Пропан-бутан требует осторожности


Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии бутаноата натрия с гидроксидом натрия при сплавлении образуются пропан и карбонат натрия:

CH3–CH2 – CH2 –COONa + NaOH CH3–CH2– CH3 + Na2CO3

Горением называют быстро протекающую во времени химическую реак­цию соединения горючих компонентов топлива с кислородом воздуха, сопровож­дающуюся интенсивным выделением теплоты, света и продуктов сгорания.

Для метана реакция горения с воздухом:

CH4 + 2O2 = CO2 + 2H2O + Qн

C3H8 + 5O2 = 3CO2 + 3H2O + Qн

Для СУГ:

C4H10 + 6,5O2 = 4CO2 + 5H2O + Qн

Продуктами полного сгорания газов являются водяные пары (H2O), диоксид углерода (CO2) или углекислый газ.

При полном сгорании газов цвет пламени, как правило, голубовато-фиолетовый.

Объемный состав сухого воздуха принимается: O2 21%, N2 79%, из этого след., что

1м3 кислорода содержится в 4,76м3 (5 м3) воздуха.

Вывод: для сжигания

1м3 метана необходимо 2м3 кислорода или около 10м3 воздуха,

1м3 пропана – 5м3 кислорода или около 25м3 воздуха,

1м3 бутана – 6,5м3 кислорода или около 32,5м3 воздуха,

1м3 СУГ ~ 6м3 кислорода или около 30м3 воздуха.

Практически при сжигании газа водяные пары, как правило, не конденсируются, а удаляются вместе с другими продуктами сгорания. Поэтому технические расчеты ведут по низшей теплоте сгорания Qн.

Условия, необходимые для горения:

1. наличие топлива (газа);

2. наличие окислителя (кислорода воздуха);

3. наличие источника температуры воспламенения.

Неполное сгорание газов.

Причиной неполного сгорания газа является недостаточное количество воздуха.

Продуктами неполного сгорания газов являются оксид углерода или угарный газ (CO), несгоревшие горючие углеводороды (CnHm) и атомарный углерод или сажа.

Для природного газа CH4 + O2 CO2 + H2O + CO + CH4 + C

Для СУГ CnHm + O2 → CO2 + H2O + CO + CnHm + C

Наиболее опасным является появление угарного газа, который действует на организм человека отравляюще. Образование сажи придает пламени желтую окраску.

Неполное сгорание газа опасно для здоровья человека (при содержании 1% СО в воздухе 2-3 вздоха для человека достаточно, чтобы отравиться со смертельным исходом).

Неполное сгорание неэкономично (сажа препятствует процессу передачи тепла, при неполном сгорании газа мы недополучаем тепло, ради которого сжигаем газ).

Для контроля полноты сгорания обращают внимание на цвет пламени, которое при полном сгорании должно быть голубым, а при неполном сгорании – желтовато-соломенным. Наиболее совершенный способ контроля полноты сгорания – анализ продуктов сгорания с помощью газоанализаторов.

Способы сжигания газа.

Понятие о первичном и вторичном воздухе.

Существуют 3 способа сжигания газа:

1) диффузионный,

2) кинетический,

3) смешанный.

Диффузионный способ или способ без предварительного смешения газа с воздухом.

Из горелки в зону горения поступает только газ. Воздух, необходимый для горения, смешивается с газом в зоне горения. Этот воздух называется вторичным.

Пламя вытянутое, желтого цвета.

a= 1,3÷1,5 t ≈ (900÷1000) оС

Кинетический способ – способ с полным предварительным смешением газа с воздухом.

В горелку подается газ и подается воздух дутьевым устройством. Воздух, необходимый для горения и который подается в горелку для предварительного смешения с газом, называется первичным.

Пламя короткое, зеленовато-синеватого цвета.

a= 1,01÷1,05 t≈ 1400оС

Смешанный способ – способ с частичным предварительным смешиванием газа с воздухом.

Газ инжектирует первичный воздух в горелку. В зону горения из горелки поступает газовоздушная смесь с недостаточным для полного сгорания количеством воздуха. Остальной воздух – вторичный.

Пламя средних размеров, зеленовато-голубоко цвета.

a=1,1¸1,2 t ≈1200оС

Коэффициент избытка воздуха a=Lпр./Lтеор. — это отношение количества воздуха, необходимого для горения на практике к количеству воздуха, необходимого для горения и теоретически посчитанного.

Всегда должен быть a>1, в противном случае будет недожог.

Lпр.=aLтеор., т.е. коэффициент избытка воздуха показывает во сколько раз количество воздуха, необходимого для горения на практике больше количества воздуха, необходимого для горения и посчитанного теоретически.

Взрыв пропан-бутана

Наличие газа в помещении (в воздухе) в количестве от 1,8 до 9,5 процента является взрывоопасной концентрацией, способной при открытом огне или искре стать причиной взрыва большой разрушительной силы

Взрыв баллона пропан бутана происходит при соприкосновении газа с огнем либо при превышении показателей пожаровзрывоопасности. Пропан: С3Н8, горючий газ, температура вспышки 96 °С, температура самовоспламенения 470 °С, концентрационные пределы распространения пламени 2,3-9,4 % (об.). Бутан: C4H10, горючий газ, плотность по воздуху 2,0665, температура вспышки 69 °С, температура самовоспламенения 405 °С, концентрационные пределы распространения пламени 1,8-9,1 % (об.).

Взрыв пропан-бутана сопровождается высокотемпературным выбросом газов (пламени), при этом летят осколки и детали разорвавшихся баллонов, выделяется тепловое излучение. При взрыве пропан-бутана помимо основных факторов пожара (открытый огонь, повышенная температура окружающей среды, токсичные продукты горения и т. д.), как правило, проявляются вторичные факторы: волна сжатия, образующаяся при взрыве баллона и влекущая за собой разрушение зданий или отдельных их частей, разрушение (или повреждение) наружного и внутреннего водопроводов, пожарной техники, стационарных средств тушения, технологического оборудования, возникновение новых очагов пожаров и взрывов. При взрыве баллона пропан-бутана в очаге пожара возможно образование «огненного шара» диаметром 10 м.

ГБО пропан-бутан при пожаре

Особую опасность представляют газовые баллоны при пожаре. При пожаре на объектах, где хранятся или используются баллоны с пропан-бутаном, часто происходят взрывы ГБО под давлением. При тушении объектов с наличием газовых баллонов следует учитывать физико-химические свойства применяемого газа.

При попадании баллона пропан-бутана в очаг пожара происходит нагревание сосуда, что приводит к кипению жидкой фазы и повышению давления в нем. Пламя нагревает стенки сосуда и ослабляет их первоначальную прочность вследствие неравномерного прогрева поверхности, что, как правило, приводит к разрушению сосуда. При этом пары от мгновенного испарения жидкости зажигаются и образуется «огненный шар».

При пожаре сжиженный газ, выходящий из баллона, может гореть в паровой, жидкой и парожидкостной фазах, каждая из которых имеет свою температуру горения. Характер истечения газа из баллона можно определить по цвету и виду пламени: в паровой фазе газ горит светло-желтым пламенем; в жидкой фазе пламя ярко-оранжевое с выделением сажи; в парожидкостной фазе горение происходит с периодически меняющейся высотой пламени. Данные признаки видимого пламени являются косвенными характеристиками разгерметизации баллона с бытовым газом и чреваты взрывом.

Газ пропан-бутан, используемый в быту для получения тепловой энергии, из-за отсутствия контроля в ходе эксплуатации могут привести к удушью, отравлению, взрыву. Поэтому необходимо знать и неукоснительно соблюдать правила пользования газовыми приборами, колонками, печами и уход за ними. Чтобы газ остался только добрым помощником, помните, что категорически запрещается: пользоваться газовыми приборами при отсутствии тяги в вентканале; оставлять без присмотра включенные газовые приборы; допускать к пользованию газовыми приборами детей в возрасте менее 13 лет, а также лиц, не прошедших инструктаж; самовольно переносить и ремонтировать газобаллонные установки.
069

Особенности природных газов

Для качественного обслуживания газового оборудования и выполнения газоопасных работ необходимо знать особенности природных газов, методы их сжигания и эффективного использования.
Природный газ имеет ряд преимуществ по сравнению с другими видами топлива:

  • стоимость добычи природного газа значительно ниже, а производительность труда значительно выше, чем при добыче угля и нефти;
  • высокая теплота сгорания делает целесообразным транспортирование газа по магистральным газопроводам на значительные расстояния;
  • обеспечивается полнота сгорания, и облегчаются условия труда обслуживающего персонала;
  • отсутствие в природных газах оксида углерода предотвращает возможность отравления при утечках газа, что особенно важно при газоснабжении коммунальных и бытовых потребителей;
  • газоснабжение городов, населенных пунктов и предприятий значительно улучшает состояние их воздушного бассейна;
  • обеспечиваются возможность автоматизации процессов горения, достижение высоких КПД;
  • природный газ – ценное сырье для химической промышленности;
  • высокая жаропроизводительность (более 2000 °С) позволяет эффективно применять природный газ в качестве энергетического и технологического топлива.

Природный газ как промышленное топливо имеет следующие технологические преимущества:

  • при сжигании природного газа требуется минимальный избыток воздуха, и достигаются высокие температуры в печах;
  • природный газ содержит наименьшее количество таких вредных химических примесей, как сероводород;
  • при сжигании газа можно обеспечить более точную регулировку требуемой температуры, чем при сжигании других видов топлива. Это позволяет экономить топливо, так как из-за более широких колебаний регулирования диапазонов температур;
  • при сжигании других видов топлива приходится часто вести процесс на верхнем температурном пределе, что влечет за собой перерасход топлива;
  • использование природного газа позволяет осуществить сравнительно быстрый разогрев тепловых агрегатов и свести к минимуму тепловые потери при остановке этих агрегатов, что также способствует экономии топлива;
  • при использовании природного газа отсутствуют потери от механического недожога;
  • форма газового пламени сравнительно легко регулируется и поддается различным видоизменениям, что особенно важно, когда возникает необходимость быстро сосредоточить и развить в определенном пункте высокую степень нагрева;
  • использование природного газа позволяет применять в промышленности такие прогрессивные и высокоэкономичные виды тепловой обработки, как нагрев с помощью горелок беспламенного сжигания и радиационных трубок, что дает возможность значительно интенсифицировать процесс нагрева.

Вместе с тем газовому топливу присущи и недостатки — отрицательные свойства: природный газ взрыво- и пожароопасен.

Горение газообразного топлива возможно только при наличии воздуха, в котором содержится кислород. Причем процесс горения (взрыва) происходит при определенных соотношениях газа и воздуха. Как показано в табл. 1, пределы воспламеняемости метана составляют 5–15 %. Если выделяемая теплота достаточна для нагревания газовоздушной смеси до температуры самовоспламенения, то смесь может гореть или взрываться.

Таблица 1. Температура самовоспламенения и пределы воспламеняемости наиболее распространенных горючих газов

ГазТемпература
воспламенения,

°С

Предел
воспламеняемости

при содержании

газа в смеси

с воздухом, %

ГазТемпература
воспламенения,

°С

Предел
воспламеняемости

при содержании

газа в смеси

с воздухом, %

нижнийверхнийнижнийверхний
Метан650515Пропан5002,379,5
Ацетилен3052,580Этан5103,212,45
Бутан4291,868,4Водород510474

Резкое возрастание давления и быстрое расширение продуктов горения обусловливает разрушительный эффект от взрыва газовоздушной смеси.

Давление, возникающее при взрыве природного газа в помещениях, достигает 0,8 МПа. При взрывах газовоздушной смеси в трубах с большими диаметром и длиной скорость распространения пламени может превзойти скорость распространения звука и достичь 2000–4000 м/с. В результате быстродвижущегося взрывного воспламенения местное повышение давления составит 8 МПа и выше. Такое взрывное воспламенение называется детонацией.

Детонация объясняется возникновением и действием ударных волн в воспламеняющейся среде. Перемещаясь с большой скоростью, ударная волна резко увеличивает температуру и давление газовоздушной смеси, что вызывает ускорение реакции взрыва и увеличивает разрушительный эффект детонации. Наиболее опасны с точки зрения возможности взрыва газы с наиболее низкими пределами взрываемости.

При близких величинах нижних пределов взрываемости двух газов наиболее опасен газ, у которого шире область взрываемости и ниже температура самовоспламенения. Концентрация (объемная доля газа в воздухе), равная 20 % нижнего предела воспламеняемости, считается опасной.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]