Технологии отвода тепла в светодиодных автолампах


А зачем он нужен?

Наравне с другими полупроводниковыми приборами светодиод не является идеальным элементом со 100% коэффициентом полезного действия (КПД). Большая часть потребляемой им энергии рассеивается в тепло. Точное значение КПД зависит от типа излучающего диода и технологии его изготовления. Эффективность слаботочных светодиодов составляет 10-15%, а у современных белых мощностью более 1 Вт её значение достигает 30%, а значит, остальные 70% расходуются в тепло.

Каким бы ни был светодиод, для стабильной и продолжительной работы ему необходим постоянный отвод тепловой энергии от кристалла, то есть радиатор. В слаботочных led функцию радиатора выполняют выводы (анод и катод). Например, в SMD 2835 вывод анода занимает почти половину нижней части элемента. В мощных светодиодах абсолютная величина рассеиваемой мощности на несколько порядков больше. Поэтому нормально функционировать без дополнительного теплоотвода они не могут. Постоянный перегрев светоизлучающего кристалла в разы снижает срок службы полупроводникового прибора, способствует плавной потере яркости со смещением рабочей длины волны.

Конструктивно все радиаторы можно разделить на три большие группы: пластинчатые, стержневые и ребристые. Во всех случаях основание может иметь форму круга, квадрата или прямоугольника. Толщина основания имеет принципиальное значение при выборе, так как именно этот участок несёт ответственность за приём и равномерное распределение тепла по всей поверхности радиатора.

На форм-фактор радиатора оказывает влияние будущий режим работы:

  • с естественной вентиляцией;
  • с принудительной вентиляцией.

Радиатор охлаждения для светодиодов, который будет использоваться без вентилятора, должен иметь расстояние между рёбрами не менее 4 мм. В противном случае естественной конвекции не хватит для успешного отвода тепла. Ярким примером служат системы охлаждения компьютерных процессоров, где за счёт мощного вентилятора расстояние между рёбрами уменьшено до 1 мм.

При проектировании светодиодных светильников большое значение уделяется их внешнему виду, что оказывает огромное влияние на форму теплоотвода. Например, система отвода тепловой энергии светодиодной лампы не должна выходить за рамки стандартной грушевидной формы. Этот факт вынуждает разработчиков прибегать к различным ухищрениям: использовать печатные платы с алюминиевой основой, соединяя их с корпусом-радиатором при помощьи термоклея.

Материалы изготовления радиаторов

В настоящее время охлаждение мощных светодиодов производят преимущественно на радиаторах из алюминия. Такой выбор обусловлен лёгкостью, низкой стоимостью, податливостью в обработке и хорошими теплопроводящими свойствами этого металла. Монтаж медного радиатора для светодиода оправдан в светильнике, где первостепенное значение имеют размеры, так как медь в два раза лучше рассеивает тепло, чем алюминий. Свойства материалов, которые наиболее часто используются для охлаждения мощных светодиодов, рассмотрим более детально.

Алюминиевые

Коэффициент теплопроводности алюминия находится в пределах 202–236 Вт/м*К и зависит от чистоты сплава. По этому показателю он в 2,5 раза превосходит железо и латунь. Кроме этого, алюминий поддаётся разным видам механической обработки. Для увеличения теплоотводящих свойств алюминиевый радиатор анодируют (покрывают в чёрный цвет).

Медные

Теплопроводность меди составляет 401 Вт/м*К, уступая среди других металлов лишь серебру. Тем не менее медные радиаторы встречаются намного реже алюминиевых, что обусловлено наличием ряда недостатков:

  • высокая стоимость меди;
  • сложная механическая обработка;
  • большая масса.

Применение медной охлаждающей конструкции ведёт к увеличению себестоимости светильника, что недопустимо в условиях жёсткой конкуренции.

Керамические

Новым решением в создании высокоэффективных теплоотводов стала алюмонитридная керамика, теплопроводность которой составляет 170–230 Вт/м*К. Этот материал отличается низкой шероховатостью и высокими диэлектрическими свойствами.

С применением термопластика

Несмотря на то что свойства теплопроводных пластмасс (3–40 Вт/м*К) хуже, чем у алюминия, их главными преимуществами являются низкая себестоимость и лёгкость. Многие производители светодиодных ламп используют термопластик для изготовления корпуса. Однако термопластик проигрывает конкуренцию металлическим радиаторам в проектировании светодиодных светильников мощностью более 10 Вт.

Светодиодные лампы с радиатором охлаждения: виды радиаторов


Светодиодные лампы с радиатором охлаждения: виды радиаторов
Светодиодные лампы прочно вошли в нашу жизнь, практически полностью вытеснив лампы накаливания и энергосберегающие компактные люминесцентные лампы (КЛЛ). Можно предположить, что все дело в их экономичности, отличных технических характеристиках (таких как световой поток, CRI, угол рассеивания), а также в их продолжительном сроке службы.

Для чего нужен радиатор в светодиодной лампе

На срок службы изделия первоочередное влияние оказывает качество светодиодов, а также драйвер, правильная работа которого напрямую влияет на стабильность диодов.

Однако в процессе эксплуатации светодиодной лампы её поверхность загрязняется, что негативно влияет на отвод производимого тепла. С течением времени появляется проблема перегрева, с которой связано уменьшение светоотдачи диодов вплоть до их выхода из строя.

Чтобы этого избежать, повышают стабильность работы источников света. Для этого в конструкции каждого из них предусмотрен радиатор.

Виды радиаторов

Радиатор – это конструктивный элемент, который служит для отвода и рассеивания тепла от светодиодов.

Светодиодные лампы с радиатором охлаждения

Светодиодные лампы с радиатором охлаждения бывают следующих видов:

  • с алюминиевым радиатором;
  • керамическим;
  • композитным;
  • пластиковым.

Светодиодные лампы с алюминиевым радиатором

Данные лампы относятся к стандарт- или high-классу. Алюминиевым радиатором в таких изделиях может быть как полоска металла, так и конструктивно более сложная алюминиевая база. Отсюда и разделение таких светильников на два вида:

  1. с ребристым радиатором;
  2. с плоским радиатором.

Светодиодные лампы с ребристым алюминиевым радиатором

Наиболее эффективно защищённые лампы, радиатор которых представлен в виде многослойной конструкции с вентиляционными каналами. За их счет увеличивается площадь рассеивания тепла, что существенно увеличивает срок службы светодиодов, а также препятствует их деградации со временем по причине перегрева.

Светодиодные лампы с алюминиевым радиатором

Лампы с плоским радиатором

Плоский радиатор менее эффективен, чем ребристый. Используется такой охлаждающий элемент в основном в лампах небольшой мощности. Часто для более эффективного отвода тепла он имеет вентиляционные каналы, а его поверхность для диэлектризации покрыта слоем специальной краски или лака.

Композитный радиатор

Светодиодные лампы с радиатором охлаждения из композитного материала отличаются в первую очередь демократичной ценой. В таких лампах элемент представляет собой двухслойную конструкцию из алюминиевой полосы, покрытой теплопроводящим пластиком.

По причине своей низкой цены лампы с композитным радиатором являются наиболее широко представленными на рынке в сегменте эконом-класса.

Однако такие радиаторы не могут эффективно отводить тепло, поэтому гарантийный срок службы изделий с ними редко когда превышает 1 год.

Пластиковый радиатор

Самый простой вариант, правильнее назвать его имитацией радиатора. Элемент представляет собой корпус, выполненный из терморассеивающего пластика. Главные отличия таких ламп: низкая цена, короткий гарантийный срок, непродолжительный срок службы (10000-15000 часов). В лампах высокой мощности для повышения теплоотвода пластиковый радиатор выполняют с дополнительными массивными ребрами и вентиляционными отверстиями.

Светодиодные лампы с плстиковым радиатором

Керамический радиатор

Светодиодные лампы с радиатором охлаждения из керамики отличает высокая теплостойкость, а диэлектрические свойства материала позволяют монтировать светодиодные модули прямо на поверхность такого радиатора. Наиболее распространенным видом лампы с керамическим радиатором без рассеивающей колбы является так называемая лампа-кукуруза.

Светодиодные лампы с керамическим радиатором охлаждения

Светодиодные лампы с каким радиатором охлаждения выбрать?

Из всего выше сказанного можно сделать вывод, что качество любой светодиодной лампы зависит в том числе и от качества радиатора, а точнее от материала, из которого тот выполнен.

Наиболее надежными, с продолжительным реальным сроком службы считаются светодиодные лампы с алюминиевым радиатором охлаждения, а также с керамическим (в том случае, если такой источник света не будет иметь рассеивающей колбы).

Пластиковым вариантам можно отдать предпочтение в том случае, если использоваться подобные лампы будут лишь эпизодически и непродолжительное время, например, в кладовках, подсобных помещениях.

Особенности охлаждения мощных светодиодов

Как указывалось ранее, обеспечить эффективный отвод тепла от светодиода можно при помощи организации пассивного или активного охлаждения. Светодиоды мощностью потребления до 10 вт целесообразно устанавливать на алюминиевые (медные) радиаторы, так как их массогабаритные показатели будут иметь приемлемые значения.

Применение пассивного охлаждения для светодиодных матриц мощностью 50 Вт и более становится затруднительным; размеры радиатора составят десятки сантиметров, а масса возрастёт до 200-500 грамм. В этом случае стоит задуматься о применении компактного радиатора вместе с небольшим вентилятором. Этот тандем позволит снизить массу и размеры системы охлаждения, но создаст дополнительные трудности. Вентилятор необходимо обеспечить соответствующим напряжением питания, а также позаботиться о защитном отключении светодиодного светильника в случае поломки кулера.

Существует ещё один способ охлаждения мощных светодиодных матриц. Он состоит в применении готового модуля SynJet, который внешне напоминает кулер для видеокарты средней производительности. Модуль SynJet отличается высокой производительностью, тепловым сопротивлением не больше 2 °C/Вт и массой до 150 г. Его точные размеры и вес зависят от конкретной модели. К недостаткам стоит отнести необходимость в источнике питания и высокую стоимость. В результате получается, что светодиодную матрицу в 50 Вт нужно крепить либо на громоздкий, но дешёвый радиатор, либо на маленький радиатор с вентилятором, блоком питания и системой защиты.

Каким бы ни был радиатор, он способен обеспечить хороший, но не самый лучший тепловой контакт с подложкой светодиода. Для снижения теплового сопротивления на контактируемую поверхность наносят теплопроводящую пасту. Эффективность её воздействия доказана повсеместным применением в системах охлаждения компьютерных процессоров. Качественная термопаста устойчива к затвердеванию и обладает низкой вязкостью. При нанесении на радиатор (подложку) достаточно одного тонкого ровного слоя на всей площади соприкосновения. После прижима и фиксации толщина слоя составит около 0,1 мм.

Конструктивные особенности радиаторов

Многие задаются вопросом: какой радиатор для светодиода лучше?

Существует две группы модификаций:

  • игольчатые;
  • ребристые.

К примеру, радиатор для светодиода 10W представлен ребристым LED-устройством.

Первый вид, как правило, используется для естественного метода охлаждения светодиодов, а второй — для принудительного. При одинаковых показателях габаритов пассивное игольчатое устройство на 70 % превышает эффективность ребристого вида.

Радиаторы для мощных светодиодов обладают игольчатой конструкцией. Они рассчитаны на мощные светодиоды, но это совсем не означает, что ребристые приборы на основе пластин пригодны только для функционирования вместе с вентилятором. В зависимости от геометрических параметров, они используются и для охлаждения пассивного характера.

Радиатор для светодиодов любой конфигурации может обладать квадратной, прямоугольной или круглой формой.

Расчет площади радиатора

Существуют два метода расчёта радиатора для светодиода:

  • проектный, суть которого состоит в определении геометрических размеров конструкции при заданном температурном режиме;
  • поверочный, который предполагает действовать в обратной последовательности, то есть при известных параметрах радиатора можно рассчитать максимальное количество теплоты, которую он способен эффективно рассеивать.

Применение того или иного варианта зависит от имеющихся исходных данных. В любом случае точный расчёт – это сложная математическая задача с множеством параметров. Кроме умения пользоваться справочной литературой, брать необходимые данные из графиков и подставлять их в соответствующие формулы, следует учитывать конфигурацию стержней или рёбер радиатора, их направленность, а также влияние внешних факторов. Также стоит учитывать и качество самих светодиодов. Зачастую в светодиодах китайского производства реальные характеристики расходятся с заявленными.

Точный расчёт

Прежде чем перейти к формулам и расчётам, необходимо ознакомиться с основными терминами в области распространения тепловой энергии. Теплопроводность представляет собой процесс передачи тепловой энергии от более нагретого физического тела к менее нагретому. Количественно теплопроводность выражается в виде коэффициента, который показывает, сколько теплоты способен передать материал через единицу площади при изменении температуры на 1°K. В светодиодных светильниках все части, задействованные в обмене энергии, должны обладать высокой теплопроводностью. В частности это касается передачи энергии от кристалла к корпусу, а затем к радиатору и воздуху.

Конвекция – тоже процесс передачи тепла, который происходит за счёт движения молекул жидкостей и газов. Применительно к светодиодным светильникам принято рассматривать обмен энергией между радиатором и воздухом. Это может быть естественная конвекция, происходящая за счет естественного перемещения воздушного потока, или принудительная, организованная за счёт установки вентилятора.

В начале статьи указывалось, что около 70% потребляемой светодиодом мощности расходуется в тепло. Чтобы рассчитать радиатор для светодиодов, необходимо знать точное количество рассеиваемой энергии. Для этого воспользуемся формулой:

PТ – мощность, выделяемая в виде тепла, Вт; k – коэффициент, учитывающий процент энергии, переходящей в тепло. Это величина для мощных светодиодов принимается равной 0,7-0,8; UПР – прямое падение напряжения на светодиоде при протекании номинального тока, В; IПР – номинальный ток, А.

Пришло время посчитать количество препятствий, расположенных на пути прохождения теплового потока от кристалла к воздуху. Каждое препятствие представляет собой тепловое сопротивление (termal resistance), обозначаемое символом (Rθ, градус/Вт). Для наглядности всю систему охлаждения представляют в виде схемы замещения из последовательно-параллельного включения тепловых сопротивлений

Rθjc – тепловое сопротивление p-n-переход-корпус (junction-case); Rθcs – тепловое сопротивление корпус-радиатор (case-surfase radiator); Rθsa– тепловое сопротивление радиатор-воздух (surfase radiator-air).

Если предполагается устанавливать светодиод на печатную плату или использовать термопасту, то также нужно учесть их тепловые сопротивления. На практике значение Rθsa можно определить двумя способами.

Rθja – сопротивление p-n-переход-воздух; Tj – максимальная температура p-n-перехода (справочный параметр), °C; Ta – температура воздуха вблизи радиатора, °C.

Найти из графика «зависимость максимального теплового сопротивления от прямого тока».

По известному Rθsa выбирают стандартный радиатор. При этом паспортное значение теплового сопротивления должно быть немного меньше расчетного.

Приблизительная формула

Многие радиолюбители привыкли использовать в своих самоделках радиаторы, оставшиеся от старой электронной аппаратуры. При этом они не желают углубляться в сложные вычисления и покупать дорогие новинки импортного производства. Как правило, их интересует один только вопрос: «Какую мощность может рассеять имеющийся в наличии алюминиевый радиатор для светодиодов?»

Предлагаем воспользоваться простой эмпирической формулой, позволяющей получить приемлемый результат расчёта: Rθsa=50/√S, где S – площадь поверхности радиатора в см 2 .

Подставляя в данную формулу известное значение суммарной площади теплоотвода с учетом поверхности рёбер (стержней) и боковых граней, получаем его тепловое сопротивление.

Допустимую мощность рассеивания находим из формулы: Pт=(Tj-Ta)/Rθja.

Приведенный расчёт не учитывает много нюансов, влияющих на качество работы всей охлаждающей системы (направленность радиатора, температурные характеристики светодиода и пр.). Поэтому полученный результат рекомендуется умножать на коэффициент запаса – 0,7.

Первый метод

Подсчет площади проводится по формуле F = а х Сх (T1 – T2), где Ф является тепловым потоком, а S – площадью поверхности радиатора (сумма площадей всех ребер или иголок и подложки в кв. м), T1 — показателем температуры среды, отводящей тепло, а T2 — температуры нагретой поверхности.

Производя подсчет площади, следует обратить внимание и на то, что ребро или же пластина обладает двумя поверхностями для отвода тепла.

Расчет поверхности иглы производится по длине окружности (π х D), умноженной на показатель высоты.

Для поверхностей, не подвергшихся полировке, коэффициентом теплоотдачи является показатель, равный 6-8 Вт/(м2·К).

Радиатор для светодиода своими руками

Сделать алюминиевый радиатор для светодиодов 1, 3 или 10 Вт своими руками несложно. Сначала рассмотрим простую конструкцию, на изготовление которой потребуется около полчаса времени и круглая пластина толщиною 1-3 мм. По окружности через каждые 5 мм делают надрезы к центру, а получившиеся сектора слегка загибают, чтобы готовая конструкция напоминала крыльчатку. Для крепления радиатора к корпусу в нескольких секторах делают отверстия. Немного сложнее сделать самодельный радиатор для 10 ваттного светодиода. Для этого понадобиться 1 метр алюминиевой полосы шириной 20 мм и толщиной 2 мм. Сначала полосу распиливают ножовкой на 8 равных частей, которые затем складывают стопкой, просверливают насквозь и стягивают болтом с гайкой. Одну из боковых граней шлифуют под крепление светодиодной матрицы. С помощью стамески полосы разгибают в разные стороны. В местах крепления светодиодного модуля сверлят отверстия. На отшлифованную поверхность наносят термоклей, сверху прикладывают матрицу, фиксируя её саморезами.

Вариант 2

Радиатор для светодиодов своими руками можно сделать из фрагмента алюминиевой трубы с прямоугольным сечением.

Нужные материалы:

  • труба размером 30х15х1,5 мм;
  • пресс-шайба диаметр которой составляет 16 мм;
  • термический клей;
  • термическая паста КТП-8;
  • Ш-образный профиль 265;
  • саморезы.

Для оптимизации конвенции просверливаются три отверстия, диаметр которых равен 8 мм, а в профиле — отверстия диаметром 3,8 мм для крепежа посредством саморезов.

Светодиоды приклеивают к трубе — основной части радиатора — при помощи термического клея. В местах, где соединяются детали радиатора, наносят слой термической пасты КТП-8.

Затем приступают к сборке конструкции при помощи саморезов с пресс-шайбой.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]