Газовая коррозия: определение, особенности и способы решения проблемы

Химическая коррозия металлов – это опасное явление, способное привести к их полному разрушению. Процесс напрямую связан со способностью материала вступать во взаимодействие со средой, представляющей повышенную химическую опасность.

Среди важных свойств протекания химической коррозии металла – параллельный процесс окисления и восстановления. Ученые не отмечают прямой связи с электрическим током, который потенциально может образовываться или воздействовать на участвующие в реакции материалы.

Если рассматривать первопричину распространения такого процесса, то мы быстро придем к выводу – она кроется в термической нестабильности металлов разных типов.

Они склонные под воздействием окислительных компонентов среды быстро переходить в устойчивое состояние и зачастую это происходит полностью непроизвольно.

Процесс окисления и восстановления при протекании химической коррозии происходит на фоне уменьшения потенциала системы. При этом нужно учитывать знаки изменения потенциала, чтобы предсказать риск произвольного запуска такого процесса и его интенсивного протекания внутри материала.

Ученые определяют основным критерием, который стимулирует самопроизвольный процесс, такой показатель, как изобарно-изотермический потенциал G.

Когда реакция начинает протекать произвольно, он значительно убывает. При этом скорость уменьшения может меняться в зависимости от типа материалов, условий коррозионной среды и ряда других ключевых параметров.

Газовая коррозия металлов

Научная статистика показывает, что газовая коррозия металлов протекает наиболее часто. При рассмотрении химической порчи она значительно более распространена, чем жидкостное ржавение при контакте с электролитами.

Важный фактор здесь – высокая температура. Если металл сильно нагрет и на него начинает воздействовать газ, происходит разрушение.

Так как уровень температур должен быть достаточно высок, а при обычном использовании создать условия для протекания такой химической коррозии довольно сложно, процесс часто наблюдается в металлургии.

Из-за этого страдает оборудование, используемое при штамповке, ковке, горячей прокатке и других процессах. Без дополнительной защиты длительность использования подобной техники станет значительно меньше.

Опасность представляет и контакт металла с кислородом. Формула реакции, которая запускается в таком случае, выглядит следующим образом: Ме + 1/2О2 – МеО.

Эта реакция имеет четкое окислительное направление, потому напрямую связана с показателями парциального кислородного давления. Стоит обратить внимание на то, что реакция может быть равновесной, смещенной к образованию оксида, либо протекающей в обратном направлении.

Очень важно понимать, с какой газовой смесью контактирует металл в той области, где вы его используете. Хорошее понимание парциального давления кислорода в смеси даст нам температурный интервал.

Именно в нем будет запускаться окислительный процесс, приводящий к разрушению материала или значительному ухудшению уровня его качества.

Водородная коррозия

Водородная коррозия – вид коррозионного разрушения, который наблюдается, в основном, в технологических средах, содержащих водород, при воздействии повышенных температур и давлений. Очень часто водородная коррозия наблюдается при гидрировании нефти и угля, синтезе метанола и аммиака и т.п.

При воздействии водорода металл может подвергаться двум видам разрушения: водородная коррозия и водородная хрупкость. Зачастую эти два вида протекают одновременно.

Водородная коррозия происходит вследствии химического взаимодействия водорода среды и карбидной составляющей стали. При повышенных температурах и давлениях водород, попадая на поверхность стального изделия, диссоциирует. Образовавшиеся атомы H2 очень подвижны, их диаметр составляет 0,1 нм. Атомы водорода диффундируют вглубь металла, растворяясь в нем. Некоторая часть вступает в реакцию с углеродом:

C + 4H = CH4

При остывании металла, водород переходит в газообразное состояние, создавая достаточно высокое внутреннее давление. Это охрупчивает металл. На поверхности появляются трещины, вздутия. Прочность стали сильно уменьшается.

Обычно водородная коррозия появляется из-за нескольких причин:

— повышение внутреннего давления при образовании в порах CH4 и в результате – растрескивание по границам зерен;

— обезуглероживание стали, которое происходит из-за восстановления водородом цементита (Fe3C входит в состав сталей):

Fe3C + 2H2 = 3Fe + CH4;

— водород проникает вглубь стали, образуя хрупкий твердый раствор водорода в Fe.

У водородной коррозии есть, так называемый, инкубационный период, при котором какие-либо внешние признаки разрушения отсутствуют. В среднем этот период может составлять около 1000 часов (зависит от условий).

Расчеты по термодинамике показывают, что при повышенном давлении и температуре около 350 – 600 °С цементит почти полностью разрушается.

Реакция, при которой образуется СН4 (метан) может протекать в сторону уменьшения объема, т.е. она обратимая. При повышении температуры равновесие реакции сдвигается вправо. Поэтому на нефтехимических производствах температуру поддерживают до 200 °С, при давлении около 50 МПа.

Скорость протекания водородной коррозии зависит не только от рабочих давлений и температур, но и от глубины обезуглероживания стали.

Факторы скорости протекания газовой химической коррозии

По мере исследования особенностей процесса протекания химической коррозии, ученые смогли определить важные факторы, которые влияют на ее скорость и другие особенности. К ним относятся такие, как:

  • Температура среды, в которую погружен металл.
  • Состав сплава и другие особенности металла.
  • Особенности газовой среды, ее состав, преобладающие элементы.
  • Длительность контактирования материала с коррозийной средой.
  • Появляющийся продукт коррозии.

Как и в случае с другими типами коррозийных поражений, большое значение имеет тип и особенности создающейся на поверхности оксидной пленки.

Особенности формирования оксидных пленок при газовой коррозии

Весь процесс формирования оксидной пленки на поверхности металла можно разделить на две крупные стадии:

Абсорбирование молекул кислорода на поверхности металлического изделия

Это происходит на тех участках, которые находятся в непосредственном контакте с атмосферой. Заметно появление ионной связи – атом кислорода забирает у металла по два электрода.

Можно предположить, что формирование очень сильной и стабильной связи при протекании такой реакции связано с попаданием кислорода в особое поле атомов металла.

Когда поверхность материала будет полностью наполнена окислителем, окажется сформирована мономолекулярная пленка. Она имеет склонность к утолщению со временем. Это уменьшает дальнейший контакт с кислородом, но сам опасный коррозийный процесс уже оказывается запущен.

Формирование химического соединения

Это явление характерно для ситуации, в которой происходит активное взаимодействие металла и газа. Из-за воздействия окислительных компонентов сплав начинает активно терять валентные электроны. Стремительно формируются и накапливаются продукты коррозии.

Дальнейшее протекание процесса будет во многом характеризоваться особенностями оксидной пленки. Так если она отличается повышенным уровнем защиты, сам коррозийный процесс будет замедляться.

Обезуглероживание стали (декарбюризация)

Обезуглероживание стали (декарбюризация) — процесс обеднения поверхностного слоя металла углеродом. Наблюдается при температурах свыше 650 °С.

Чаще всего процесс обезуглероживания стали протекает в окислительных атмосферах (O2, H2O, CO), но может происходить и в атмосфере водорода. Кислород окисляет сначала углерод, а потом только железо. Обезуглероживание стали проходит интенсивнее с увеличением в газовой среде количества углекислого газа, влаги и кислорода. Если газовая среда содержит больше угарного газа и метана – скорость декарбюризации уменьшается.

Процесс восстановления цементита Fe3C является основой процесса обезуглероживания стали:

Fe3C + ½O2 = 3Fe + CO

Fe3C + CO2 = 3Fe + 2CO

Fe3C + H2O = 3Fe + CO + H2

При температуре выше 650 °С атомы углерода более подвижны, чем атомы основного металла (железа), коэффициент диффузии атомов углерода также превышает коэффициент диффузии атомов Fe. Обезуглероживание стали протекает тогда, когда углерод диффундирует быстрее, чем окисляется железо.

Обезуглероживание сопутствует очень многим технологическим процессам, таким, как разнообразные реакции горения, окислительного крекинга и др. Сталь, подвергшаяся декарбюризации, теряет свою прочность и твердость, тем самым ухудшается ее качество, сокращается срок службы готовых изделий.

Декарбюризация (обезуглероживание стали) наблюдается после образования пленки оксидов на поверхности металла. С утолщением пленки окалина образуется медленнее, при этом обезуглероженный слой утолщается (может уходить на несколько миллиметров вглубь основного металла).

Для уменьшения степени обезуглероживания в сталь вводятся добавки вольфрама и алюминия. Незначительное влияние оказывают хром, марганец и кобальт.

Виды оксидных пленок

Когда химическая коррозия происходит под действием температуры и газовой среды, могут сформироваться три вида пленок:

  • Тонкие. Со стороны заметить их будет невозможно. Они одни из самых не прочных, могут легко стираться под действием механического давления.
  • Средние. Могут быть замечены, потому что со стороны металл слегка меняет цвет.
  • Толстые. Хорошо заметны невооруженным глазом.

Чтобы не допустить протекание опасных процессов разрушения материала, важно сделать пленку защитной.

Факторы формирования защитной пленки

Оксидная пленка способна оказывать выраженное защитное воздействие на материал. Но для этого требуется, чтобы она соответствовала нескольким важным требованиям:

  • Сплошность. На поверхности пленка распределяется ровным слоем, без пор и участков, которые не затронуты ею.
  • Хорошее сцепление с поверхностью материала. Это требуется для удержания подобного защитного барьера на месте и исключения ухудшения его свойств.
  • Химическая инертность. Пленка будет защищать металл только в том случае, если она вступает в химические реакции с окружающей средой. В противном случае, есть большая опасность, что весь защитный эффект окажется сведен к нулю.

Так как материал будет использоваться на протяжении длительного времени и сложно предсказать, что станет воздействовать на него, большое значение имеет стойкость к износу и повышенный уровень твердости.

Не менее важен и тот факт, чтобы пленка не была пористой и рыхлой. Когда она плохо контактируется с поверхностью, риск протекания разрушающих процессов становится значительно выше.

При изучении различных свойств оксидных пленок, ученые особенно пристально рассматривают сплошность. Отмечается, что на нее влияет молекулярный объем. Его показатели должны быть выше атомного объема металла.

Сплошность не ставится на первое место при определении защитных свойств оксидной пленки только для небольшой группы металлов. В их числе щелочно-земельные и щелочные.

При проведении работ по защите от химической коррозии, большое внимание уделяется методу замера толщины. Анализ характеристик происходит на разных стадиях формирования. Большое значение имеют получаемые показатели скорости окисления металла и характер протекания подобного процесса.

Когда окислы оказываются сформированными, специалисты рекомендуют проверить, какую пленку они создали на поверхности, обладает ли она нужными защитными свойствами.

Химическая коррозия в жидкостях-неэлектролитах

Хотя газовая коррозия считается наиболее распространенной, порчу металла при контакте с различными жидкостями-электролитами также не стоит сбрасывать со счетов. Большую опасность представляет контакт материала с веществами, способными проводить электричество.

Их делят на две крупные группы – органические и неорганические. Электролитов, представляющих большую опасность для металла, много – от расплавленной серы и бензола до жидкого брома, спирта, керосина, нефти и других.

Большое значение при протекании химической реакции играет чистота электролита. Когда он полностью чист, взаимодействия не наблюдается. Но стоит только попасть в состав небольшому количеству примесей, реакция начинает развиваться особенно стремительно.

Еще один дополнительный фактор риска – присутствие влаги. Тогда к опасности химической коррозии также прибавляется и угроза электрохимической.

Сернистая коррозия (коррозия в среде серы)

Различные соединения серы оказывают большое влияние на высокотемпературную газовою коррозию. Самым вредным и опасным среди таких соединений является сероводород (даже более чем сернистый ангидрид).

Сернистый ангидрид (SO2) выделяется в результате многих технологических процессов. Под воздействием этого соединения при температуре свыше 300 °С образуется на поверхности черных металлов слоистая окалина, которая состоит из FeS, FeO и Fe3O4.

Очень негативное влияние оказывает сернистый газ на чугун. При температурах выше 400 °С детали из чугуна окисляются изнутри, идет увеличение объема до 10%. Сильно уменьшается прочность чугунных изделий, наблюдается коробление, появляются поверхностные трещины и деталь разрушается. Это явление получило название «рост чугуна». Максимальное повреждение наблюдается при температуре около 700 °С.

Стадии протекания коррозии в жидкостях-неэлектролитах

Если рассматривать весь процесс более подробно и анализировать, что влияет на скорость химической коррозии, можно выделить несколько стадий ее протекания:

  • Контакт окислителя с поверхностью материала.
  • Запуск процесса хемосорбции реагента на поверхности.
  • Протекание реакции металла и окислителя, формирование оксидной пленки.

Условия среды, состав сплава и самого электролита могут повлиять на протекание нескольких основных процессов. К ним относятся такие, как десорбция оксидов с металлом и диффузия оксидов в неэлектролит. Но оба процесса также могут и не наблюдаться.

Чтобы не допустить запуска коррозии в жидкостях-электролитах, стоит позаботиться о нанесении на поверхность специальных защитных составов. Важно, чтобы на протяжении всего времени использования изделия они полностью сохраняли свою целостность.

Карбонильная коррозия

Карбонильная коррозия часто наблюдается в технологических средах, а именно, в случаях, когда при повышенном давлении и температуре протекают процессы с участием углерода (II). Карбонильная коррозия наблюдается при конверсии окиси углерода и метана, получении бутилового и метилового спиртов и т.д.

Оксид углерода при нормальном давлении и температуре по отношению к металлам инертен. Но при повышенных значениях температуры и давления CO реагирует с большинством металлов. В результате такого взаимодействия образуются карбонилы. Например, процесс образования карбонила железа описывается реакцией:

Fe + nCO = Fe(CO)n

С оксидом углерода железо может образовать три вида карбонилов: Fe(CO)5 (пентакарбонил), Fe(CO)4 (тетракарбонил) и Fe(CO)9 (нонакарбонил). При повышении температуры все эти соединения разлагаются, т.к. не обладают достаточной устойчивостью. Наибольшей стойкостью, среди вышеперечисленных карбонилов железа, обладает пентакарбонил, который почти полностью диссоциирует на CO и Fe уже при температуре выше 140°С. Оксид углерода может образовывать подобные соединения со многими металлами.

Карбонильная коррозия протекает только в верхних слоях. Разрыхление и разрушение поверхностного слоя металла в глубину может достигать до 5 мм. Глубже структура не меняется.

При высоких температурах (до 700°С) и давлениях (до 35 МПа) для защиты от карбонильной коррозии металлов можно применять хромоникелевые стали, в состав которых входит около 20% Ni и 23% Cr, хромистые с содержание хрома 30%, а также марганцевые бронзы. Менее легированные стали (например, Х18Н9) можно использовать в случаях, когда давление и температура несколько ниже 700°С.

Карбонильная коррозия наблюдается также при синтезе мочевины. В качестве исходного сырья для получения CO(NH2)2 используется углекислый газ и NH3. Сам процесс протекает при давлении в 20 МПа и температуре 175 — 190°С. Для изготовления аппаратов, в которых протекают основные процессы синтеза, нержавеющие хромистые стали абсолютно не подходят. Самой высокой стойкостью к карбонильной коррозии в данных условиях обладает хромоникелевая сталь, в состав которой входит медь и молибден, а также некоторые молибденовые стали. Для повышения коррозионной устойчивости основных агрегатов, в которых проходит синтез мочевины, необходима очистка газов от сероводорода, а также обязательное введение в систему O2 в количестве 0,5-1 об.% от содержания углекислого газа.

Факторы протекания химической коррозии

Большое значение при рассмотрении процесса химической коррозии металлов имеет определение факторов, оказывающих на нее влияние. К ним относятся такие, как:

Температура

Все окислительные процессы протекают быстрее, если температура сильно увеличивается.

Температурный режим

В особой группе риска оказываются металлические изделия, которые на протяжении определенного времени начинают охлаждаться и нагреваться попеременно. В таком случае сильно страдает защитная пленка. Она начинает трескаться, в местах, где это происходит, металл контактирует со средой, запускается повторное окисление. Новая пленка также формируется на фоне постепенного отслоения старой.

Состав среды

Это относится как к газам, так и к электролитам в жидком виде. Как уже было отмечено выше, даже небольшие загрязнения жидкости могут привести к тому, что скорость коррозийного повреждения станет значительно выше.

Состав сплава

В сплав металла добавляют различные компоненты, которые могут, как затормозить, так и ускорить окисление. К примеру, сильными замедлителями признаны такие добавки, как титан, медь и кобальт. Хорошо влияют на уменьшение скорости протекания процесса хром и алюминий.

Тип обработки поверхности

Ученые во время исследований показали, что гладкая поверхность отличается заметно более высокой устойчивостью к окислению, процесс протекает медленнее. Если же на поверхности металла много бугров, есть выраженные дефекты, стоит готовиться к более быстрому протеканию.

Структура материала

Уравнение химической коррозии показывает, что значительное замедление коррозийного процесса характерно для металлов с аустенитной структурой.

Защита от газовой коррозии легированием

Один из самых распространенных методов защиты металла от разного рода коррозийных процессов. Основывается этот способ на изменении свойств структуры корродирующего металла. Само по себе легирование предполагает модификацию сплава путем ввода компонентов, вызывающих пассивирование его структуры. В частности, может использоваться вольфрам, никель, хром и др. Специально для газовой противокоррозийной защиты используют элементы, повышающие жаростойкость и жаропрочность металла. Процесс легирования может выполняться и посредством нанесения специальных покрытий, и путем погружения заготовки в газовую фазу модифицирующих компонентов. В обоих случаях повышается стойкость металла перед окислительными процессами. Например, чтобы в два раза сократить скорость окисления железной детали при 900 °С, необходимо ее легировать сплавом марки А1 3,5%, а для четырехкратного сокращения – модификатором А1 5,5%.

Подведем итоги

В этой статье мы рассмотрели виды химической коррозии и то, чем она отличается от электрохимической. При условии соблюдения ряда требований, удается заметно уменьшить риск разрушения металла. К ним относятся такие, как:

  • Контроль формирования защитной оксидной пленки.
  • Исключение контакта определенных материалов с агрессивными средами.
  • Использование дополнительных защитных покрытий.
  • Отслеживание состава газовой смеси или электролита.
  • Применение металлов с компонентами сплава, замедляющими реакцию.

Соблюдение перечисленных требований позволит значительно увеличить длительность использования вашего металлического изделия.
Вернуться к статьям Поделиться статьей

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]