Классификация и маркировка углеродистых и легированных сталей

Сталь имеет широкую сферу применения: от винтов и гвоздей до частей моста. С развитием металлургии было изобретено множество сплавов и марок стали.

Сталь состоит из 2,14% углерода, постоянных примесей и других химических элементов. Хотя, как показывает практика, его концентрация обычно не превышает 1,5%. Доля железа в материале составляет не меньше 45%. Сталь производится путем вторичной переработки белого чугуна различными методами.

Основные преимущества всех типов стали:

  • твердость и прочность;
  • широкий функционал;
  • разнообразие свойств;
  • вязкость и упругость;
  • легкая механическая обработка;
  • высокая износостойкость;
  • распространенность сырья;
  • экономическая выгода от использования.

Основные недостатки – это отсутствие устойчивости к образованию ржавчины и способность накапливать электричество.

Чугун – наиболее близкий по составу материал. Однако, в сравнении с ним сталь:

  • более твердая и прочная;
  • имеет более высокую температуру плавления;
  • легче подвергается механической обработке;
  • имеет более высокую теплопроводность;
  • легко подвергается процедуре закалки.

Классификация по химическому составу

Химический состав стали бывает углеродистым и легированным. Первые состоят из железа, постоянных примесей и углерода. В свою очередь, они подразделяются на:

  • низкоуглеродистые (до 0,2-0,3% углерода);
  • среднеуглеродистые (0,2-0,45%);
  • высокоуглеродистые (от 0,45%).

Легированная сталь также содержит металлы и неметаллы. Они придают материалу более высокие механические и физикохимические свойства. Легировать – это значит сплавлять. Этот вид стали по химическому составу подразделяется на:

  • низколегированные (до 2,5% присадок);
  • среднелегированные (2,5-10%);
  • высоколегированные (от 10%).

Маркировка сталей по российским стандартам

Маркировка сталей по российским стандартам позволяет определить состав металла и, частично, принадлежность к определенному виду.

При наличии углерода в стали более 1 %, его количество в маркировке не указывается. Марка стали включает буквенные обозначения легирующих добавок с указанием их количества в десятых и сотых долях процента, но если содержание компонента менее 1,5 %, то в маркировке присутствует только буквенное обозначение.

Читать также: Направляющий упор для циркулярной пилы

Кроме химического состава, маркировка содержит символы, характеризующие назначение стали, степень ее качества.

Классификация по структуре

Структура стали формируется в процессе ее изготовления, во время отливки и обработки под воздействием высоких температур. Химические связи материала определяют ее отношение к какому-либо классу. Это отношение учитывается для применения стали в той или иной области. Рассмотрим эти классы подробнее:

  1. Аустенит. Этот класс отличается прочностью и однородностью. Они устойчивы к жару и образованию ржавчины, могут использоваться для работы в опасных условиях или перевозки агрессивных элементов.
  2. Феррит. Представители класса ферритов – магнетики, благодаря чему оптимальны для использования в радиотехнике и электронике для изготовления антенн и другого оборудования.
  3. Мартенсит. Этот вид стали получают при помощи процедуры легирования и термической обработки. Материал может возвращать форму после механической обработки. Применение представителей мартенсита осложняется дополнительными требованиями к обработке.
  4. Перлит. Перлитом называется распад при охлаждении после нагрева. Такое состояние создается искусственным способом для пластической деформации.
  5. Цементит. Представители вида физически упругие и твердые.

Хладноломкость

Хладноломкость представляет собой явление пониженной пластичности материала при комнатных температурах. Опасность заключается в том, что внешне заготовка выглядит обычной, но при механической обработке коробится, а затем растрескивается. Особенно большой вред наносит хладноломкость деталям с тонкими рёбрами и полотнами, которые изготовлены из высокоуглеродистых сталей.

Для снижения эффекта хладноломкости требуется увеличить вязкость материала изделия. Критерием служит параметр интенсивности падения ударной вязкости, который называется температурой перехода из пластичного в хрупкое состояние. Обычно этот показатель составляет около -75°C. Падение вязкости с температурой происходит тем интенсивнее, чем больше углерода в стали.

На хладноломкость влияет также наличие мартенситной структуры, а также повышенный процент серы и фосфора в жимсоставе. Если изменить режим улучшения невозможно, следует либо заменить материал, либо конструктивным образом избавиться от участков, имеющих тонкие и острые кромки.

Классификация по степени раскисления

Раскисление – это процесс, который приводит к снижению содержания кислорода в расплаве. Этот процесс необходим для того, чтобы избежать появления ржавчины на металлопрокате. Степень раскисления предусматривает следующую классификацию:

  • спокойные (СП) – имеют однородную структуру, содержат минимальное количество газов и неметаллов; используются для дорогостоящих сплавов и изготовления металлоконструкций;
  • полуспокойные (ПС) – их свойства позволяют выпускать несущие элементы сварных и клепаных конструкций; из ПС изготавливают болты и гайки, которые можно использовать при низкой влажности воздуха и высокой температуре;
  • кипящие (КП) – хрупкий вид стали; подходит для производства деталей котлов и конструкций, контактирующих со взрывоопасными веществами; главный минус – быстрое появление ржавчины.

В реакции раскисления обычно участвуют следующие добавки: алюминий, марганец, кремний.

Классификация стали по содержанию примесей

Классификация предусматривает три вида. Тем меньше в материале вредных элементов, тем более качественным он считается. Этот параметр определяется методом производства и выявление содержания S и P.

Обыкновенного качества

К этому виду относятся углеродистая сталь. Она производится в печи или на конвертере с применением кислорода. Сталь обыкновенного качества имеет доступную цену, широкую сферу применения, легко обрабатываются, но не отличаются устойчивостью к износу или прочностью.

Качественные

Она может быть как углеродистой, так и легированной. По сравнению с предыдущим типом этот состав произведен в соответствии с более строгими требованиями. Они производятся с соблюдением строгих характеристик плавления. Качественная сталь стоит дороже и применяется для изготовления элементов, предназначенных для высокого уровня нагрузок.

Высококачественные

Такой вид стали производится более современными методами, например, выплавке в электрических печах. Этот способ позволяет добиться минимального содержания включений газов и вредных неметаллических примесей, что обеспечивает высокие механические свойства материала. Сталь высокого качества имеет более высокую стоимость и используется для создания особо прочных конструкций.

Особовысококачественные

Это сплавы с минимально возможным количеством примесей. Они имеют самое высокое качество из представленных и имеют соответствующую цену, приближенную к драгоценностям. Особовысококачественная сталь – это легированная сталь, которая используется в уникальных случаях. Например, для производства деталей космических кораблей.

Классификация стали по назначению

Она является достаточно условной, так как в одной группе могут находиться множество марок, а в другой – всего несколько. Некоторые из них применимы для смежных значений. Для определения классификации стали продукция подвергается различным испытаниям: кислотам, экстремальным нагрузкам, ударным нагрузкам.

Конструкционные

Она относится к классу обыкновенного качества и является одной из самых обширных групп. Они способны выдерживать различные механические нагрузки: удары, изгибы, растяжения. Конструкционный материал устойчив к усталости, а также воздействию негативных факторов внешней среды. Используются для производства конструкций и деталей повышенной прочности.

Строительные

К ним относится углеродистая и низколегированная сталь. Из нее изготавливают сложные конструкции, в которых нагрузка распределяется одинаково на все области. К строительной стали не предъявляются особые требования, кроме податливости к сварке.

Для холодной штамповки

Холодная штамповка значительно меняет форму и размеры металлической заготовки. К этому виду предъявляются следующие требования – высокий уровень пластичности и стойкости на разрыв.

Цементируемые

Назначение цементируемой стали – производство деталей и узлов, которые подвергаются периодическим нагрузкам. Цементация – это процедура, в ходе которой повышается стойкость материала к износу.

Улучшаемые

Назначение улучшаемой стали – специальные виды термической обработки, например, отпуск или закалка. Эти процедуры применяются для повышения прочности и других характеристик.

Высокопрочные

Для создания высокопрочного вида сталей подбирается специальный состав и соотношение легированных элементов, а также программы обработки. В ходе процедуры достигается высокая прочность материала, которая в несколько раз превосходит параметры конструкционной стали. Высокопрочные элементы используются в узлах особой прочности.

Пружинные

Пружинные марки стали могут выдерживать многократные упругие деформации «усталости», присущей металлам. Они широко применяются в производстве автомобилей, транспортной отрасли и других сферах, где есть необходимость в амортизации, возврате элементов в первоначальное положение после выполнения рабочих функций. Углеродистые сплавы могут легироваться кремнием, бором и другими химическими элементами.

Подшипниковые

Назначение подшипниковой стали – эксплуатация оборудования и механизмов, использующих подшипники. В этом случае материал должен иметь высокую прочность, устойчивость к износу и быть выносливым. К минимуму должны быть сведены посторонние вещества и неоднородная текстура. Подшипниковая сталь подвергается специальной термической обработке и уплотнению.

Автоматные

Главные требования к автоматной стали – высокая податливость обработке, образование короткой стружки и пониженной трение между деталью и инструментом. Такой вид применяется для массового изготовления крепежей на автоматизированном производстве. Недостаток автоматной стали – сниженная пластичность.

Износостойкие

Износостойкую сталь получают благодаря добавлению большого количества марганца. Ее назначение – изготовление узлов, которые постоянно подвергаются трению и большим нагрузкам (как динамическим, так статистическим). Например, из износостойкой стали производят гусеницы, горное оборудование и оборудование для рельсов.

Коррозионностойкие нержавеющие

Низкоуглеродистая сталь подвергается процедуре легирования при помощи хрома и марганца. Хром кристаллизуется и формирует тонкий слой поверхности из окислов, которые защищает деталь от воздействия химических сред. Коррозионностойкие нержавеющие стали могут эксплуатироваться при температурном режиме до 60 градусов в слабоагрессивных (например, пар или вода) и в очень агрессивных (щелочах и кислотах).

В свою очередь, коррозионностойкие нержавеющие стали подразделяются на:

  1. Коррозионностойкие. Они предназначены для изготовления пружин, клапанов и валов, способных выдерживать температуру до 600 градусов.
  2. Жаростойкие. Они могут работать при ограниченных нагрузках и температурном режиме до 1200 градусов Цельсия.
  3. Жаропрочные. Сталь легируется при помощи кремния, никеля или других элементов. Она может выдерживать серьезные нагрузки и взаимодействовать с высокими температурами (до 75% от температурного режима плавления).
  4. Криогенные. Они могут взаимодействовать с низкими температурами (до -200 градусов), при этом сохраняя вязкость и упругость. Их можно применять для производства комплектующих холодильных установок (научных или промышленных).

Инструментальные стали

Инструментальные стали – это изделия без легирования, которые являются прочными. Для уплотнения некоторых участков используют присадки. К ним предъявляются особые требования, связанные с особенностями использования.

Инструментальные стали также подразделяются на несколько подвидов:

  • для режущих инструментов;
  • для измерительных инструментов;
  • штамповые;
  • валковые.

Для режущих инструментов

Стали для режущих инструментов стоят достаточно дорого, поэтому создавать из них изделия сможет не каждый. Обычно некоторые части инструментов делают из конституционной стали, например, пластины или лезвия.

Сталь данного вида, в свою очередь, подразделяется на следующие подвиды:

  • углеродистые инструментальные сплавы (обычно содержат 0,5-1,3% углерода, распространены для использования в процессе производства);
  • легированные инструментальные (из них можно изготовить фрезы, сверла и протяжки);
  • быстрорежущие (могут создавать изделия с теплостойкостью до -660 градусов).

Стали для измерительных инструментов

Сталь для измерительных инструментов должны иметь стабильную форму и размеры в процессе изменения и хранения. Также ее поверхность должна быть идеально гладкой, хорошо обрабатываться и шлифоваться.

Такая сталь бывает углеродистой и легированной при помощи хрома, никеля и других элементов. Для повышения устойчивости к износу и улучшения качества поверхности изделия цементируют и закаливают. Сталь по-прежнему востребована при изготовлении самых современных измерительных инструментов.

Штамповые стали

Штамповая сталь отличается твердостью, устойчивостью к температурным перепадам и прокаливаемостью. Она должна быть износостойкой и иметь постоянную форму. К ним этому виду относятся следующие сплавы:

  • штамповки холодным методом (кроме твердости, устойчивости к износу, стабильности габаритов и формы добавляются высокий уровень вязкости и устойчивость к температурным перепадам; они могут работать в условиях ударов и высокого уровня давления; производятся на основе лигатур с хромом и другими элементами);
  • штамповки горячим методом (они должны быть повышенной прочности и вязкости при нагревании до 500 градусов и высокой теплопроводности для того, чтобы избежать перегрева; они подвергаются процедуре легирования при помощи хрома, никеля, ванадия и т.д.).

Валковые стали

При помощи валковой стали производятся прокатные станы, матрицы, пуансоны, лезвия для работы с металлическими изделиями. С их помощью также можно изготовить комплектующие для горного и бумагоделательного оборудования.

Основные требования к валковой стали:

  • высокий уровень прокаливаемости для прочности изделия (закалку стали проводят медленно, опуская ее в масло для охлаждения);
  • высокая устойчивость к износу (она позволяет долго и бесперебойно работать всему прокатному стану, обеспечивает стабильные параметры);
  • контактная прочность (она должна быть больше напряжения, которое возникает в ходе процесса, с учетом нагрузки от сопротивления и массы устройства).

Примеры расшифровки маркировки

Для того чтобы расшифровка была понятнее, следует привести некоторые, наиболее яркие примеры маркировки. На основании примеров, определение марки стали в сравнении с уже известными, будет являться несложной задачей. Вот некоторые виды стали с расшифровкой условных обозначений:

  • 30ХГСА – расшифровка марки стали говорит о том, что в сплаве содержится 0,3 % углерода, о чем свидетельствует цифра в начале обозначения. Сталь содержит хром (Х), марганец (Г), кремний (С), но их содержание менее 1,5 %. Символ «А» в конце обозначения говорит о том, что сталь высококачественная.
  • У8ГА – инструментальная сталь с содержанием углерода 0,8 %. Высококачественная с добавлением марганца.
  • Р6М5Ф2К8 – быстрорежущая сталь. Содержит 5 % молибдена, 2 % ванадия, 8 % кобальта. Хром содержится во всех быстрорежущих сталях в количестве около 4 %, поэтому в обозначение не входит. Вольфрам также всегда присутствует, но его содержание может изменяться, поэтому в данной марке его количество составляет 6 %.
  • Ст3сп5 – сталь конструкционная нелегированная, полностью раскисленная – спокойная, 5-й категории, то есть может применяться для изготовления несущих сварных конструкций.
  • ХВГ – сталь ХВГ имеет в составе хром, вольфрам и марганец в количестве около 1 % и дополнительные легирующие элементы, но их содержание меньше 0,5 %.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Стали и прочность крепежа

Машиностроительный крепёж может иметь различное назначение и выполнять самые разные задачи – от простого формирования целостности конструкции до восприятия основной несущей силовой нагрузки на конструкцию. Чем больше нагрузка на крепёж, тем более высокой прочностью он должен обладать.

В зависимости от назначения и области применения крепёж изготавливают различных классов прочности, соответственно из разных марок сталей. Нет никакой надобности использовать высокопрочные болты для крепления, скажем, козырька на киоске, и напротив – совсем недопустимо использовать болты обычного, низкого, класса прочности в ответственных конструкциях башенных или козловых кранов – здесь применяются исключительно высокопрочные болты по ГОСТ 7817-70 – отсюда и народное название таких болтов «крановые болты». Желание сэкономить и использовать обычные болты – подешевле, или «крановые болты», но изготовленные из низкопрочных сталей, приводит к зрелищным новостям по телевизору с падающим краном в центре внимания.

Для различных видов крепежа (болты, винты, гайки, шпильки) используются разные стали, разные классы прочности и различная их маркировка.

Болты, винты и шпильки

Болты, винты и шпильки производятся из различных углеродистых сталей разным сталям соответствуют разные классы прочности. Хотя, иногда можно из одной и той же стали изготовить болты различных классов прочности, используя при этом разные способы обработки заготовки или дополнительную термическую обработку – закалку.

Например, из Стали 35 можно изготовить болты нескольких классов прочности: класса прочности 5.6 – если изготовить болты методом точения на токарном и фрезерном станке: классов 6.6 и 6.8 – получатся при изготовлении болтов методом объёмной штамповки на высадочном прессе; и класса 8.8 – если полученные перечисленными способами болты подвергнуть термической обработке – закалке.

Класс прочности для болтов, винтов и шпилек из углеродистых сталей обозначают двумя цифрами через точку. Утверждённый прочностной ряд для болтов, винтов и шпилек из углеродистых сталей содержит 11 классов прочности:

3.6; 4.6; 4.8; 5.6; 5.8; 6.6; 6.8; 8.8; 9.8; 10.9; 12.9

Первая цифра маркировки класса прочности болта обозначает 0,01 часть номинального временного сопротивления – это предел прочности на растяжение – измеряется в МПа (мегапаскалях) или Н/мм² (ньютонах на миллиметр квадратный). Также первая цифра маркировки класса прочности обозначает ≈0,1 часть номинального временного сопротивления, если Вы измеряете предел прочности на растяжение в кгс/мм² (килограммах-силах на миллиметр квадратный).

Пример: Шпилька класса прочности 5.8: Определяем предел прочности на растяжение

5/0,01=500 МПа (или 500 Н/мм²; или ≈50 кгс/мм²)

Вторая цифра обозначает 0,1 часть отношения предела текучести (напряжения, при котором уже начинается пластическая деформация) к номинальному временному сопротивлению (пределу прочности на растяжение) – таким образом для шпильки класса прочности 10.9 второе число означает, что у шпильки, относящейся к этому классу, минимальный предел текучести будет равен 90% от значения предела прочности на растяжение, то есть будет равен: (10/0,01)×(9×0,1)=1000×0,9=900 МПа (или Н/мм²; или ≈90 кгс/мм²)

Пример: Шпилька класса прочности 5.8: Определяем предел текучести

500х0,8=400 МПа (или 400 Н/мм²; или ≈40 кгс/мм²)

Значение предела текучести – это максимально допустимая рабочая нагрузка болта, винта или шпильки, при превышении которой происходит невосстанавливаемая деформация. При расчётах нагрузки на болты, винты или шпильки используют 1/2 или 1/3 от предела текучести, то есть, с двукратным или трёхкратным запасом прочности соответственно.

Классы прочности и марки сталей для болтов, винтов и шпилек

Класс прочностиМарка сталиГраница прочности, МПаГраница текучести, МПаТвердость по Бринеллю, HB
3.6Ст3кп, Ст3сп, Ст5кп, Ст5сп300…330180…19090…238
4.6Ст5кп, Ст.10400240114…238
4.8Ст.10, Ст.10кп400…420320…340124…238
5.6Ст.35500300147…238
5.8Ст.10, Ст.10кп, Ст.20, Ст.20кп500…520400…420152…238
6.6Ст.35, Ст.45600360181…238
6.8Ст.20, Ст.20кп, Ст.35600480181…238
8.8Ст.35, Ст.45, Ст.35Х, Ст.38ХА, Ст.20Г2Р800*640*238…304*
8.8Ст.35, Ст.35Х, Ст.38ХА, Ст.40Х, Ст.20Г2Р800…830**640…660**242…318**
9.8*Ст.35, Ст.35Х, Ст.45, Ст.38ХА, Ст.40Х, Ст.30ХГСА, Ст.35ХГСА, Ст.20Г2Р900720276…342
10.9Ст.35Х, Ст.38ХА, С.45, Ст.45Г, Ст.40Г2, Ст.40Х, Ст.40Х Селект, Ст.30ХГСА, Ст.35ХГСА,1000…1040900…940304…361
12.9Ст.30ХГСА, Ст.35ХГСА, Ст.40ХНМА1200…12201080…110366…414

Читать также: Шестигранник диаметр описанной окружности

В таблице приведены самые распространённые в метизном производстве и рекомендованные марки сталей, но в различных особых случаях также применяются и другие стали, когда их применение продиктовано дополнительными требованиями к крепежу.

Значками помечено в таблице:

* применительно к номинальным диаметрам до 16 мм.

** применительно к номинальным диаметрам больше,чем 16 мм.

Существуют специальные стандарты на высокопрочные болты узкоотраслевого применения, имеющие свою градацию прочности. Например, стандарты на высокопрочные болты с увеличенным размером «под ключ», применяемые в мостостроении – так называемые «мостовые болты»: ГОСТ 22353-77 и российский стандарт ГОСТ Р 52644-2006.

Прочность болтов согласно этих стандартов обозначается значением временного сопротивления на разрыв (границы прочности) в кгс/см²: то есть, 110, 95, 75 и т.д.

Такие болты могут производиться в двух исполнениях:

  • Исполнение У – для климатических областей с максимально низкой температурой до -40 0 С – буква У не обозначается в маркировке
  • Исполнение ХЛ – для климатических областей с максимально низкой температурой от -40 0 С до -65 0 С – обозначается в маркировке на головке болта после класса прочности
Резьба болтовКласс прочности болтовМарка сталиГраница прочности, МПа (кгс/см²)Относит. удлинение, %Ударная вязкость болтов исполнения ХЛ, МДж/м² (кгс·м/см²)Макс. твердость по Бринеллю, HB
М16. М2711040Х Селект1100 (110)…1350 (135)минимум 8минимум 0,5 (5)

В производстве высокопрочных болтов по данным стандартам используются также стали 30Х3МФ, 30Х2АФ и 30Х2НМФА. Применение таких сталей позволяет добиться ещё более высокой прочности.

Маркировка прочности болтов, винтов, шпилек

Система маркировки метрического крепежа разработана инженерами ISO (International Standard Organization – Международная Организация Стандартов). Советские, российские и украинские стандарты опираются именно на эту систему.

Маркировке подлежат болты и винты с диаметром резьбы свыше 6 мм. Болты и винты диаметром менее 6 мм маркировать необязательно – производитель может наносить маркировку по собственной инициативе.

Необходимо отметить, что среди винтов маркируются только винты, имеющие шлиц под шестигранный ключ, с различной формой головки: с цилиндрической, с полукруглой и с потайной головкой. Винты со всеми типами головки, имеющие крестовой или прямой шлиц, не маркируются обозначением класса прочности.

Необходимо также отметить, что не маркируются болты и винты изготовленные методом резания, точения (т.е. не штамповкой) – в этом случае маркировка класса прочности возможна по дополнительному требованию Заказчика.

Знаки маркировки наносят на торцевой или боковой поверхности головки болта или винта. Если знаки наносятся на боковую поверхность головки, то они должны быть углубленными. Допускается маркировка выпуклыми знаками, при этом увеличение высоты головки болта или винта не должно превышать:

  • 0,1 мм – для изделий с диаметром резьбы до 8 мм;
  • 0,2 мм – для изделий с диаметром резьбы от 8 мм до 12 мм;
  • 0,3 мм – для изделий с диаметром резьбы свыше 12 мм

Болты и винты с шестигранной и звездообразной головкой (в том числе изделия с фланцем) маркируют товарным знаком изготовителя и обозначением класса прочности. Данная маркировка наносится на верхней части головки выпуклыми или углубленными знаками; может также наноситься на боковой части головки углубленными знаками. Для болтов и винтов с фланцем, если в процессе производства невозможно нанести маркировку на верхней части головки, маркировку наносят на фланце.

Болты с полукруглой головкой и квадратным подголовником по ГОСТ 7802-80 классов прочности 8.8 и выше маркируют знаком производителя и обозначением класса прочности.

Символы маркировки классов прочности болтов и винтов под шестигранный ключ, приведены в следующей таблице:

Если данные символы невозможно нанести из-за формы головки или ее малых размеров, применяются символы маркировки по системе циферблата. Эти символы приведены в следующей таблице:

Также, в отдельных случаях, на головке болта может маркироваться сталь из которой изготовлен болт. Показан пример болта из Стали 40Х.

Шпильки маркируют цифрами класса прочности только с диаметром резьбы свыше 12 мм. Так как маленькие диаметры шпилек затруднительно маркировать с помощью цифровых клейм, то допускается маркировать такие шпильки, с диаметрами резьбы М8, М9, М10, М11, используя альтернативные знаки, приведенные на рисунке. Знаки наносят на торце гаечного конца шпильки.

Шпильки маркируют клеймением с углубленными знаками и нанесением обозначения класса прочности c товарным знаком производителя на безрезьбовом участке шпильки. Маркировке подлежат шпильки классов прочности 5.6, 8.8 и выше.

Гайки

Класс прочности для гаек из углеродистых сталей нормальной высоты (Н≈0,8d), гаек высоких (Н≈1,2d) и особо высоких (Н≈1,5d) обозначается одним числом. Утверждённый прочностной ряд содержит семь классов прочности:

Это число обозначает 1/100 часть предела прочности болта с которым в паре должна компоноваться гайка в резьбовом соединении. Такое сочетание болта и гайки называется рекомендуемым и позволяет равномерно распределить нагрузку в резьбовом соединении.

Например, гайка класса прочности 8 должна компоноваться с болтом, у которого предел прочности не менее, чем:

8 х 100 = 800 МПа (или 800 Н/мм²; или ≈80 кгс/мм²)

Следовательно, можно использовать болты классов прочности 8.8; 9.8; 10.9; 12.9 – оптимальной будет пара с болтом класса прочности 8.8.

Классы прочности и марки сталей для гаек нормальной высоты, гаек высоких и гаек особо высоких

М3095950 (95). 1150 (115)363
М3675750 (75). 950 (95)
М4265650 (65). 850 (85)
М4860600 (60). 800 (80)
Класс прочностиМарка сталиГраница прочности, МПаТвердость по Бринеллю, HB
4Ст3кп, Ст3сп, Ст.5, Ст.5кп, Ст.20510112…288
5Ст.10, Ст.10кп, Ст.20, Ст.20кп520…630124…288
6Ст.10, Ст.10кп, Ст.20, Ст.20кп, Ст.35, ст.45, ст.40Х600…720138…288
8Ст.35, Ст.45, Ст.20Г2Р, Ст.40Х800…920162…288
9Ст.35Х, Ст.38ХА, Ст.45, Ст.40Х1040…1060180…288
10Ст.35Х, Ст.38ХА, Ст.45, Ст.40Х, Ст.30ХГСА, Ст.40ХНМА900…920260…335
12Ст.30ХГСА, Ст.40ХНМА1150…1200280…335

Правило подбора гаек к болтам заключается в сохранении целостности резьбы гайки, навинченной на болт, при приложении пробной испытательной нагрузки – попросту говоря, при испытаниях гайку не должно «сорвать» от испытательной нагрузки для выбранного болта.

При подборе классов прочности болтов и гаек, сопрягаемых в резьбовом соединении, можно пользоваться следующей таблицей согласно ГОСТ 1759.4-87:

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]