Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å.
Удельный вес меди g = 8,94 г/см3, температура плавления — 1083 0С. Чистая медь обладает высокой тепло — и электропроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм×м, теплопроводность l = 395 Вт/(м×град). Предел прочности sв = 200…250 МПа, твердость 85…115 НВ, относительное удлинение d = 50 %, относительное сужение y = 75 %.
Медь — немагнитный металл. Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.
Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей. Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %). Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).
В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).
Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали; они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 0С и 326 0С).
Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.
В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость. Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы. Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:
- О — олово; Ц — цинк; Х — хром;
- Ж — железо; Н — никель; С — свинец;
- К — кремний; А — алюминий; Ф — фосфор;
- Мц — марганец; Мг – магний; Б – бериллий.
Латуни
Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.
В зависимости от содержания цинка латуни промышленного применения бывают:
- однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
- двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
- однофазные b|- латуни ,содержащие до 50 % цинка.
Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300 0С и выше 700 0С (в интервале от 300 0С до 700 0С — зона хрупкости). С увеличением содержания цинка прочность латуней повышается. В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная. Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны. Практическое применение имеют латуни с содержанием цинка до 42…43 %.
Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах. Содержание цинка определяется по разности от 100 %. Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %. Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.
К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %). Двухфазные (a+b|) — латуни марок Л59 и Л60 имеют меньшую пластичность в холодном состоянии, но большую прочность и износостойкость. Однофазные имеют после отжига sв = 250…350 МПа и d = (50…56) %, двухфазные — sв = 400…450 МПа и d = (35…40 %).
Для повышения механических свойств и коррозионной стойкости латуни могут легироваться оловом, алюминием, марганцем, кремнием, никелем, железом и др.
Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|). Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из двухфазной становится однофазной. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni, Sn.
В морском судостроении применяются оловянистые ”морские” латуни, например, ЛО70-1 (70 % Сu, 1 % Sn, 29 % Zn). Она используется для изготовления конденсаторных трубок, деталей теплотехнической аппаратуры.
Алюминиевые латуни
используют для изготовления конденсаторных трубок, цистерн, втулок, а также для изготовления коррозионно-стойких деталей, работающих в морской воде. Марки латуней: ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2 (в электрических машинах, в хим. машиностроении). Из латуни ЛАНКМц75-2-2,5-0,5-0,5 изготовляют цельнотянутые круглые трубы для производства манометрических трубок и пружин в приборах повышенного класса точности. С помощью закалки и старения sв достигает 700 МПа.
Марганцевые латуни
кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии) обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.
Кремнистые латуни
характеризуются высокой прочностью (sв до 640 МПа), пластичностью и вязкостью до минус 183 0С. Латунь ЛК80-3 применяют для изготовления арматуры, деталей приборов в судо- и общем машиностроении.
Свинцовистые латуни
отлично обрабатываются резанием и обладают высокими антифрикционными свойствами. Латуни ЛС60-1, ЛС59-1 применяют для изготовления крепежных деталей , зубчатых колес, втулок.
Никелевая латунь
обладает повышенными механическими (sв до 785 МПа) и коррозионными свойствами, обрабатывается давлением в холодном и горячем состоянии. Латунь ЛН65-5 применяется для изготовления манометрических и конденсаторных трубок, различного вида проката.
Литейные латуни
содержат те же элементы, что и латуни, обрабатываемые давлением; от последних литейные отличает, как правило, большее легирование цинком и другими металлами. Вследствие этого они обладают хорошими литейными характеристиками.
Другие значения этого слова:
- большинство работ Огюста Родена сделано из этого маталла
- долгое время это слово понимали как «медь из Бриндизи», но в итоге эта этимология была отклонена
- Долгое время это слово понимали как «медь из бриндизи». но в итоге эта этимология была отклонена. о каком слове идет речь
- За третье место
- Из чего отлит «Медный всадник» в Санкт-Петербурге
- Из чего сделан знаменитый «мыслитель» Родена
- Как мы называем то, что в древности именовалось «Медь из Брундизия»
- комендор катера из оперетты Н. Г. Минха «Раскинулось море широко»
- материал медного всадника
- Материал, давший имя эпохе с 1800 по 700 г н. э
- материал, давший имя эпохе с 1800 по 700 г. н. э
- материал, давший имя эпохе с 1800 по 700 г. н. э.
- Материал, давший имя эпохе с конца 4-го до начала 1-го тысячелетия до н. э. (в отдельных регионах позднее)
- материал, из которого должен быть сделан подарок, преподнесенный к восьмой годовщине свадьбы
- материал, из которого сделан Медный всадник
- Медаль за третье место
- медный сплав, изделиями из которого награждают спортсменов
- медь + олово для одной из эпох
- Металл для Медного всадника
- металл для призовых медалей
- Металл на восьмилетие свадьбы
- металлический сплав на основе меди, а также изделия из него
- Общее название многих сплавов на основе меди
- Сплав Cu- 89%, Sn- 11%
- Сплав бюстов
- сплав в названии исторической эпохи
- сплав в названии одной из эпох
- Сплав в описании загара
- сплав для бюстов и памятников
- сплав для медали за третье место
- сплав для пришедшего к финишу третьим
- сплав для птицы из произведения Рыбакова
- сплав для третьего призера
- сплав меди и никеля с большим электрическим сопротивлением
- Сплав меди с другими металлами
- Сплав меди с оловом
- Сплав меди с оловом и другими металлами
- Сплав меди с оловом и другими металлами (свинцом, алюминием и т. п.)
- Сплав меди с оловом и некоторыми другими элементами
- сплав меди с различными металлами
- Сплав статуэток
- сплав, рифмующийся с бонзой
- статуйный металл
- третьесортный металл
- Третьесортный металл (спорт.)
- третьесортный спортивный металл
Поковки
Медные сплавы
, сплавы на основе меди. М. с. — первые металлические сплавы, созданные человеком (см.
Бронзовый век
). Примерно до сер. 20 в. по мировому производству М. с. занимали 1-е место среди сплавов цветных металлов, уступив его затем алюминиевым сплавам. Со многими элементами медь образует широкие области твёрдых растворов замещения, в которых атомы добавки занимают места атомов меди в гранецентрированной кубической решётке. Медь в твёрдом состоянии растворяет до 39 % Zn, 15,8 % Sn, 9,4 % Al, a Ni — неограниченно. При образовании твёрдого раствора на основе меди растут её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, может значительно повыситься коррозионная стойкость, а пластичность сохраняется на достаточно высоком уровне. При добавлении легирующего элемента свыше предела растворимости образуются соединения, в частности электронные, т. е. характеризующиеся определённой электронной концентрацией (отношением суммарного числа валентных электронов к числу атомов, которое может быть равно 3/2, 21/13 или 7/4). Этим соединениям условно приписывают формулы CuZn, Cu5Sn, Cu31Sn8, Cu9Al4, CuBe и другие. В многокомпонентных М. с. часто присутствуют сложные металлические соединения неустановленного состава, которые значительно твёрже, чем раствор на основе меди, но весьма хрупки (обычно в двухфазных и многофазных М. с. доля их в структуре намного меньше, чем твёрдого раствора на основе меди).
М. с. получают сплавлением меди с легирующими элементами или с промежуточными сплавами — лигатурами, содержащими легирующие элементы. Для раскисления (восстановления окислов) широко применяют введение в расплав малых добавок фосфора (десятые доли %). М. с. подразделяют на деформируемые и литейные. Из деформируемых М. с. отливают (в изложницы или непрерывным методом) круглые и плоские слитки, которые подвергают горячей и холодной обработке давлением: прокатке, прессованию через матрицу или волочению для производства листов, лент, прутков, профилей, труб и проволоки. М. с. хорошо обрабатываются давлением, и деформированные полуфабрикаты составляют основную долю всего объёма их производства. Литейные М. с. обладают хорошими литейными свойствами, из них отливкой в земляные и металлические формы получают фасонные детали, а также декоративно-прикладные изделия и скульптуру (см. Бронза
в искусстве).
Механические свойства М. с. изменяются в широких пределах при холодной обработке давлением и при отжиге. Холодной деформацией можно увеличить твёрдость и предел прочности М. с. в 1,5—3 раза при одновременном снижении пластичности (см. Наклёп
), а последующий рекристаллизационный отжиг позволяет частично или полностью (в зависимости от температуры и его продолжительности) восстановить исходные (до деформации) свойства (см.
Термическая обработка
). Смягчающий отжиг М. с. после холодной обработки давлением проводят при 600—700 °С. Большинство М. с. не подвергают упрочняющей термической обработке (закалке и старению), так как эта обработка или в принципе невозможна, если сплав при всех температурах однофазен, или величина упрочнения очень мала. Для создания термически упрочняемых М. с. используют такие легирующие элементы, которые образуют с медью или между собой интерметаллические соединения (например, CuBe, NiBe, Ni3Al), растворимость которых в твёрдом растворе на базе меди с понижением температуры уменьшается. При закалке таких сплавов образуется пересыщенный твёрдый раствор, из которого при искусственном старении выделяются дисперсные интерметаллические соединения, упрочняющие М. с.
М. с. подразделяют на латуни
,
бронзы
и
медно-никелевые сплавы
. В латунях главной добавкой является цинк, в бронзах — любой элемент, кроме цинка и никеля. Промышленные марки выпускаемых в СССР М. с. начинаются с первых букв их названий — Л (латуни), Бр. (бронзы) и М (медно-никелевые сплавы). Легирующие элементы обозначают следующими буквами: А — алюминий, Н — никель, О — олово, Ц — цинк, С — свинец, Ж — железо, Мц — марганец, К — кремний, Ф — фосфор, Т — титан. В марке простой (двойной) латуни цифры указывают ср. содержание меди. Например, латунь Л90 содержит 90 % Cu и 10 % Zn. В марке многокомпонентной латуни первые цифры указывают среднее содержание меди, а последующие — легирующих элементов. Например, латунь ЛАН59-3-2 содержит 59 % Cu, 3 % Al и 2 % Ni (остальное цинк). В марках бронз и медно-никелевых сплавов буквы и соответствующие им цифры указывают содержание легирующих элементов. Например, бронза Бр. АЖМц10-3-1,5 содержит 10 % Al, 3 % Fe и 1,5 % Mn. Буква Л в конце марки М. с. обозначает, что он предназначен для фасонного литья (например, ЛК80-3Л). Состав, типичные механические свойства и примерное назначение М. с. приведены в таблицах 1—3. Все М. с. отличаются хорошей стойкостью против атмосферной коррозии. Кислород при комнатной температуре не действует на М. с.; окись углерода с ними не реагирует. Незагрязнённый пар, сухой или влажный действует на бронзы очень слабо. Сероводород уже при незначительной влажности и особенно при повышенных температурах сильно реагирует с М. с. Азотная и соляная кислоты действуют на латуни и оловянные бронзы очень сильно, серная — значительно слабее.
Таблица 1. — Состав, типичные механические свойства* и назначение латуней (1 Мн/м2
» 0,1
кгс/мм2
)
Марка сплава | Состав | Предел прочности sb, Мн/м2 | Относительное удлинение d, % | Твердость HB , | Примерное назначение |
Л96 | 95—97% Cu, остальное Zn | 240 | 50 | 470 | Радиаторные трубки |
Л90 | 88—91% Cu, остальное Zn | 260 | 45 | 530 | Листы и ленты для плакировки |
Л80 | 79—81% Cu, остальное Zn | 320 | 52 | 540 | Проволочные сетки и целлюлозно-бумажной промышленности, сильфоны |
Л68 | 67—70% Cu, остальное Zn | 320 | 55 | 550 | Изделия, получае- мые холодной штамповкой и глубокой вытяжкой |
Л63 | 62—65% Cu, остальное Zn | 330 | 49 | 560 | Полосы, листы, лента, проволока, трубы, прутки |
ЛА77-2 | 76—79% Cu, 1,75—2,5% Al, остальное Zn | 400 | 55 | 600 | Конденсаторные трубы |
ЛАЖ60-1-1 | 58—61% Cu, 0,75—1,5% Al, 0,75—1,5% Fe, 0,1—0,6% Mn, остальное Zn | 450 | 45 | 950 | Трубы и прутки |
ЛАЖМц66-6-3-2 | 64—68% Cu, 6—7% Al, 2—4% Fe, 1,5—2,5% Mn, остальное Zn | 650 | 7 | 1600 | Литые массивные червячные винты, гайки нажимных винтов |
ЛАН59-3-2 | 57—60% Cu, 2,5—3,5% Al, 2—3% Ni, остальное Zn | 380 | 50 | 750 | Трубы и прутки |
ЛЖМц59-1-1 | 57—60% Cu, 0,6—1,2% Fe, 0,5—0,8% Mn, 0,1—0,4% Al, 0,3—0,7% Sn, остальное Zn | 450 | 50 | 880 | Полосы, проволока, прутки и трубы |
ЛН65-5 | 64—67% Cu, 5—6,5% Ni, остальное Zn | 400 | 65 | 700 | Манометрические трубки, конденсаторные трубы |
ЛО70-1 | 69—71% Cu, 1—1,5% Sn, остальное Zn | 350 | 60 | 590 | Конденсаторные трубы, теплотехническая аппаратура |
ЛС74-3 | 72—75% Cu, 2,4—3% Pb, остальное Zn | 350 | 50 | 570 | Детали часов, автомобилей |
ЛК80-3Л | 79—81% Cu, 2,5—4,5% Si, остальное Zn | 300 | 20 | 1050 | Арматура, подвергающаяся действию воды, детали судов |
ЛКС80-3-3 | 79—80% Cu, 2,5—4,5% Si, 2—4% Pb, остальное Zn | 350 | 20 | 950 | Литые подшипники и втулки |
* Свойства деформируемых латуней указаны для отожжённого состояния.
Таблица 2. — Состав, типичные механические свойства* и назначение бронз (1 Мн/м2
» 0,1
кгс/мм2
)
Марка сплава | Состав | Предел прочности sb, Мн/м2 | Относительное удлинение d, % | Твердость HB , | Примерное назначение |
Бр. ОФ10-1 | 9—11% Sn, 0,8—1,2% P | 250 | 3 | 900 | Подшипники, шестерни, венцы, втулки |
Бр. ОФ4-0,25 | 3,5—4% Sn, 0,2—0,3% P | 340 | 52 | 600 | Трубки для манометрических пружин |
Бр. ОЦС5-5-5 | 4—6% Sn, 4—6% Zn, 4—6% P | 150 | 6 | 600 | Антифрикционные детали и арматура |
Бр. ОЦСН3-7-5-1 | 2,5—4% Sn, 6—9,5% Zn, 3—6% Pb, 0,5—2% Ni | 180 | 8 | 600 | Арматура, работающая в морской и пресной воде, в атмосфере пара |
Бр. А7 | 6—8% Al | 420 | 70 | 700 | Пружины и пружинящие детали |
Бр. АЖ9-4 | 8—10% Al, 2—4% Fe | 600 | 40 | 1100 | Шестерни, втулки, сёдла клапанов |
Бр. АЖМц10-3-1,5 | 9—11% Al, 2,4% Fe, 1—2% Mn | 610 | 32 | 1300 | Шестерни, втулки, подшипники |
Бр. АЖН10-4-4 | 9,5—11% Al, 3,5—5,5% Fe, 3,5—5,5% Ni | 600 | 35 | 1500 | Шестерни, сёдла клапанов |
Бр. АМц9-2 | 8—10% Al, 1,5—2,5% Mn | 400 | 25 | 1600 | Детали морских судов, электрооборудования |
Бр. Мц5 | 4,5—5,5% Mn | 340 | 30 | 800 | |
Бр. Б2 | 1,9—2,2% Be, 0,2—0,5% Ni | 1350 | 1,5 | 3500 | Пружины и пружинящие детали в авиации и приборостроении |
Бр. КН1-3 | 0,6—1,1% Si, 2,4—3,4% Ni, 0,1—0,4% Mn | 600 | 12 | 1800 | Направляющие втулки и другие детали ответственного назначения |
Бр. С30 | 27—33% Pb | 70 | 5 | 450 |
* Свойства сплавов Бр. ОФ10-1, Бр. ОЦС5-5-5, Бр. ОЦСН3-7-5-1 и Бр. С30 указаны для отливок в земляные формы, сплавов Бр. Б2 и Бр. КН1-3 — для обработанных давлением изделий, подвергнутых закалке, соответственно при 780 и 850 °С и старению соответственно при 320 °С (2 ч
) и 450 °С (4
ч
), остальных сплавов — для отожжённого состояния после обработки давлением.
Таблица 3. — Состав, типичные механические свойства* и назначение медно-никелевых сплавов (1 Мн/м2
» 0,1
кгс/мм2
)
Марка и наименование сплава | Состав | Предел прочности sb, Мн/м2 | Относительное удлинение d, % | Твердость HB , | Примерное назначение |
МН19 (мельхиор) | 18—20% Ni+Co | 350 | 35 | 700 | Изделия, получаемые штамповкой и чеканкой |
МНЖМц30-0,8-1 (мельхиор) | 29—33% Ni+Co, 0,8—1,3% Mn, 0,6—1% Fe | 380 | 40 | 700 | Конденсаторные трубы для судостроения, трубы термостатов |
МНЦ15-20 (нейзильбер) | 13,5—1,5% Ni+Co, 18—22% Zn | 400 | 45 | 700 | Детали приборов точной механики, посуда |
МНМц43-0,5 (копель) | 42,5—44% Ni+Co, 0,1—1% Mn | 400 | 35 | 850 | Проволока для термопар |
МНМц40-1,5 (константан) | 39—41% Ni+Co, 1—2% Mn | 450 | 30 | 800 | Проволока для реостатов, термопар |
* Свойства указаны для отожжённого состояния.
М. с. используют как конструкционные, пружинные, антифрикционные и коррозионностойкие материалы, сплавы с высокой электро- и теплопроводностью, с высоким электросопротивлением и низким термическим коэффициентом электросопротивления, сплавы для термопар, художественного литья и посуды. М. с. применяют в общем машиностроении, авиа-, авто- и судостроении, на железнодорожном транспорте, в электротехнической промышленности, приборостроении, в производстве водяной и паровой арматуры и других изделий.
Лит.:
Бочвар А. А., Металловедение, 5 изд., М., 1956; Смирягин А. П., Промышленные цветные металлы и сплавы, 2 изд., М., 1956.
И. И. Новиков.
Оглавление БСЭ