшее к образованию месторождений (например, Мансфельд в Германии). Медь энергично мигрирует и в подземных водах биосферы, с этими процессами связано накопление медных руд в песчаниках.