Транзисторы для сварочных инверторов: техническое описание

Довольно часто для построения сварочного инвертора применяют основные три типа высокочастотных преобразователей, а именно преобразователи включенные по схемам: асимметричный или косой мост, полумост, а также полный мост. При этом резонансные преобразователи являются подвидами схем полумоста и полного моста. По системе управления данные устройства можно поделить на: ШИМ (широтно-импульсной модуляцией), ЧИМ (регулирование частоты), фазовое управления, а также могут существовать комбинации всех трех систем.

Все выше перечисленные преобразователи имеют свои плюсы и минусы. Разберемся с каждым в отдельности.

Система полумост с ШИМ

Блок схема показана ниже:

Это, пожалуй, один из самых простых, но не менее надежных преобразователей семейства двухтактных. «Раскачка» напряжения первичной обмотки трансформатора силового будет равна половине напряжения питания – это недостаток данной схемы. Но если посмотреть с другой стороны, то можно применить трансформатор с меньшим сердечником, не опасаясь при этом захода в зону насыщения, что одновременно является и плюсом. Для сварочных инверторов имеющих мощность порядка 2-3 кВт такой силовой модуль вполне перспективен.

Поскольку силовые транзисторы работают в режиме жесткого переключения, то для их нормальной работы необходимо ставить драйверы. Это связано с тем, что при работе в таком режиме, транзисторам необходим высококачественный управляющий сигнал. Также обязательно наличие безтоковой паузы, чтоб не допустить одновременное открытие транзисторов, результатом чего станет выход последних из строя.

Как правильно организовать ремонт сварочного инвертора

Разумеется, ситуации, когда электронный сварочный аппарат сгорает, как свечка, и не подлежит дальнейшему ремонту, случаются крайне редко. На практике ремонт сварочного аппарата может оказаться намного проще, чем казалось в первый момент. В 90% случаев из строя выходят силовые цепи, в 50% — чувствительные управляющие элементы схемы. Но чтобы выполнять ремонт инверторных сварочных аппаратов своими руками, мало одного желания, как минимум, потребуется следующее оборудование:

  • Цифровой тестер или мультиметр, все равно какой, можно с функцией проверки транзисторов;
  • Паяльная станция, можно самодельная, но обязательно с регулируемым по температуре феном и исправным низковольтным паяльником;
  • Нагрузочный реостат.

Кроме перечисленного, для работы может потребоваться шприц для откачки припоя, кисточка, спирт, лупа, сильный фонарик, лампа накаливания с проводами, ну и, конечно, справочники для заказа запасных частей.

Совет! У большинства профессиональных ремонтников имеется в распоряжении осциллограф. Для ремонта электроники, по сути, незаменимая вещь, если дело касается проверки работы системы управления аппарата.

Не факт, что осциллограф потребуется для ремонта сварочного аппарата своими руками, но в особо сложных случаях без него просто не обойтись.

Резонансный полумост

Довольно перспективный вид полумостового преобразователя, его схема показана ниже:

Резонансный полумост будет немного проще, чем полумост с ШИМ. Это обусловлено наличием индуктивности резонансной, которая ограничивает максимальный ток транзисторов, а коммутация транзисторов происходит в нуле тока или напряжения. Ток, протекающий по силовой цепи, будет иметь форму синусоиды, что снимет нагрузку с конденсаторных фильтров. При таком построении схемы необязательно необходимы драйверы, переключение может осуществляться обычным импульсным трансформатором. Качество управляющих импульсов в данной схеме не столь существенно как в предыдущей, но безтоковая пауза все равно должна быть.

В данном случае можно обойтись без токовой защиты, а форма вольт-амперной характеристики ВАХ будет иметь падающий вид, что не требует ее параметрического формирования.

Выходной ток будет ограничиваться только индуктивностью намагничивания трансформатора и соответственно сможет достигать довольно таки значительных величин, в случае, когда возникнет короткое замыкание КЗ. Данное свойство положительно влияет на поджиг и горение дуги, но и его также необходимо учитывать при подборе выходных диодов.

Как правило, выходные параметры регулируются изменением частоты. Но и регулирование фазное тоже дает немного своих плюсов и является более перспективным для сварочных инверторов. Он позволяет обойти такое неприятное явление как совпадение режима короткого замыкания с резонансом, а также увеличивает диапазон регулирования выходных параметров. Применение фазовой регулировки может позволить изменять выходной ток в диапазоне от 0 до Imax.

Двухтактный повышающий преобразователь: развитие топологии

Известно большое количество конвертеров повышающего типа, в том числе и двухтактных: мостовой конвертер с дросселем постоянного тока на входе, нулевая топология

Рис. 1. Двухтактный полумостовой повышающий конвертер: а) исходная топология; б) базовая топология с дополнительными размагничивающими обмотками дросселей; в) с общим магнитосвязанным дросселем

(push-pull) с дросселем постоянного тока в цепи питания и др. Рассматриваемый в данной статье конвертер и его основные разновидности были предложены в работе [1]. В зарубежной литературе за ним закрепилось название two inductor current-fed boost half-bridge converter — полумостовой повышающий конвертер с двумя дросселями на входе и гальванической развязкой между входом и выходом (далее — 2ДППК).

На рис. 1 показаны основные разновидности 2ДППК. Исходная топология приведена на рис. 1а. Питание первичной обмотки силового трансформатора Tr1 осуществляется от «источников тока» в виде дросселей постоянного тока Dr1 и Dr2. Обязательным условием нормального функционирования схемы, приведенной на рис. 1а, является управление ключами VT1, VT2 с коэффициентом заполнения D > 0,5.

Иными словами, должно быть исключено состояние, при котором оба ключа одновременно выключены, так как в этом случае возникают высоковольтные импульсы напряжения на стоках ключей из-за отсутствия у дросселей Dr1 и Dr2 путей сброса тока, накопленного в течение замкнутого состояния ключей. На практике выбирается величина Dmin = 0,52–0,55. Данная топология обладает следующими положительными свойствами:

  • В конвертере 2ДППК принципиально отсутствуют сквозные токи между ключами.
  • Конвертер «не боится» насыщения магнитопровода силового трансформатора — в случае «замагничивания» магнитопровода каждый ключ коммутирует токи обоих дросселей, которые линейно по времени увеличиваются в течение периода коммутации. Но этот процесс существенно более медленный из-за большей индуктивности дросселей, чем при экспоненциальном росте тока намагничивания силового трансформатора при его насыщении в конвертерах с питанием от источника напряжения. Это обстоятельство предоставляет ШИМ-контроллеру достаточное время для «принятия решения» и ограничения тока через ключи.
  • Конвертер имеет высокий коэффициент передачи по напряжению: V0 = 2/(1 – D) × Vinn, где Vin — напряжение питания конвертера, n — коэффициент трансформации силового трансформатора, V0 — выходное напряжение.
  • Конвертер обеспечивает гальваническую развязку между входом и выходом.

Практически, конвертер с исходной топологией может использоваться либо в регулируемом режиме с D > 0,5, либо как нерегулируемый с фиксированным коэффициентом заполнения D = 0,52–0,55 и в таком виде не представляет особого интереса, но тем не менее применяется в качестве, например, входного преобразователя напряжения солнечных панелей [2].

Возможно преобразование исходного варианта 2ДППК в регулируемый при фиксированном значении D. Для этого вводится резонансный формирующий контур, что позволяет использовать в качестве регулирующего выходное напряжение параметра частоту коммутации ключей. Одновременно с этим появляется возможность реализовать режим «мягкой» коммутации силовых транзисторов [2, 3].

Чтобы устранить основной недостаток исходной топологии — невозможность использования ШИМ-регулирования в широком диапазоне изменения 0 0,5 возможна, но в данной статье не рассматривается. В связи с низким питающим напряжением и малой выходной мощностью конвертера цепи снижающие коммутационные потери не применялись. При изготовлении дросселей использовались магнитопроводы из феррита из соображений удобства работы с разборным сердечником. Для минимизации массогабаритных показателей дросселей следует использовать магнитопроводы с максимальной доступной индукцией насыщения, такие как Kool-Mu, High Flux, XFlux, Molypermalloy, порошковое железо.

Бестрансформаторный вариант 2ДППК может применяться и при высоком питающем напряжении, например в устройствах с питанием от промышленной сети 220 В/ 50 Гц. В этом случае потребуется использовать высоковольтные транзисторы с максимальным рабочим напряжением не менее 800 В, что может рассматриваться как минус данной топологии. Однако этот недостаток можно преодолеть, включив силовые транзисторы последовательно по питанию, а не параллельно, как в базовой схеме. Пример такого «высоковольтного» 2ДППК с мостовым вторичным выпрямителем показан на рис. 9а. На рис. 9б представлен способ замены мостового вторичного выпрямителя на двухполупериодный. Диоды VD1 и VD2 на рис. 9а являются рекуперационными.

Рис. 9. «Высоковольтный» вариант 2ДППК с двумя вариантами вторичных выпрямителей

Ассиметричный или «косой» мост

Это однотактный, прямоходовой преобразователь, блок схема которого приведена ниже:

Данный тип преобразователя довольно популярен как у простых радиолюбителей, так и у производителей сварочных инверторов. Самые первые сварочные инверторы строились именно по таким схемам – асимметричный или «косой» мост. Помехозащищенность, довольно широкий диапазон регулирования выходного тока, надежность и простота – эти все качества до сих пор привлекают производителей до сих пор.

Довольно высокие токи, проходящие через транзисторы, повышенное требование к качеству управляющего импульса, что приводит к необходимости использовать мощные драйвера для управления транзисторами, а высокие требования к выполнению монтажных работ в этих устройствах и наличие больших импульсных токов, которые в свою очередь повышают требования к конденсаторным фильтрам – это существенные недостатки такого типа преобразователя. Также для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.

Но несмотря на выше перечисленные недостатки и низкий КПД устройства по схеме асимметричный или «косой» мост все еще применяются в сварочных инверторах. В данном случае транзисторы Т1 и Т2 будут работать синфазно, то есть закрываться и открываться одновременно. В данном случае накопление энергии будет происходить не в трансформаторе, а в катушке дросселя Др1. Именно поэтому для того, чтоб получить одинаковую мощность с мостовым преобразователем необходим удвоенный ток через транзисторы, так как рабочий цикл при этом не будет превышать 50%. Более подробно данную систему мы рассмотрим в следующих статьях.

Правильное назначение

Сварочные аппараты подходят для продуктивной работы в домашних условиях, а также в мастерских. Разнообразие функций в устройствах делает их разносторонними. Стандартные сварочные инверторы обеспечивают постоянный ток сварки, поэтому считаются универсальными агрегатами. Они подходят для сварки и резки чёрных, цветных металлов.

Полуавтоматика отличается тонким и ровным швом, практически не оставляет после себя следов. Плазморез востребован в промышленной сфере, годится для профессиональных работ. Резка металла происходит на высокой скорости. Допускаются различные типы заготовок.


Плазморезы

Интересно! Плазморезы годятся для длинных разрезов, к примеру, бронзы либо алюминия.

Аппараты аргонно-дуговой сварки считаются более подходящими для цветных металлов. Обеспечивается значительная глубина проварки и практически нет ограничений. Модели точечной сварки также могут называться споттерами, применимы на металлообрабатывающих предприятиях. Точечные аппараты подходят для резки крупных изделий.


Аппараты аргонно-дуговой сварки

Полный мост с ШИМ

Представляет собой классический двухтактный преобразователь, блок схема которого показана ниже:

Данная схема позволяет получать мощность в 2 раза больше, чем при включении типа полумост и в 2 раза больше чем при включении типа «косой» мост, при этом величины токов и соответственно потери во всех трех случаях будут равны. Это можно объяснить тем, напряжение питания будет равным напряжению «раскачки» первичной обмотки трансформатора силового.

Для того, чтоб получить одинаковые мощности с полумостом (напряжение раскачки 0,5Uпит.) необходим ток в 2 раза! меньше чем для случая полумоста. В схеме полного моста с ШИМ транзисторы будут работать поочередно – Т1, Т3 включены, а Т2, Т4 выключены и соответственно наоборот при изменении полярности. Через трансформатор тока отслеживают и контролируют значения амплитудное тока протекающего через эту диагональ. Для его регулирования есть два наиболее часто применяемые способы:

  • Оставить неизменным напряжение отсечки, а изменять только длину импульса управления;
  • Проводить изменения уровня отсекающего напряжения по данным с трансформатора тока при этом оставляя неизменным длительность импульса управления;

Оба способа могут позволить проводить изменения выходного тока в довольно больших пределах. У полного моста с ШИМ недостатки и требования такие же, как и у полумоста с ШИМ. (Смотри выше).

Настройка инвертора

………. Силовая часть пока обесточена.Предварительно проверенный блок питания подключаем к блоку управления ивключаем его в сеть. На индикаторе загорятся все восьмёрки, затемвключится реле и, если контакты термостатов замкнуты, то индикаторпокажет задание тока 20 А. Осциллографом проверяем напряжение назатворах ключей. Там должны быть прямоугольные импульсы с фронтами неболее 200 нс, частотой 40-50 кГц напряжением 13-15В в положительнойобласти и 10 В – в отрицательной. Причём в отрицательной областиимпульс должен быть заметно длиннее.

………. Если всё так, собираем полностью схемуинвертора и включаем его в сеть. На индикацию сначала будут выведенывосьмёрки, затем должно включиться реле и индикатор покажет 20 А.Кликая кнопками, пробуем изменять задание тока. Изменение задания токадолжно пропорционально изменять напряжение на конденсаторе C1. Если изменив задание тока не нажимать на кнопки более 1 минуты, топроизойдёт запись задания в энергонезависимую память. На индикаторекратковременно появится сообщение «ЗАПС”. При последующемвключении инвертора величина задания тока будет равна значению, котороезаписалось.

Резонансный мост

Является наиболее перспективной схемой высокочастотного преобразователя для сварочного инвертора, блок схема которого показана ниже:

Резонансный мост не сильно отличается от полного моста с ШИМ. Разница заключается в том, что при резонансном подключении последовательно с обмоткой трансформатора подключают резонансную LC цепочку. Однако ее появление в корне меняет процесс перекачки мощности. Уменьшатся потери, увеличится КПД, снизится нагрузка на входные электролиты и электромагнитные помехи уменьшатся. В данном случае драйверы на силовые транзисторы нужно применять только в случае если будут использованы MOSFET транзисторы, которые имеют емкость затвора более 5000 pF. IGBT могут обойтись лишь наличием импульсного трансформатора. Более подробные описания схем будут приводится в следующих статьях.

Управление выходным током может производится двумя способами – частотным и фазовым. Оба эти способы описывались в резонансном полумосте (смотри выше).

Полный мост с дросселем рассеивания

Схема его ничем практически не отличается от схемы резонансного моста или полумоста, только вместо резонансной цепи LC последовательно с трансформатором включают не резонансную LC цепь. Емкость С, примерно С≈22мкф х 63В, работает как симметрирующий конденсатор, а индуктивное сопротивление дросселя L как реактивное сопротивление, величина которого будет линейно изменятся в зависимости от изменения частоты. Преобразователь управляется частотным способом. Как известно нам с электротехники, при увеличении частоты напряжения сопротивление индуктивности возрастет, что уменьшит ток в силовом трансформаторе. Довольно простой и надежный способ. Поэтому довольно большое количество промышленных инверторов строят по такому принципу ограничения выходных параметров.

Простой в повторении и изготовлении сварочный инвертор Липина (косой мост)

Перевод со светлоликого на русский. ===================================== Обращение Конгресса интеллигенции к гражданам России. Мы, российские(?) граждане, выражаем солидарность с открытым письмом более 200 независимых региональных депутатов, направленным против принятия поправок к Конституции, инициированных президентом В.В. Путиным. -Мы против того, чтобы Российская Федерация обеспечивала защиту своего суверенитета и территориальной целостности. -Мы против того, чтобы Российская Федерация, объединенная тысячелетней историей, сохраняла память предков, передавших нам идеалы и веру в Бога, а также преемственность в развитии Российского государства, признавала исторически сложившееся государственное единство. -Мы против того, чтобы Российская Федерация чтила память защитников Отечества и обеспечивала защиту исторической правды. -Мы, ниже подписавшиеся, выступаем против того, чтобы дети являлись важнейшим приоритетом государственной политики России. Мы не желаем, чтобы Государство создавало условия, способствующие всестороннему духовному, нравственному, интеллектуальному и физическому развитию детей, воспитанию в них патриотизма, гражданственности и уважения к старшим. -Мы выступаем против того, чтобы государственным языком Российской Федерации на всей ее территории был русский язык как язык государствообразующего народа, входящего в многонациональный союз равноправных народов Российской Федерации. -Мы не хотим, чтобы республики были вправе устанавливать свои государственные языки. -Мы не считаем, что Российская Федерация должна гарантировать права коренных малочисленных народов в соответствии с общепризнанными принципами и нормами международного права и международными договорами Российской Федерации. -Тем более, мы выступаем против защиты культурной самобытности всех народов и этнических общностей Российской Федерации, а особенно каких-либо гарантий сохранения этнокультурного и языкового многообразия. -По нашему глубокому и рукопожатному убеждению Российская Федерация не должна оказывать поддержку соотечественникам, проживающим за рубежом, в осуществлении их прав, обеспечении защиты их интересов и сохранении общероссийской культурной идентичности. -Столицей Российской Федерации ни в коем случае не должен являться город Москва! -Российская Федерация не в коем случае не должна уважать труд граждан и обеспечивать защиту их прав. Совершенно неприемлемо, чтобы государством гарантировался минимальный размер оплаты труда не менее величины прожиточного минимума трудоспособного населения в целом по Российской Федерации! -Никаких социальных страхований, тем более адресной социальной поддержки граждан и индексации социальных пособий и иных социальных выплат! Я\Мы будем бороться всеми силами, чтобы ни в коем случае не допустить такого глумления над демократическими ценностями! -Призываем лидеров демократических политических и общественных организаций объединиться с целью мирного принуждения власти к проведению парламентских выборов 2021 года на условиях политического плюрализма и демократии. Предлагаем всем, кто разделяет эту позицию, выбрать одно из двух решений: проголосовать против поправок к Конституции или проигнорировать саму процедуру голосования. «Расстрельный список» Лев Пономарев, правозащитник Валерий Борщев, правозащитник Людмила Улицкая, писатель Светлана Ганнушкина, правозащитник Андрей Смирнов, кинорежиссер Олег Басилашвили, народный артист СССР Лия Ахеджакова, народная артистка РФ Андрей Макаревич, музыкант, поэт Владимир Мирзоев, режиссёр Наталья Фатеева, народная артистка РСФСР Леонид Гозман, психолог, публицист Дмитрий Быков, писатель Виктор Шендерович, писатель Гарри Бардин, режиссер-мультипликатор Лев Тимофеев, писатель Зоя Светова, журналист Алексей Малобродский, театральный продюсер Иосиф Райхельгауз, режиссер, народный артист России Григорий Михнов-Вайтенко, священно-служитель Юрий Богомолов, киновед и телекритик.. И др лица под спойлером. Оригинал письма на языке первоисточника: https://echo.msk.ru/blog/echomsk/2657940-echo/

В основу силовой части нашего самодельного сварочного полуавтомата инверторного типа взята схема асимметричного моста, или как его еще называют, “косой мост”. Это однотактный прямоходовый преобразователь. Преимущества такой схемы – простота, надежность, минимальное количество деталей, высокая помехоустойчивость. До сих пор многие производители выпускают свои изделия по схеме “косого моста”. Без недостатков тоже не обойтись – это большие импульсные токи от блока питания, меньший, чем в других схемах, КПД, большие токи через силовые транзисторы.

Плата управления

На плате управления установлены следующие узлы инвертора: задающий генератор с трансформатором гальванической развязки, блоки обратной связи по току и напряжению, узел управления реле, блок термозащиты, блок “антистик”.

Печатная плата блока управления в формате .lay

Задающий генератор

Узел регулировки тока (для режима MMA) и задающий генератор (ЗГ) собраны на микросхемах LM358N и UC2845. В качестве ЗГ выбрана UC2845, а не более распространенная UC3845 ввиду более стабильных параметров первой.

Частота генерации зависит от элементов С10 и К19, и рассчитывается по формуле: f = (1800/(R*C))/2, где R и С в килоомах и нанофарадах, частота в килогерцах. В данной схеме частота составляет 49КГц.

Еще один важный параметр – коэффициент заполнения, рассчитываемый по формуле Кзап = t/T. Он не может быть более 50%, и на практике составляет 44-48%. Зависит он от соотношения номиналов С10 и R19. Если конденсатор брать как можно меньше, а резистор – как можно больше, то Кзап будет близок к 50%.

Сформированные ЗГ импульсы подаются на ключ VT5, работающий на трансформатор гальванической развязки T1 (ТГР), намотанный на сердечник EE25, применяемый в электронных блоках запуска люминесцентных ламп (электронных балластах). Все обмотки удаляются и наматываются новые согласно схеме. Вместо транзистора IRF520 можно использовать любой из этой серии – IRF530, 540, 630 и др.

Datasheet BS170 Datasheet IRF520 Datasheet LM358N Datasheet UC2845 Документация на малогабаритные сердечники EE, EI и другие

Обратная связь по току

Как упоминалось ранее, для дуговой сварки важно стабильный ток на выходе, для полуавтоматической – неизменное напряжение. На трансформаторе тока TT организована обратная связь по току, он представляет собой ферритовое кольцо типоразмера К 20 х 12 х 5, одетое на нижний (по схеме) вывод первичной обмотки силового трансформатора. В зависимости от тока первичной обмотки T2 ширина импульсов задающего генератора уменьшается или увеличивается, поддерживая выходной ток неизменным.

Обратная связь по напряжению

Сварочный полуавтомат инверторного типа требует ОС по напряжению, для этого в режиме MAG переключателем S1.1 напряжение с выхода устройства подается на узел регулировки выходного напряжения, собранного на элементах R55, D18, U2. Мощный резистор К50 задает начальный ток. А контактами S1.2 ключ на транзисторе VT1 закорачивает на максимум тока регулятор R2, и ключ VT3 отключает режим “антистик” (отключение ЗГ при залипании электрода). Документация на управляемый стабилитрон KA431 Документация на оптрон EL817

Блок термозащиты

Самодельный сварочный полуавтомат имеет в составе схему защиты от перегрева: это обеспечивает узел на транзисторах VT6, VT7. Датчики температуры на 75 град.С ( их два, нормально замкнутые, соединены последовательно) установлены на радиатор выходных диодов и на один из радиаторов силовых транзисторов. При превышении температуры транзистор VT6 закорачивает на землю вывод 1 UC2845 и срывает генерацию импульсов.

Узел управления реле

Данный блок собран на микросхеме DD1 CD4069UB (аналог 561ЛН2) и транзисторе VT14 BC640. Эти элементы обеспечивают следующий режим работы: при нажатии на кнопку сразу включается реле клапана газа, примерно через секунду транзистор VT17 позволяет запуститься генератору и одновременно включается реле протяжного механизма.

Непосредственно реле, управляющие “протяжкой” и клапаном газа, а также вентиляторы питаются от стабилизатора на МС7812, смонтированном на плате управления.

Двухтактный полумостовой преобразователь

Изучим принципиальную схему двухтактного полумостового преобразователя, носящего международное называние «half bridge» (рис. 1).


Рис.1. Двухтактный полумостовой преобразователь

Пока на затворы транзисторов не поступило напряжение, они закрыты. Напряжение в средней точке емкостного делителя, выполненного на конденсаторах С1 и С2 одинаковой емкости, составляет половину от постоянного напряжения, питающего преобразователь.

Подадим от задающего генератора на затвор транзистора VT2 отпирающее напряжение. По цепи +Uвх, конденсатор С1, обмотка трансформатора TV1, транзистор VT2, -Uвх потечет ток. На вторичной обмотке трансформатора TV1 возникнет напряжение, которое будет выпрямлено диодной сборкой VD1 и сглажено конденсатором С3. Транзистор VT1 все это время был закрыт.

Подадим запирающее напряжение на затвор транзистора VT2 и опирающее напряжение на затвор транзистора VT1. Ток потечет по цепи +Uвх,транзистор VT1, обмотка трансформатора TV1, конденсатор С3, -Uвх. На вторичной обмотке трансформатора TV1 появится напряжение противоположной полярности относительно предыдущего такта, которое выпрямит диодная сборка VD1 и сгладит конденсатор С3. Затем постоянное напряжение с конденсатора С3 будет приложено к нагрузке. Транзистор VT2 в течение второго такта закрыт.

Как видим, ток через нагрузку протекает в течение обоих тактов. Частота пульсации выходного напряжения в два раза выше частоты преобразования, что позволяет использовать конденсатор С3 сглаживающего фильтра с небольшой номинальной емкостью. Частная петля гистерезиса магнитопровода трансформатора полумостового преобразователя близка к предельной петле гистерезиса.

Пока нагрузка не соединена с ИИП, к каждому конденсатору емкостного делителя напряжения приложена половина от постоянного напряжения, питающего преобразователя. Если емкость конденсаторов делителя напряжения будет недостаточно велика, то при максимальной нагрузке в течение каждого полупериода конденсаторы будут существенно разряжаться, и напряжение на них превысит половину напряжения питания преобразователя.

Напряжение, приложенное к первичной обмотке импульсного трансформатора полумостового преобразователя, можно вычислить по формуле:

Где Uп – постоянное напряжение, питающее преобразователь;

Uнас – напряжение насыщения одного ключевого транзистора.

Емкость каждого конденсатора делителя напряжения можно вычислить по следующей формуле:

Где С – емкость конденсатора, Ф;

Iперв.макс – амплитуда полного тока через первичную обмотку трансформатора;

F — частота преобразования, Гц;

ΔUс – изменение напряжения на конденсаторе за длительность времени прохождения через него импульса полного тока Iперв.макс.

Величина приложенной к конденсатору переменной составляющей напряжения не должна превышать максимально допустимую справочную величину для компонента данной марки и типа. Важно помнить, что номинальная емкость многих конденсаторов на высокой частоте и при низкой температуре окружающей среды существенно уменьшается.

Полумостовые преобразователи нашли широкое применение при выходной мощности от нескольких ватт до нескольких киловатт.

Достоинство полумостового преобразователя заключается в низком обратном напряжении, приложенном к каждому ключевому транзистору в состоянии отсечки, примерно равном постоянному напряжению питания преобразователя.

Это позволяет использовать полумостовые преобразователи при высоком питающем напряжении. Полумостовые преобразователи могут быть включены без нагрузки, и при этом не будет опасного повреждения компонентов. Частота пульсации равна удвоенной частоте преобразования.

Если емкости конденсаторов делителя напряжения строго одинаковы, ключевые транзисторы идентичны друг другу, и петля гистерезиса материала магнтопровода не содержит дефектов, то можно полагать, что подмагничивание сердечника импульсного трансформатора отсутствует. Такая картина возможна только в идеале. Так, например, в реальном полумостовом преобразователе емкости конденсаторов в делителе напряжения всегда отличны друг от друга и, следовательно, несимметрично перемагничивание трансформатора. Однако степень несимметрии обычно много меньше, чем в магнитопроводах трансформаторов однотактных преобразователей. Одним из простейших способов уменьшения подмагничиванмя сердечника полумостового преобразователя является включение неполярного конденсатора между импульсным трансформатором и средней точкой емкостного делителя напряжения.

К недостаткам относят наличие двух конденсаторов в делителе напряжения, разрушение компонентов ИИП при перегрузке по току в нагрузке при отсутствии системы защиты, меньший КПД, чем достижимый в мостовом преобразователе.

Источник: Источники питания. Москатов Е.А.

Силовой блок на транзисторах HGTG30N60A4

C выхода ТГР импульсы, предварительно сформированные драйверами на транзисторах VT9 VT10, подаются на силовые ключи VT11, МЕ12. Параллельно выводам коллектор-эмиттер этих транзисторов подключены “снабберы” – цепочки из элементов С24, D47, R57 и C26, D44, R59, служащие для удержания мощных транзисторов в области допустимых значений. В непосредственной близости от ключей установлен конденсатор С28, собранный из 4-ёх емкостей 1мк х 630v. Стабилитроны Z7, Z8 необходимы для ограничения напряжения на затворах ключей на уровне 16 вольт. Каждый транзистор установлен на радиатор от компьютерного процессора с вентилятором. Документация на транзисторы HGTG30N60A4 Печатная плата силового блока в формате .lay

Силовой трансформатор и выпрямительные диоды

Основной элемент схемы сварочного полуавтомата – мощный выходной трансформатор T2. Он собран на двух сердечниках E70, материал N87 фирмы EPCOS.

Расчет сварочного трансформатора

Силовой трансформатор можно мотать и на другом типоразмере, расчет витков осуществляется по приведенной выше формуле. Например, для сердечника 2 х Е80 при f = 49Khz витков в первичке: 16, вторичке: 5.

Документация на крупногабаритные Ш-образные сердечники EPCOS

Выбор сечения проводов первичной и вторичной обмоток, намотка трансформатора

Сечение проводов выбираем из расчета 1мм.кв = 10А выходного тока. Данный аппарат должен выдавать в нагрузке примерно 190А, поэтому берем сечение вторички 19мм.кв (жгут из 61 провода диаметром 0,63мм). Сечение первички выбирается в 3 раза меньше, т.е. 6мм.кв. (жгут из 20 проводов диаметром 0,63мм). Сечение провода в зависимости от его диаметра рассчитывается как: S = D²/1,27 где D – диаметр провода.

Намотка производится на каркас из текстолита 1мм, без боковых щечек. Каркас одет на деревянную оправку по размерам сердечника. Мотается первичная обмотка (все витки в один слой). Затем 5 слоев плотной трансформаторной бумаги, наверх – вторичная обмотка. Витки сжаты пластмассовыми стяжками. Затем каркас с обмотками снимается с оправки и пропитывается лаком в вакуумной камере. Камера была сделан из литровой банки с плотной крышкой и выведенным шлангом, одетым на всасывающую трубку компрессора от холодильника (можно просто опустить транс в лак на сутки, думаю, тоже пропитается).

При установке трансформатора на плату под боковые керны ложим банкоматовский чек (делаем зазор примерно 0,05мм). После установки на плату транс сжимается пластиной на двух шпильках. От паразитных высокочастотных выбросов высокого напряжения на выводы вторичной обмотки одеваются ферритовые трубки (такие, как стоят на компьютерном видеокабеле ), а диоды зашунтированы цепочками R64, С33 и R65 C34.

Один вывод “первички” продет через кольцо трансформатора тока ТТ.

Схема сварочного полуавтомата – выпрямительные диоды

Выпрямительный блок нашего самодельного устройства собран на трех мощных диодах 150EBU04, установленных на общий радиатор с вентилятором. Дроссель для сварочного полуавтомата намотан на железе от трансформатора ТС-180, содержит 12 витков провода сечением 20мм.кв. Зазор между половинами сердечника 1,5мм.

Даташит на диоды 150EBU04

Китайцы радуют или Старые песни о главном

Собственно китайцы удивляют давно иррациональным азиатским мышлением.. Последний случай прилип к сварочному аппарату Kaiser NBC-200…Это не ноу-хау.. Но рассмотрение запуска двутактной схемы от однотактного контроллера стало вопросом позавчерашнего дняЧто не так?Нет моста или полумоста . ключи работают синхронно…Вторичный выпрямитель так же работает по двутактной схеме, чем выравнивается асимметрия во времени между ПХ и ОХ в постоянке на выходеДля просмотра ссылки следует зарегистрироваться на Форуме

Показать ещё (19)

Структура и принципы работы мостов

Лабораторная работа № 5

Функционирование мостов и коммутаторов

На основе протокола канального уровня STP

Стека протоколов TCP/IP

Теоретическая часть

Структура и принципы работы мостов

Объединение современных сетей осуществляется как с помощью маршрутизаторов, так и с помощью мостов и коммутаторов. Основное различие между ними заключается в том, что объединение сетей с помощью мостов и коммутаторов происходит на канальном уровне эталонной модели взаимосвязи открытых систем (ВОС, англоязычная аббревиатура — OSI), а маршрутизатор использует сетевой уровень; кроме того, эти устройства поддерживают различные алгоритмы при перемещении информации по сети.

Мост- это устройство, обеспечивающее взаимосвязь нескольких локальных сетей посредством передачи кадров из одной сети в другую. В отличие от концентраторов, которые проверяют электрические сигналы, мост проверяет только кадры. Мосты не повторяют шумы, ошибки или испорченные кадры. Мост выступает по отношению к каждой из соединяемых им сетей в качестве конечного узла. Он принимает кадр, сохраняет его в буферной памяти, анализирует адрес назначения кадра. В случае принадлежности кадра к сети, из которой он получен, мост на этот кадр не реагирует. Если необходимо передать кадр в другую сеть, мост должен получить доступ к ее разделяемой среде передачи данных в соответствии с теми же правилами, что и обычный узел.

Существует два основных типа мостов — локальные и глобальные (удаленные). Они отличаются своими сетевыми портами. Локальные мосты оборудуются портами для подключения к ЛВС. Типичными для такой среды носителями являются коаксиальный или волоконно-оптический кабель, а также витая пара проводов. Важным свойством локальных мостов является их способность соединять сети, использующие разные среды. Например, с их помощью можно подключить сеть на коаксиальном кабеле к сети с волоконно-оптическим кабелем или любую из них к сети на витой паре.

Глобальные мосты — это те мосты, порты которых согласуются со средами для передачи информации на большие расстояния. У глобальных мостов могут быть интерфейсы как для передачи на большие расстояния, так и локальные.

По своему принципу действия мосты подразделяются на два основных типа. Мосты первого типа выполняют так называемую маршрутизацию от источника. B такой сети мостам не требуется содержать адресную базу данных. Они определяют путь прохождения кадра, исходя из информации, хранящейся в самом кадре.

Мосты второго типа называются «прозрачными». Прозрачные мосты, в свою очередь, делятся на три подтипа:

· прозрачные мосты — используются для объединения сетей с идентичными протоколами на канальном и физическом уровнях модели ВОС (Ethernet — Ethernet, Token Ring — Token Ring и т.д.);

· транслирующие мосты — используются для объединения сетей с разными протоколами на канальном и физическом уровне;

· инкапсулирующие мосты — предназначены для объединения сетей с одинаковыми протоколами (например, Ethernet) на канальном и физическом уровне через сеть с другими протоколами (например, FDDI).

Прозрачные мосты являются наиболее распространенным типом. Для них сеть представляется наборами физических адресов устройств, используемых на канальном уровне. Мосты ориентируются на эти адреса для принятия решения о передаче кадра. При этом кадр записывается во внутренний буфер моста. Мосты не имеют доступа к информации об адресах сетей, относящейся к сетевому уровню. Они ничего «не знают» о топологии связей сегментов или сетей между собой.

При передаче кадров внутри прозрачного моста происходит их регенерация и трансляция с одного порта на другой. Мост использует адрес отправителя для автоматического построения своей базы данных адресов устройств, называемой также таблицей физических адресов. В этой таблице устанавливается принадлежность адреса станции к какому-либо порту моста. Все операции, которые выполняет мост, связаны с этой базой данных. Внутренняя структура моста показана на рис. 5.1.

Все порты моста работают в так называемом неразборчивом режиме захвата кадров, то есть все поступающие на порт кадры сохраняются в его буферной памяти. С помощью такого режима мост следит за всем трафиком, передаваемым в присоединенных к нему сегментах, и использует проходящие через него кадры для изучения состава сети.

Функциональную основу мостов составляют следующие функции: обучение, фильтрация, передача и широковещание.

Когда мост получает кадр, он проверяет его целостность и контрольную сумму. Некорректные кадры при этом отбрасываются. Затем мост сравнивает адрес отправителя с имеющимися в базе данных адресами. Если адреса отправителя еще нет в базе данных, то он добавляется в нее. Таким образом, мост узнает адреса устройств в сети, и происходит процесс его обучения (рис. 5.2). Благодаря способности моста к обучению к сети могут добавляться новые устройства без необходимости реконфигурации моста.

Кроме адреса отправителя мост анализирует и адрес получателя. Мост сравнивает адрес получателя кадра с адресами, хранящимися в его базе. Если адрес получателя принадлежит тому же сегменту, что и адрес отправителя, то мост «фильтрует» кадр, то есть удаляет его из своего буфера и никуда не передает. Эта операция помогает предохранить сеть от «засорения» ненужным трафиком. Если адрес получателя присутствует в базе данных и принадлежит другому сегменту, то мост определяет, какой из его интерфейсов связан с нужным адресом. После этого мост должен получить доступ к среде передачи этого сегмента и передать в него кадр. Если адрес получателя отсутствует в базе или он является широковещательным, то мост передает кадр на все свои порты, за исключением порта, принявшего кадр. Такой процесс называется широковещанием.

Так как существует возможность перемещения станции из одного сегмента в другой, то мосты должны периодически обновлять содержимое своих адресных баз. Для обеспечения этой функции записи в адресной базе делятся на два типа — статические и динамические. С каждой динамической записью связан таймер неактивности. При получении кадра с адресом отправителя, который соответствует имеющейся в адресной базе записи, соответствующий таймер неактивности сбрасывается в исходное состояние. Если от какой-либо станции долгое время не поступают кадры, то таймер неактивности исчерпывает заданный интервал и соответствующая ему запись удаляется из адресной базы. Например, у мостов NetBuilder II фирмы 3Com таймер неактивности выставляется по умолчанию и равен 300 секундам.

Рис. 5.2 иллюстрирует алгоритм функционирования моста.

Кроме основных функций мосты могут поддерживать дополнительные сервисы, например: настраиваемые фильтры, расширенные возможности по защите данных и обработка кадров по классам. Настраиваемые фильтры позволяют администратору сетей производить фильтрацию на основе любого компонента кадра, например, типа протокола верхнего уровня, адреса отправителя или получателя, типа кадра или даже информационной его части.

Технология прозрачных мостов стандартизована и описана в документе IEEE 802.1d. На рис. 5.3 показано «место» мостов в эталонной модели ВОС.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]