Лекция 9. Влияние различных факторов на пластичность металла. Влияние ОМД на структуру и свойства металлов. Основные законы теории пластических деформаций. Нагрев заготовок при ОМД


Пластичность металлов.

Раздел: БИБЛИОТЕКА ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ Короткий путь https://bibt.ru
<<�Предыдущая страница Оглавление книги Следующая страница>>

Пластичностью называется способность металла принимать под действием нагрузки новую форму не разрушаясь.

Пластичность металлов определяется также при испытании на растяжение. Это свойство обнаруживается в том, что под действием нагрузки образцы разных металлов в различной степени удлиняются, а их поперечное сечение уменьшается. Чем больше способен образец удлиняться, а его пеперечное сечение сужаться, тем пластичнее металл образца.

Необходимость определения пластичности металлов вызывается тем, что пластичные металлы можно подвергать обработке давлением, т. е. ковать, штамповать или на прокатных станах превращать слитки металлов в полосы, листы, прутки, рельсы и многие другие изделия и заготовки.

В противоположность пластичным хрупкие металлы под действием нагрузки разрушаются без изменения формы. При испытании хрупкие образцы разрушаются без удлинения, внезапно. Хрупкость является отрицательным свойством. Вполне пригодным для изготовления деталей машин будет не только прочный, но и в определенной мере пластичный металл.

Для того чтобы получить представление о пластичности металла и определить величину этого свойства, существуют две единицы измерения: относительное удлинение и относительное сужение при разрыве.

Величина относительного удлинения определяется при испытании следующим образом.

Сначала вычисляется общее удлинение образца при разрыве l1-l0, т. е. из его длины в момент разрыва l1 вычисляется первоначальная длина l0. Полученная разность могла бы служить показателем пластичности металлов только в том случае, если бы длина образцов для испытания была всегда одинаковой.

При различной же начальной длине образцов величина их удлинения для сравнения пластичности металлов является недостаточной, так как длинные образцы будут удлиняться при разрыве больше, чем короткие образцы из того же металла.

Поэтому, чтобы иметь возможность сравнивать пластичность различных металлов, необходимо учитывать, какова начальная длина образца и какое он получил удлинение при разрыве относительно первоначальной ее длины.

Относительное удлинение принято численно выражать в процентах по отношению к первоначальной длине образца и обозначать буквой δn.

Пример.. Первоначальная длина образца l0 = 200 мм; длина при разрыве оказалась равной 236 мм; удлинение образца составило 236—200 = 36 мм. Относительное удлинение

Относительное удлинение (%) при испытании некоторых металлов составляет: для цинка 20, алюминия 40, олова 40, железа 45, свинца 45, никеля 50, меди 50.

Вторую величину, характеризующую пластичность металлов,— относительное сужение при разрыве ψ определяют подобным же способом:

где F0 — начальная площадь поперечного сечения образца до испытания, мм2; F1 — площадь поперечного сечения образца в месте разрыва, мм2.

Таким образом, относительное сужение представляет собой отношение величины уменьшения площади поперечного сечения образца при разрыве к первоначальной площади поперечного сечения.

Перейти вверх к навигации

Физические основы пластичности металлов

Развитие учения о механических свойствах твердых тел, как известно, шло от механики абсолютно твердого тела, в которой деформации вовсе не учитываются, через теорию упругости, являющуюся первым приближением и пригодную в случаях малых и обратимых деформаций, к разрабатываемой в настоящее время теории малых упруго-пластических деформаций. Теория взаимодействия атомов кристаллической решетки, разработанная свыше 40 лет назад, находилась в резком противоречии с экспериментальными данными относительно прочности кристаллов. Из этого положения было предложено два выхода. Оба они основаны на том, что в реальном кристалле, как и вообще в твердых материалах, имеются неоднородности и несовершенства. Именно вследствие несовершенства строения у реальных тел возникает преждевременная пластичность.

Далее мнения разных исследователей расходились. Одни считали, что реальный кристалл состоит из кусочков идеального кристалла, между которыми имеются слабые места. Пластическое течение происходит только по слабым местам. Другие полагали, что слабые места, если и играют роль в пластичности, то только в качестве источников перенапряжения. Иначе говоря, для пластического течения необходимы большие местные перенапряжения, как это, например, было показано в опытах по управлению образованием пластических сдвигов.

Несомненно, что изучение строения реального кристалла и разнообразных дефектов, которые могут в нем существовать, является важной по своему значению задачей. Однако спорным является положение о том, необходимо ли основывать теорию пластичности на учете этих явлений или же можно разработать теорию пластической деформации идеально правильной кристаллической решетки с последующим рассмотрением роли различных дефектов.

Ряд авторов предпочитает исходить из предположения о наличии в кристаллической решетке закономерно распределенных пороков, обладающих особыми свойствами. Предполагается, что пластическое течение кристаллов представляет собой движение этих пороков (дислокаций) в кристаллической решетке. Последние экспериментальные данные в известной степени подтверждают дислокационные представления. Однако до сих пор остается недостаточно выясненным коренной вопрос о возникновении дислокаций в процессе пластической деформации. Поэтому необходимо уделить особое внимание экспериментальной проверке теории дислокаций. Возможно, что такая проверка и соответствующее уточнение теории будут способствовать сближению различных точек зрения.

Разнообразные материалы, подвергаемые действию внешних механических сил, на самых начальных стадиях нагружения изменяют свои размеры и форму обратимо. Деформации, наблюдаемые при этом, называются упругими. Изучение упругих свойств твердых тел важно в связи с тем, что упругие постоянные являются мерой междучастичных сил в твердых телах.

Явления формоизменения твердых тел под воздействием внешних сил весьма сложны. Конечные изменения, происходящие в твердых телах под воздействием внешних сил, определяются совокупностью ряда процессов, каждый из которых сам по себе еще в полной мере неясен из-за отсутствия удовлетворительных и полных представлений о природе сил связи в твердых телах, об их строении, о характере теплового движения и т. д., иными словами, в виду отсутствия исчерпывающей теории кристаллического состояния. Однако несомненно, что основные и общие явления, происходящие в твердых телах под действием внешних сил, заключаются в атомных и молекулярных смещениях.

Известно, что явления, происходящие при формоизменении твердых тел под действием внешних сил, в сильной степени зависят от структуры и теснейшим образом связаны с процессами диффузии, релаксации, рекристаллизации, с фазовыми превращениями и в весьма сильной степени зависят от температуры. В силу этого проблема упругого и пластического формоизменений твердых тел — проблема пластичности, по сути дела, является частью более общей проблемы — проблемы подвижности атомов и молекул в твердых телах, включающей в себя: упругость, несовершенную упругость, пластичность, ползучесть, двойникование, фазовые превращения, диффузию, релаксацию, рекристаллизацию и другие (подобные) явления.

Таким образом, разработка физического учения о пластичности требует охвата большого круга явлений, часть из которых была перечислена выше, и неотделима от решения следующих фундаментальных проблем: проблемы общей теории твердого состояния; проблемы междучастичных сил в твердых телах; проблемы идеальной и реальной структуры твердых тел; проблемы теплового движения в твердых телах.

Пластичность — способность тела (металла) к пластической деформации, т. е. способность получать остаточное изменение формы и размеров без нарушения сплошности. Это свойство используют при обработке металлов давлением. Характеристиками пластичности являются относительное удлинение и относительное сужение.

По степени пластичности металлы принято подразделять следующим образом:

высокопластичные — (относительное удлинение превосходит 40 %) — металлы, составляющие основу большинства конструкционных сплавов (алюминий, медь, железо, титан, свинец) и «легкие» металлы (натрий, калий, рубидий идр.);

пластичные — (относительное удлинение лежит в диапазоне между 3% и 40%) — магний, цинк, молибден, вольфрам, висмут и др. (наиболее обширная группа);

хрупкие — (относительное удлинение меньше 3%) — хром, марганец, кольбат, сурьма.

Высокая очистка хрупких металлов несколько повышает пластичность. Сплавы, полученные на их основе, почти не поддаются обработке давлением. Промышленные изделия из них часто получают путем литья.

Относительное удлинение . Относительное удлинение является условной характеристикой пластичности. Это объясняется тем, что абсолютное удлинение состоит из двух составляющих: равномерного удлинения дeльта lр , пропорционального длине образца, и местного, сосредоточенного удлинения в шейке дельта lш , пропорционального площади поперечного сечения образца.

Отсюда следует, что доля местной деформации, а следовательно, и значения дельта lост и δ у коротких образцов больше, чем у длинных.

При этом для различных материалов относительная величина равномерной и местной деформаций колеблется в широких пределах. Большинство пластичных материалов деформируется с образованием шейки.

При этом равномерная деформация составляет 5-10% от местной деформации, у сплавов типа дуралюмин 18-20%, у латуней 35-45% и т. д., но не больше 50%.

Для хрупких материалов или находящихся в хрупком состоянии шейка не образуется и практически дельта lост = дельта lp . Относительное удлинение, определяемое на длинных образцах, обозначается δ10 , на коротких δ5 , причем всегда δ5 > δ10 .

Относительное удлинение металлов характеризует таблица 2.

Таблица 2.

МеталлОтносительное удлинение, %МеталлОтносительное удлинение, %
ЗолотоТитан
СереброОлово
СвинецАлюминий30-40
Медь50-60Цинк
Железо40-50Магний10-22

Пластичность металлов.

Относительное сужение. У пластичных материалов относительное сужение более точно характеризует их максимальную пластичность — способность к местной деформации и нередко служит технологической характеристикой при листовой штамповке и т. д.

Развитие учения о механических свойствах твердых тел, как известно, шло от механики абсолютно твердого тела, в которой деформации вовсе не учитываются, через теорию упругости, являющуюся первым приближением и пригодную в случаях малых и обратимых деформаций, к разрабатываемой в настоящее время теории малых упруго-пластических деформаций. Теория взаимодействия атомов кристаллической решетки, разработанная свыше 40 лет назад, находилась в резком противоречии с экспериментальными данными относительно прочности кристаллов. Из этого положения было предложено два выхода. Оба они основаны на том, что в реальном кристалле, как и вообще в твердых материалах, имеются неоднородности и несовершенства. Именно вследствие несовершенства строения у реальных тел возникает преждевременная пластичность.

Далее мнения разных исследователей расходились. Одни считали, что реальный кристалл состоит из кусочков идеального кристалла, между которыми имеются слабые места. Пластическое течение происходит только по слабым местам. Другие полагали, что слабые места, если и играют роль в пластичности, то только в качестве источников перенапряжения. Иначе говоря, для пластического течения необходимы большие местные перенапряжения, как это, например, было показано в опытах по управлению образованием пластических сдвигов.

Несомненно, что изучение строения реального кристалла и разнообразных дефектов, которые могут в нем существовать, является важной по своему значению задачей. Однако спорным является положение о том, необходимо ли основывать теорию пластичности на учете этих явлений или же можно разработать теорию пластической деформации идеально правильной кристаллической решетки с последующим рассмотрением роли различных дефектов.

Ряд авторов предпочитает исходить из предположения о наличии в кристаллической решетке закономерно распределенных пороков, обладающих особыми свойствами. Предполагается, что пластическое течение кристаллов представляет собой движение этих пороков (дислокаций) в кристаллической решетке. Последние экспериментальные данные в известной степени подтверждают дислокационные представления. Однако до сих пор остается недостаточно выясненным коренной вопрос о возникновении дислокаций в процессе пластической деформации. Поэтому необходимо уделить особое внимание экспериментальной проверке теории дислокаций. Возможно, что такая проверка и соответствующее уточнение теории будут способствовать сближению различных точек зрения.

Разнообразные материалы, подвергаемые действию внешних механических сил, на самых начальных стадиях нагружения изменяют свои размеры и форму обратимо. Деформации, наблюдаемые при этом, называются упругими. Изучение упругих свойств твердых тел важно в связи с тем, что упругие постоянные являются мерой междучастичных сил в твердых телах.

Явления формоизменения твердых тел под воздействием внешних сил весьма сложны. Конечные изменения, происходящие в твердых телах под воздействием внешних сил, определяются совокупностью ряда процессов, каждый из которых сам по себе еще в полной мере неясен из-за отсутствия удовлетворительных и полных представлений о природе сил связи в твердых телах, об их строении, о характере теплового движения и т. д., иными словами, в виду отсутствия исчерпывающей теории кристаллического состояния. Однако несомненно, что основные и общие явления, происходящие в твердых телах под действием внешних сил, заключаются в атомных и молекулярных смещениях.

Известно, что явления, происходящие при формоизменении твердых тел под действием внешних сил, в сильной степени зависят от структуры и теснейшим образом связаны с процессами диффузии, релаксации, рекристаллизации, с фазовыми превращениями и в весьма сильной степени зависят от температуры. В силу этого проблема упругого и пластического формоизменений твердых тел — проблема пластичности, по сути дела, является частью более общей проблемы — проблемы подвижности атомов и молекул в твердых телах, включающей в себя: упругость, несовершенную упругость, пластичность, ползучесть, двойникование, фазовые превращения, диффузию, релаксацию, рекристаллизацию и другие (подобные) явления.

Таким образом, разработка физического учения о пластичности требует охвата большого круга явлений, часть из которых была перечислена выше, и неотделима от решения следующих фундаментальных проблем: проблемы общей теории твердого состояния; проблемы междучастичных сил в твердых телах; проблемы идеальной и реальной структуры твердых тел; проблемы теплового движения в твердых телах.

Пластичность — способность тела (металла) к пластической деформации, т. е. способность получать остаточное изменение формы и размеров без нарушения сплошности. Это свойство используют при обработке металлов давлением. Характеристиками пластичности являются относительное удлинение и относительное сужение.

По степени пластичности металлы принято подразделять следующим образом:

высокопластичные — (относительное удлинение превосходит 40 %) — металлы, составляющие основу большинства конструкционных сплавов (алюминий, медь, железо, титан, свинец) и «легкие» металлы (натрий, калий, рубидий идр.);

пластичные — (относительное удлинение лежит в диапазоне между 3% и 40%) — магний, цинк, молибден, вольфрам, висмут и др. (наиболее обширная группа);

хрупкие — (относительное удлинение меньше 3%) — хром, марганец, кольбат, сурьма.

Высокая очистка хрупких металлов несколько повышает пластичность. Сплавы, полученные на их основе, почти не поддаются обработке давлением. Промышленные изделия из них часто получают путем литья.

Относительное удлинение . Относительное удлинение является условной характеристикой пластичности. Это объясняется тем, что абсолютное удлинение состоит из двух составляющих: равномерного удлинения дeльта lр , пропорционального длине образца, и местного, сосредоточенного удлинения в шейке дельта lш , пропорционального площади поперечного сечения образца.

Отсюда следует, что доля местной деформации, а следовательно, и значения дельта lост и δ у коротких образцов больше, чем у длинных.

При этом для различных материалов относительная величина равномерной и местной деформаций колеблется в широких пределах. Большинство пластичных материалов деформируется с образованием шейки.

При этом равномерная деформация составляет 5-10% от местной деформации, у сплавов типа дуралюмин 18-20%, у латуней 35-45% и т. д., но не больше 50%.

Для хрупких материалов или находящихся в хрупком состоянии шейка не образуется и практически дельта lост = дельта lp . Относительное удлинение, определяемое на длинных образцах, обозначается δ10 , на коротких δ5 , причем всегда δ5 > δ10 .

Относительное удлинение металлов характеризует таблица 2.

Таблица 2.

МеталлОтносительное удлинение, %МеталлОтносительное удлинение, %
ЗолотоТитан
СереброОлово
СвинецАлюминий30-40
Медь50-60Цинк
Железо40-50Магний10-22

Пластичность металлов.

Относительное сужение. У пластичных материалов относительное сужение более точно характеризует их максимальную пластичность — способность к местной деформации и нередко служит технологической характеристикой при листовой штамповке и т. д.

Механические свойства металлов. Пластичность.

Пластичность характеризует способность материала деформироваться, или растягиваться, под воздействием нагрузки и не разрушаться при этом. Чем более пластичен металл, тем больше он может растягиваться, прежде чем наступит разрушение. Пластичность – это важное свойство металла, поскольку от нее зависит характер разрушения металла под воздействием нагрузки, которое может происходить постепенно или внезапно. Если металл обладает высокой степенью пластичность, он, как правило, разрушается и разрывается постепенно. Прежде чем наступит разрыв, пластичный металл изгибается, и это надежный признак происходящего превышения предела текучести. Металлы с низкой пластичностью хрупки, они разрушаются внезапно, с образованием излома и без предупреждающих признаков.

Пластичность металла прямо связана с его температурой. С ростом температуры пластичность материала возрастает, а по мере снижения температуры она снижается. Металлы, проявляющие свойства пластичности при комнатной температуре, могут становиться хрупкими и разрушаться внезапно при температуре ниже нуля.

Металлы с высоким уровнем пластичности называются пластичными, а металлы с низким уровнем пластичности называются хрупкими. Перед разрушением хрупкие материалы не претерпевают заметной или вообще какой-либо деформации. Удачным примером хрупкого материала может служить стекло. Хрупким металлом, имеющим широкое распространение, можно назвать чугун, в особенности белый чугун.

Пластичность – это свойство, которое позволяет нагружать несколько элементов, имеющих некоторый разброс по длине, не перегружая ни один из них до предела разрушения. Если один из элементов несколько короче, но пластичен, его деформация может быть достаточной для равномерного распределения нагрузки по всем элементам. Практическим примером этого может служить индивидуальное натяжение стальных тросов, из которых состоят канаты подвесных мостов. Поскольку этого нельзя сделать с достаточной точностью, тросы изготовляют из пластичного металла. Когда мости нагружен, те тросы, которые кратковременно оказываются под нагрузкой, превышающей их долю, могут растянуться и, следовательно, переложить часть груза на другие тросы.

Пластичность становится еще более важным свойством для металла, который должен подвергаться дополнительным операциям формоизменения. Например, металлы, которые используются для изготовления кузова автомобиля, должны иметь достаточную пластичность, позволяющую придавать материалу нужную форму.

Особенность, которая важна в связи с характеристиками пластичности и прочности, заключается в их зависимости от соотношения между направлением приложения силы и направлением прокатки материала в процессе его производства. Прокатанные металлы обладают ярко выраженными свойствами направленности. Прокатка удлиняет кристаллы или зерна в направлении прокатки гораздо больше, чем в поперечном ей направлении. В результате прочность и пластичность прокатанного металла, например, листовой стали, наиболее велики в направлении прокатки. В поперечном направлении прочность материала может снижаться даже на 30%, а пластичность – на 50%, по сравнению с параметрами в направлении прокатки. По толщине листа прочность и пластичность еще меньше. У некоторых сталей пластичность в этом направлении очень низкая. Каждому из трех указанных выше направлений присвоено буквенное обозначение. Направление прокатки обозначается буквой «X», поперечное направление – «Y», а направление по толщине – буквой «Z».

Возможно, Вам приходилось видеть испытание на загиб стального листа во время аттестации сварщиков, когда у контрольного образца появлялся излом в основном металле. Наиболее частая причина такого разрушения – параллельность направления прокатки листа и оси шва. Хотя металл может обладать отличными характеристиками в направлении прокатки, воздействие нагрузки в любом из двух других направлений может привести к преждевременному разрушению.

Пластичность металла обычно определяется при помощи испытания на растяжение, которое проводится во время измерения предела прочности металла. Пластичность обычно выражается двумя способами: в виде относительного удлинения и относительного сужения площади сечения.
Поделитесь этим материалом:

Пластичность металла. Определение пластичности металла.

Раздел: БИБЛИОТЕКА ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ Короткий путь https://bibt.ru
<<�Предыдущая страница Оглавление книги Следующая страница>>

Испытание на растяжение позволяет определить не только прочность металла, но и его пластичность, т. е. способность необратимо изменять свою форму под действием нагрузки.

Показателем пластичности металла служит относительное удлинение. Чем больше относительное удлинение, тем больше пластичность, и наоборот.

Относительное удлинение определяется следующим образом. Точками или рисками на образце отмечают расстояние, равное пяти его диаметрам. Это расстояние называется расчетной длиной образца. Для образца диаметром 20 мм оно равно 100 мм. Если разорвать образец, а затем сложить, то расстояние между рисками окажется больше первоначального. Допустим, что образец удлинился на 30 мм. Это удлинение называется абсолютным (Δl).

Относительное удлинение определяется путем деления абсолютного удлинения на первоначальную длину и умножения полученного результата на 100 (в процентах).

В приведенном примере относительное удлинение б составляет 30% [(30 : 100) X100].

Мягкие стали, которые хорошо куются и штампуются даже в холодном состоянии, имеют относительное удлинение 35—40%, тогда как у твердых сталей оно не превышает 10—15%.

Испытание на пластичность свободной осадкой при повышенных температурах производится следующим образом. Цилиндрические образцы диаметром d = 25— 30 мм и высотой H = 2,5 d осаживаются между плоскими бойками через каждые 25—50° в исследуемом интервале температур.

Пластичность оценивается по появлению первой трещины в деформируемом образце.

Испытание позволяет установить оптимальную температуру, при которой пластичность данной марки стали наибольшая, а также выявить наличие поверхностных дефектов в образцах диаметром более 30 мм.

Различные металлы обладают различной пластичностью, причем чистые металлы более пластичны, чем их сплавы. Например, чистое железо весьма пластично и хорошо куется, а сплав железа с 1,7% углерода почти невозможно ковать. Ковкость стали значительно уменьшается при наличии даже небольших количеств (0,1%) фосфора; действие фосфора тем сильнее, чем больше в стали углерода. Наиболее вредной примесью является сера. Она сообщает стали красноломкость, т. е. хрупкость, при температуре 700—1000°, такую сталь невозможно ковать. Это связано с тем, что сера образует легкоплавкие соединения, которые размещаются по границам зерен металла и уменьшают его прочность при нагреве.

Введение специальных примесей (хром, никель и другие) повышает сопротивление стали деформированию, снижает ее ковкость.

Перейти вверх к навигации

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]